Journal of Linear and Topological Algebra Vol. 09, No. 03, 2020, 185-192

On some properties of the hyperspace $\theta(X)$ and the study of the space $\downarrow \theta C(X)$

R. Sen^{a,*}

^aDepartment of Mathematics, Presidency University, 86/1 College Street, Kolkata, India.

Received 19 December 2019; Revised 21 June 2020; Accepted 22 June 2020. Communicated by Hamidreza Rahimi

Abstract. The aim of the paper is to first investigate some properties of the hyperspace $\theta(X)$, and then in the next part of the paper to deal with a detailed study of a special type of subspace $\downarrow \theta C(X)$ of the space $\theta(X \times \mathbb{I})$.

© 2020 IAUCTB. All rights reserved.

Keywords: θ -closed set, H-closed space, H-set, locally θ -H space. 2010 AMS Subject Classification: 54B20.

1. Introduction

The study of hyperspace topology started with Hausdorff [6], where he topologized a collection of all nonempty closed subsets of a bounded metric space X by defining a metric on that collection. After that, Vietoris introduced a new topology on the collection of all nonempty closed subsets of a topological space (X, σ) , which is known as "Vietoris Topology" or "Finite Topology". Michael also in his paper [7] dealt with different types of subsets for construction of topologies. Subsequently, Fell in his paper [3] constructed a compact, Hausdorff topology for the collection of all closed subsets of a topological space (X, σ) .

In [5], we have introduced a new topology on the collection of all nonempty θ -closed subsets of a topological space (X, σ) . In Section 3, we continue our study of the space $\theta(X)$ endowed with the above defined topology described in [5]. There, a necessary and sufficient condition has been established for a space X to be locally θ -H. Also the local connectedness of an H-closed, Urysohn space X is studied in terms of that of $\theta(X)$.

© 2020 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: ritu_sen29@yahoo.co.in, ritu.maths@presiuniv.ac.in (R. Sen).

Section 4 deals with the hyperspace $\downarrow \theta C(X)$. Here $\theta C(X)$ denotes the set of all θ continuous maps from a topological space X to $[0,1] (\equiv \mathbb{I})$, endowed with the subspace topology of the real line. For each $f \in \theta C(X)$, we define the hypograph of f by $\downarrow f$. By identifying each $f \in \theta C(X)$ with $\downarrow f \in \theta(X \times \mathbb{I})$, we can regard $\theta C(X)$ as the subset $\downarrow \theta C(X) \subset \theta(X \times \mathbb{I})$. So any topology on $\theta(X \times \mathbb{I})$ will induce a topology on $\downarrow \theta C(X)$. In this section, we investigate some properties of $\downarrow \theta C(X)$ endowed with the above defined topology. At first investigations are made how the first countability and local θ -H-ness of a space X are related. Then we have obtained that first countability of $\downarrow \theta C(X)$ always implies the separability of $\downarrow \theta C(X)$. Finally it has been proved that for an H-closed space X, the second countability of $\downarrow \theta C(X)$ always implies the second countability of X.

Recall that *H*-closedness of the space $(\mathbb{K}(X), \vee)$ of all nonempty compact subsets of a space X endowed with the Vietoris topology \vee was considered in [2].

2. Preliminaries

Throughout the paper all spaces are assumed to be Tychonoff. Let us first recall the following.

Definition 2.1 [8] A point $x \in X$ is said to be a θ -contact point (also called a θ -cluster point or a θ -adherent point) of a set $A \subseteq X$ if for every neighborhood U of x, we get $cl_x U \cap A \neq \phi$. The set of all θ -contact points of a set A is called the θ -closure of A and we denote this set by \overline{A}^{θ} (or, $cl_{\theta}A$). A set A is called θ -closed if $A = \overline{A}^{\theta}$. A set A is called θ -open if $X \setminus A$ is θ -closed.

Remark 1 The collection of all θ -open sets in X forms a topology. By $\theta(X)$ we mean $\theta(X) = \{A \subseteq X : A \neq \phi \text{ and } A \text{ is } \theta\text{-closed}\}.$

Definition 2.2 A T_2 -space X is called H-closed if any open cover of X has a finite proximate subcover, i.e. a finite collection whose union is dense in X. A set $A \subseteq X$ is called an H-set if any open cover $\{U_{\alpha} : \alpha \in \Lambda\}$ of A by open sets in X has a finite subfamily $\{U_{\alpha} : i = 1, 2, \dots, n\}$ such that $A \subseteq \bigcup_{i=1}^{n} cl_{i} U$

subfamily $\{U_{\scriptscriptstyle \alpha_i}: i=1,2,..,n\}$ such that $A\subseteq \bigcup_{i=1} cl_{\scriptscriptstyle X}U_{\scriptscriptstyle \alpha_i}.$

Definition 2.3 [5] On $\theta(X)$ we define a topology as follows. For each $W \subseteq X$, let $W^+ = \{A \in \theta(X) : A \subseteq W\}$ and $W^- = \{A \in \theta(X) : A \cap W \neq \phi\}$. Consider

 $S_{\theta} = \{W^{-} : W \text{ is open in } X\} \cup \{W^{+} : W \text{ is } \theta \text{-open in } X \text{ with } X \setminus W \text{ an } H \text{-set}\}.$

Then S_{θ} forms a subbase for some topology on $\theta(X)$ which we denote by τ .

Remark 2 [5] Any basic open set in the above defined topology is of the form $V_1^- \cap V_2^- \cap \dots \cap V_n^- \cap V_0^+$, where $V_i \subseteq V_0$ for each i = 1, 2, ..., n and $V_1, V_2, ..., V_n$ are open sets, V_0 is a θ -open set with $X \setminus V_0$ an H-set.

Definition 2.4 [5] A space X is locally θ -H if X contains a base \mathcal{B} for its topology such that for each $B \in \mathcal{B}$, $cl_x B$ is an H-set which is θ -closed also.

Proposition 2.5 [5] If X is H-closed and Urysohn, then X is locally θ -H.

Corollary 2.6 [8] Any θ -closed set in an *H*-closed space is an *H*-set.

Corollary 2.7 [1] In an *H*-closed Urysohn space, every *H*-set is θ -closed and every θ -closed set is an *H*-set.

3. The hyperspace $\theta(X)$

In this section, we investigate the properties of $\theta(X)$ endowed with the topology τ as defined above.

Definition 3.1 Let (X, σ) be a topological space. A map $f : (X, \sigma) \to \mathbb{R}$ is said to be θ -lower semicontinuous if for any $t \in \mathbb{R}$, $f^{-1}[t, \infty)$ is θ -closed in X.

Definition 3.2 For an extended real-valued function $f : X \to [-\infty, \infty]$, the epigraph of f is denoted by epi(f) and is defined by $epi(f) = \{(x,t) \in X \times \mathbb{R} : f(x) \leq t\}$.

Remark 3 It should be observed that f is θ -lower semicontinuous if and only if epi(f) is θ -closed in $X \times \mathbb{R}$.

Consider $\theta L(X) = \{f : X \to [-\infty, \infty] : f \text{ is } \theta\text{-lower semi continuous}\}$. By identifying each f with epