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Abstract. The aim of the paper is to first investigate some properties of the hyperspace
θ(X), and then in the next part of the paper to deal with a detailed study of a special type
of subspace ↓ θC(X) of the space θ(X × I).
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1. Introduction

The study of hyperspace topology started with Hausdorff [6], where he topologized
a collection of all nonempty closed subsets of a bounded metric space X by defining
a metric on that collection. After that, Vietoris introduced a new topology on the col-
lection of all nonempty closed subsets of a topological space (X,σ), which is known as
“V ietoris Topology” or “Finite Topology”. Michael also in his paper [7] dealt with dif-
ferent types of subsets for construction of topologies. Subsequently, Fell in his paper [3]
constructed a compact, Hausdorff topology for the collection of all closed subsets of a
topological space (X,σ).

In [5], we have introduced a new topology on the collection of all nonempty θ-closed
subsets of a topological space (X,σ). In Section 3, we continue our study of the space
θ(X) endowed with the above defined topology described in [5]. There, a necessary and
sufficient condition has been established for a space X to be locally θ-H. Also the local
connectedness of an H-closed, Urysohn space X is studied in terms of that of θ(X).
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Section 4 deals with the hyperspace ↓ θC(X). Here θC(X) denotes the set of all θ-
continuous maps from a topological space X to [0, 1](≡ I), endowed with the subspace
topology of the real line. For each f ∈ θC(X), we define the hypograph of f by ↓ f . By
identifying each f ∈ θC(X) with ↓ f ∈ θ(X × I), we can regard θC(X) as the subset
↓ θC(X) ⊂ θ(X× I). So any topology on θ(X× I) will induce a topology on ↓ θC(X). In
this section, we investigate some properties of ↓ θC(X) endowed with the above defined
topology. At first investigations are made how the first countability and local θ-H-ness of
a space X are related. Then we have obtained that first countability of ↓ θC(X) always
implies the separability of ↓ θC(X). Finally it has been proved that for an H-closed
space X, the second countability of ↓ θC(X) always implies the second countability of
X.

Recall that H-closedness of the space (K(X),∨) of all nonempty compact subsets of a
space X endowed with the Vietoris topology ∨ was considered in [2].

2. Preliminaries

Throughout the paper all spaces are assumed to be Tychonoff. Let us first recall the
following.

Definition 2.1 [8] A point x ∈ X is said to be a θ-contact point (also called a θ-cluster
point or a θ-adherent point) of a set A ⊆ X if for every neighborhood U of x, we get
cl

X
U ∩ A ̸= ϕ. The set of all θ-contact points of a set A is called the θ-closure of A and

we denote this set by A
θ

(or, cl
θ
A). A set A is called θ-closed if A = A

θ

. A set A is called
θ-open if X \A is θ-closed.

Remark 1 The collection of all θ-open sets in X forms a topology. By θ(X) we mean

θ(X) = {A ⊆ X : A ̸= ϕ and A is θ-closed}.

Definition 2.2 A T
2
-space X is called H-closed if any open cover of X has a finite

proximate subcover, i.e. a finite collection whose union is dense in X. A set A ⊆ X is
called an H-set if any open cover {U

α
: α ∈ Λ} of A by open sets in X has a finite

subfamily {U
α
i
: i = 1, 2, .., n} such that A ⊆

n∪
i=1

cl
X
U

α
i
.

Definition 2.3 [5] On θ(X) we define a topology as follows. For each W ⊆ X, let
W

+

= {A ∈ θ(X) : A ⊆ W} and W
−
= {A ∈ θ(X) : A ∩W ̸= ϕ}. Consider

S
θ
= {W−

: W is open in X} ∪ {W+

: W is θ-open in X with X \W an H-set}.

Then S
θ
forms a subbase for some topology on θ(X) which we denote by τ .

Remark 2 [5] Any basic open set in the above defined topology is of the form V
−

1
∩V

−

2
∩

... ∩ V
−

n
∩ V

+

0
, where V

i
⊆ V

0
for each i = 1, 2, ..., n and V

1
, V

2
, ..., V

n
are open sets, V

0
is

a θ-open set with X \ V
0
an H-set.

Definition 2.4 [5] A space X is locally θ-H if X contains a base B for its topology such
that for each B ∈ B, cl

X
B is an H-set which is θ-closed also.

Proposition 2.5 [5] If X is H-closed and Urysohn, then X is locally θ-H.

Corollary 2.6 [8] Any θ-closed set in an H-closed space is an H-set.
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Corollary 2.7 [1] In an H-closed Urysohn space, every H-set is θ-closed and every
θ-closed set is an H-set.

3. The hyperspace θ(X)

In this section, we investigate the properties of θ(X) endowed with the topology τ as
defined above.

Definition 3.1 Let (X,σ) be a topological space. A map f : (X,σ) → R is said to be
θ-lower semicontinuous if for any t ∈ R, f−1

[t,∞) is θ-closed in X.

Definition 3.2 For an extended real-valued function f : X → [−∞,∞], the epigraph
of f is denoted by epi(f) and is defined by epi(f) = {(x, t) ∈ X × R : f(x) ⩽ t}.

Remark 3 It should be observed that f is θ-lower semicontinuous if and only if epi(f)
is θ-closed in X × R.

Consider θL(X) = {f : X → [−∞,∞] : f is θ-lower semi continuous}. By identifying
each f with epi(f), we can consider θL(X) as a subspace of θ(X × R).

Theorem 3.3 A Urysohn space X is locally θ-H if and only if θL(X) is closed in
θ(X × R).

Proof. First let X be locally θ-H. Then for each A ∈ θ(X × R) \ θL(X), there exist
x ∈ X and r

1
, r

2
∈ R with r

1
< r

2
such that (x, r

1
) ∈ A but (x, r

2
) ̸∈ A. Since X is

locally θ-H, there exist an open neighbourhood V of x and a δ > 0 such that cl V is a
θ-closed, H-set and cl V × (r

2
− δ, r

2
+ δ) ⊂ X×R\A. Put K = cl V × [r

2
− δ, r

2
+ δ] and

U = V × (−∞, r
2
− δ). Then K is an H-set in X × R, U is an open set in X × R such

that A ∈ U
− ∩ ((X ×R) \K)

+ ⊂ θ(X ×R) \ θL(X). Hence θL(X) is closed in θ(X ×R).
Conversely, let X be not locally θ-H. Then there exists x

0
∈ X which has no θ-closed,

H-set neighbourhood in X. Consider

A = (X × [1,∞)) ∪ {(x
0
, 0)} ∈ θ(X × R) \ θL(X).

For each neighbourhood W of A in θ(X × R), choose open sets U
1
, ..., U

n
⊂ X × R and

an H-set K ⊂ X×R such that (x
0
, 0) ∈ U

1
and A ∈ U

−

1
∩ ...∩U

−

n
∩ ((X×R)\K)

+ ⊂ W .
If we denote the projection map p

1
: X × R → X, then as p

1
(K) is an H-set, p

1
(K) is

not a neighbourhood of x
0
∈ X, i.e. p

1
(U

1
) ̸⊂ p

1
(K). Choose x

1
∈ p

1
(U

1
) \ p

1
(K). Now

define g ∈ θL(X) by

g(x) =

{
0 , x = x

1

1 , x ̸= x
1

Then by identifying g with its epigraph, we can write g = (X × [1,∞))∪ ({x
1
}× [0,∞)).

Now, g ∈ U
−

1
∩ ... ∩ U

−

n
∩ ((X × R) \K)

+ ⊂ W , which implies that W ∩ θL(X) ̸= ϕ, i.e.
A ∈ cl θL(X). Thus θL(X) is not closed. ■

Proposition 3.4 For an H-closed, Urysohn space X, if θ(X) is locally connected, then
so is X.

Proof. Since, by Proposition 2.5 X is locally θ-H, there exists an open neighbourhood
U of x

0
∈ X such that cl U is a θ-closed, H-set. As θ(X) is locally connected and U

− ∩
(X \ bd U)

+

is a neighbourhood of {x
0
} in θ(X), there exists a connected neighbourhood

W of {x
0
} in θ(X) such that W ⊂ U

− ∩ (X \ bd U)
+

. Hence for each A ∈ W , A∩U ̸= ϕ
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and A ∩ bd U = ϕ. As ϕ : X → θ(X), x → {x} is an embedding, {x ∈ X : {x} ∈ W} is
a neighbourhood of x

0
in X, thus V = U ∩ ∪W is also a neighbourhood of x in X. We

claim that V is connected. If not, then there exist two nonempty, disjoint open sets V
0

and V
1
in X such that V ⊂ V

0
∪V

1
⊂ U , x

0
∈ V

0
and V ∩V

1
̸= ϕ, i.e. V ∩ cl V

1
= V ∩V

1
,

V ∩ cl V
0
= V ∩ V

0
. Now, for each A ∈ W, A ∩ U ̸= ϕ and A ∩ cl U = A ∩ U ⊂

V ⊂ V
0
∪ V

1
, so that W is being covered by the following pairwise, disjoint open sets

V
−

0
∩ (X \ cl V

1
)
+

, V
−

1
∩ (X \ cl V

0
)
+

, V
−

0
∩V

−

1
. Clearly, {x

0
} ∈ W ∩V

−

0
∩ (X \ cl V

1
)
+

. As

V ∩V
1
̸= ϕ, A ∈ W such that A∩V

1
̸= ϕ, whence A ∈ V

−

1
∩ (X \ cl V

0
)
+

or A ∈ V
−

0
∩V

−

1
.

Thus W meets one of V
−

1
∩ (X \ cl V

0
)
+

or V
−

0
∩ V

−

1
, which contradicts the fact that W

is connected. ■

Proposition 3.5 For an H-closed, Urysohn space X, if θ(X) is connected, then any
non-empty open set in X is not an H-set.

Proof. If possible, let X has a non-empty open set U that is an H-set. Then U
−
and

(X \ U)
+

are disjoint non-empty open sets in θ(X) such that θ(X) = U
− ∪ (X \ U)

+

,
hence θ(X) is disconnected. ■

4. The hyperspace ↓ θC(X)

In this section we investigate the properties of the hyperspace ↓ θC(X). We first
recollect the following:

Definition 4.1 [4] A function f : (X,σ) → (Y, γ) is said to be θ-continuous at a point
x ∈ X if for each open neighbourhood V of f(x), there exists an open neighbouhood U
of x such that f(cl U) ⊆ cl V . The function f is said to be θ-continuous on X if it is
θ-continuous at each point x of X.

The family of all θ-continuous functions from a topological space (X,σ) to I = [0, 1]
with the subspace topology of the reals will be denoted by θC(X).

Definition 4.2 For every f ∈ θC(X), the hypograph of f is defined by ↓ f = {(x, y) ∈
X × I : y ⩽ f(x)}.

Remark 4 It is to be noted that for each f ∈ θC(X), ↓ f ∈ θ(X × I). So by identifying
each f ∈ θC(X) with ↓ f ∈ θ(X×I), we can regard θC(X) as the subset ↓ θC(X) = {↓ f :
f ∈ θC(X)} ⊂ θ(X× I). So any topology on θ(X× I) will give rise to a subspace topology
on ↓ θC(X). Thus the above defined topology will induce a topology τ ′ on ↓ θC(X) which
is being generated by

{
n∩

i=1

V
−

i
∩ V

+

0
∩ ↓ θC(X) : V

1
, ..., V

n
are open in X × (0, 1], V

0
is θ-open in X × (0, 1]

with its complement an H-set}.

Notation 4.3 For a closed set F in a topological space (X,σ),

F
∗
= (X \ F )

+

= {A ∈ θ(X) : A ∩ F = ϕ}.

Theorem 4.4 (↓ θC(X), τ ′) is always T
1
.

Proof. Let f, g ∈ θC(X) be such that f ̸= g. Then there exists x
0
∈ X such that f(x

0
) ̸=

g(x
0
). Let f(x

0
) < g(x

0
). As f, g are θ-continuous, there exists an open neighbourhood

W of x
0
such that f(x) ⩽ a < b ⩽ g(x), for all x ∈ cl W , where a = f(x

0
) and b = g(x

0
).

Then ↓ f ∈ ({x
0
} × [b, 1])

∗
and ↓ g ∈ (W × (a, 1])

−
, but ↓ g ̸∈ ({x

0
} × [b, 1])

∗
and
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↓ f ̸∈ (W × (a, 1])
−
. Hence (↓ θC(X), τ ′) is T

1
. ■

Theorem 4.5 For an H-closed, Urysohn space X, ↓ θC(X) is T
2
if and only if there

exists a dense open subset U of X which is locally θ-H.

Proof. Take f, g ∈ θC(X), x
0
∈ cl W and a, b ∈ I as in the proof of the above theorem.

Since f, g ∈ θC(X), we assume that x
0
∈ U . As U is locally θ-H, there exists an open

set V in X such that x
0
∈ V ⊆ cl V ⊆ cl(U ∩W ) and cl V is a θ-closed, H-set. As for

all x ∈ cl V , f(x) ⩽ a < b ⩽ g(x), (cl V × [c, 1])
∗∩ ↓ θC(X) and (V × (c, 1])

−∩ ↓ θC(X)
are disjoint neighbourhoods of ↓ f and ↓ g respectively, where c = a+b

2 .
Conversely, let us define U = ∪{int K : K is an H-set in X}. Then U is open, so that

cl U = cl
θ
U . As X is H-closed, cl U becomes θ-closed and hence an H-set. Thus U is

locally θ-H. If possible, let U be not dense in X. Then there exists a nonempty open
set V in X such that interior of every H-set of V is empty. As X is Tychonoff, there
exists f ∈ θC(X) such that f(X \V ) = {1} and f(x

0
) = 0 for some x

0
∈ V . As ↓ θC(X)

is T
2
, there exist disjoint open neighbourhoods U and V in ↓ θC(X) such that ↓ 1 ∈ U

and ↓ f ∈ V. Then there exist open sets G
1
, ..., G

n
, ..., G

m
⊂ X × (0, 1] and an H-set

K ⊂ X × (0, 1] such that

↓ 1 ∈ G
−

1
∩ ... ∩G

−

n
∩ ↓ θC(X) ⊂ U and ↓ f ∈ G

−

n+1
∩ ... ∩G

−

m
∩K

∗∩ ↓ θC(X) ⊂ V.

As f(X \V ) = {1}, p
1
(K) ⊂ V , so that int p

1
(K) = ϕ. For every i ⩽ m, p

1
(G

i
)\p

1
(K) ̸=

ϕ, since p
1
(G

i
) is a non-empty open set inX. Take x

i
∈ p

1
(G

i
)\p

1
(K). AsX is Tychonoff,

there exists an h ∈ θC(X) such that h(x
i
) = 1, for i ⩽ m and h(p

1
(K)) = {0}. Then

↓ h ∈ U ∩ V, a contradiction. ■

Theorem 4.6 For an H-closed, Urysohn space X, if ↓ θC(X) is first countable, then
there exist H-sets H

1
⊂ H

2
⊂ ... in X such that every H-set in X in contained in some

H
n
. In particular, X =

∞∪
n=1

H
n
.

Proof. Since ↓ θC(X) is first countable, there exist H-sets K
1
,K

2
, ... in X × (0, 1]

such that {K∗

n
∩ ↓ θC(X) : n ∈ N} is a neighbourhood base of ↓ 0 in ↓ θC(X). Then

p
1
(K

n
) = H

n
, n ∈ N are H-sets in X. We have to show that every H-set H

0
in X is a

subset of some H
n
. If not, choose x

n
∈ H

0
\H

n
and define f

n
∈ θC(X) by f

n
(x

n
) = 1,

f
n
(H

n
) = {0}. Then ↓ f

n
∈ K

∗

n
, for all n ∈ N and hence ↓ f

n
→↓ 0 in ↓ θC(X), whereas

↓ f
n
̸⊂ (H

0
× {1})∗ which is a neighbourhood of ↓ 0, a contradiction. ■

Theorem 4.7 If X and ↓ θC(X) are both first countable, then X is locally θ-H.

Proof. If possible, let there exists x
0
∈ X which has no H-set neighbourhood. As

X is first countable, there exists a decreasing sequence of open neighbourhood base
{U

n
: n ∈ N} at x

0
. Also, as ↓ θC(X) is first countable, there exist H-sets K

1
⊂ K

2
⊂ ...

inX×(0, 1] such that {K∗

n
∩ ↓ θC(X) : n ∈ N} is a neighbourhood base of ↓ 0 in ↓ θC(X).

As for all n ∈ N, U
n
̸⊂ p

1
(K

n
), choose x

n
∈ U

n
\ p

1
(K

n
). Then x

n
→ x

0
in X. Since X is

Tychonoff, there exists f
n
∈ θC(X) such that f

n
(x

n
) = 1 and f

n
(p

1
(K

n
)∪(X\U

n
)) = {0}.

So, ↓ f
n

∈ K
∗

n
and hence ↓ f

n
→↓ 0. But, ({x

n
: n ∈ N} × {1})∗∩ ↓ θC(X) is a

neighbourhood of ↓ 0 in ↓ θC(X) containing no ↓ f
n
, a contradiction. ■

Theorem 4.8 Consider the following statements :
(a) ↓ θC(X) is first countable.
(b) There exists a countable family U of non-empty open sets in X such that every non-
empty open set in X includes an element of U .
(c) ↓ θC(X) is separable.
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Then (a) ⇒ (b) ⇒ (c) hold in general.
In addition, if X is H-closed, (b) ⇒ (a) also holds.

Proof. (a) ⇒ (b): As ↓ θC(X) is first countable, let

{(Gn
1
)
− ∩ ... ∩ (Gn

k(n)
)
−∩ ↓ θC(X) : n ∈ N}

be a countable neighbourhood base at ↓ 1 in ↓ θC(X). Consider U = {p
1
(Gn

i
) : i =

1, 2, ..., k(n), n ∈ N}. Then U is a countable family of non-empty open sets in X. It
remains to show that every non-empty open set U in X includes an element of U . Take
f ∈ θC(X) such that f(X \U) = {1} and f(x

0
) = 0 for some point x

0
∈ U . As ↓ θC(X)

is T
1
, ↓ f ̸∈

k(n)∩
i=1

(Gn
i
)
−
, for n ∈ N and hence ↓ f ̸∈ (Gn

i
)
−
, for some i = 1, 2, ..., k(n). Then

↓ f ∩Gn
i
= ϕ. As f(X \ U) = {1}, we have p

1
(Gn

i
) ⊂ U .

(b) ⇒ (c): Let U be a countable family of non-empty open sets in X satisfying con-
dition (b). For every U ∈ U , r ∈ Q ∩ (0, 1] and x ∈ U , there exists θ-continuous
f

U,r
: X → [0, r] such that f

U,r
(X \ U) = {0} and f

U,r
(x) = r. Let

D = {max{f
U,r

: U ∈ F , r ∈ F} : F and F are finite subsets of U and Q ∩ (0, 1]
respectively}.

Then ↓ D = {↓ f : f ∈ D} is a countable subset of ↓ θC(X). We show that ↓ D is
dense in ↓ θC(X). Let f ∈ θC(X) , K be an H-set in X × (0, 1] and G

1
, G

2
, ..., G

k
be

open in X × (0, 1] such that ↓ f ∈ G
−

1
∩ ... ∩G

−

k
∩K

∗∩ ↓ θC(X). We have x
1
, ..., x

k
∈ X

such that {x
i
} × [0, f(x

i
)] ∩ G

i
̸= ϕ for each i ⩽ k. As {x

i
} × [0, f(x

i
)] ∩K = ϕ, there

exist an open neighbourhood W
i
of x

i
in X and s

i
< t

i
such that W

i
× (s

i
, t

i
) ⊂ G

i

and W
i
× [0, t

i
] ∩K = ϕ. Choose r

i
∈ Q ∩ (s

i
, t

i
) and U

i
∈ U such that U

i
⊂ W

i
. Then

↓ f
U
i
,r

i
∈ G

−

i
∩K

∗
and thus ↓max{f

U
i
,r

i
: i ⩽ k} ∈↓ D ∩G

−

1
∩ ... ∩G

−

k
∩K

∗
.

Next, let X be H-closed.
(b) ⇒ (a): Let U be a countable family of non-empty open sets in X satisfying con-

dition (b). Then G = {U × (s, t) : U ∈ U , s < t ∈ Q ∩ (0, 1)} is a countable family of
non-empty open sets in X × I satisfying condition (b). For every f ∈ θC(X) and n ∈ N,
let

G(f) = {G ∈ G :↓ f ∈ G
−} and K

n
(f) = {(x, t) ∈ X × I : t ⩾ f(x) + 1

n}.

For every open set H in X × (0, 1] with ↓ f ∈ H
−
, there exists x

0
∈ X such that

{x
0
}× [0, f(x

0
)]∩H ̸= ϕ. As f(x

0
) > 0, there exist an open neighbourhood V of x

0
in X

and s < t ∈ Q× (0, 1) such that s < f(x
0
), V × (s, t) ⊂ H and s < f(x) for every x ∈ V .

Then there exists U ∈ U such that U ⊂ V . Thus U × (s, t) ∈ G and ↓ f ∈ G
− ⊂ H

−
.

Again, for every H-set K in X × I with ↓ f ∈ K
∗
, by H-closedness of X, there exists

n ∈ N such that K ⊂ K
n
(f) and thus ↓ f ∈ K

n
(f)

∗ ⊂ K
∗
. Thus

{G−

1
∩ ... ∩G

−

k
∩K

n
(f)

∗∩ ↓ θC(X) : G
i
∈ G(f), i ⩽ k; k, n ∈ N}

is a countable neighbourhood base at ↓ f in ↓ θC(X). ■

Notation 4.9 If X is H-closed, then every θ-closed subset of an H-closed space is an
H-set and thus in this case the topology τ ′ on ↓ θC(X) is generated by

{
n∩

i=1

V
−

i
∩ V

+

0
∩ ↓ θC(X) : V

1
, ..., V

n
are open in X × (0, 1], V

0
is θ-open in X × (0, 1]}.
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Theorem 4.10 For an H-closed space X, if ↓ θC(X) is second countable, then X is
also a second countable space.

Proof. Let

{Un
−

1
∩ ... ∩ U

n
−

m(n)
∩ (

m(n)∪
i=1

U
n

i
)
+∩ ↓ θC(X) : n ∈ N}

be a countable base for ↓ θC(X) and B be a countable base for I. For n ∈ N, i ⩽ m(n)
and B ∈ B, let

V (n, i, B) = {x ∈ X : H ×B ⊂ U
n

i
, for some open set H containing x in X}.

Then V (i, n,B) is open in X and V (i, n,B)× B ⊂ U
n

i
. Let C be the family of all finite

intersections of sets of the form V (i, n,B). Then C is a countable open base for X, in
fact, for any open set V in X and x ∈ V , there exists f ∈ θC(X) such that f(x) = 0 and
f(X \ V ) = {1}. Let U

1
= X × [0, 12) and U

2
= V × [0, 1]. Then

↓ f ∈ U
−

1
∩ U

−

2
∩ (U

1
∪ U

2
)
+∩ ↓ θC(X).

Then there exists n ∈ N such that

↓ f ∈ U
n
−

1
∩ ... ∩ U

n
−

m(n)
∩ (

m(n)∪
i=1

U
n

i
)
+ ⊂ U

−

1
∩ U

−

2
∩ (U

1
∪ U

2
)
+∩ ↓ θC(X).

Then for every t ∈ I there exists i(t) ⩽ m(n) such that (x, t) ∈ U
n

i(t)
. Hence there exist

B
t
∈ B and an open set H in X such that (x, t) ∈ H × B

t
⊂ U

n

i(t)
. Then (x, t) ∈

V (n, i(t), B
t
) × B

t
⊂ U

n

i(t)
. Choose a finite subcover {B

t
j
: j = 1, 2, ..., l} of the open

cover {B
t
: t ∈ I} of I and let G =

l∩
j=1

V (n, i(t
j
), B

t
j
). Then x ∈ G ∈ C. It now suffices to

show that G ⊂ V . Otherwise, choose y ∈ G \ V and g ∈ θC(X) such that g(y) = 1 and
g(X \G) = {0}. Let h = f ∨g ∈ θC(X). Then ↓ h ̸∈< U

1
, U

2
> (≡ U

−

1
∩U

−

2
∩(U

1
∪U

2
)
+

).
Again,

G× I =
l∩

j=1

V (n, i(t
j
), B

t
j
)× (

l∪
j=1

B
t
j
) ⊂

l∪
j=1

U
n

i(t
j
)
⊂

m(n)∪
i=1

U
n

i

⇒↓ h =↓ f∪ ↓ g ⊂↓ f ∪ (G× I) ⊂
m(n)∪
i=1

U
n

i
.

Thus, ↓ h ∈< U
n

1
∩ ... ∩ U

n

m(n)
> ∩ ↓ θC(X). Since ↓ h ⊃↓ f and ↓ f ∩ U

n

i
̸= ϕ for every

i ⩽ m(n), a contradiction. ■

Acknowledgement

The author is thankful to the referee for some valuable comments to improve the paper.



192 R. Sen / J. Linear. Topological. Algebra. 09(03) (2020) 185-192.

References

[1] R. F. Dickman, J. R. Porter, θ-perfect and θ-absolutely closed functions, IIlinois J. Math. 21 (1977), 42-60.
[2] G. Di Maio, Lj. D. R. Kočinac, Some covering properties of hyperspaces, Topology Appl. 155 (2008), 1959-

1969.
[3] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc.

Amer. Math. Soc. 13 (1962), 472-476.
[4] S. Fomin, Extensions of topological spaces, Ann. Math. 44 (1943), 471-480.

[5] S. Ganguly, S. Jana, R. Sen, A new hyperspace topology and the study of the function space θ
∗
-LC(X,Y),

Mat. Vesnik. 61 (2009), 181-193.
[6] F. Hausdorff, Mengenlehre, 3rd ed., Springer, Berlin, 1927.
[7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
[8] N. V. Velic̆ko, H-closed topological spaces, Amer. Math. Trans. 78 (1968), 103-118.


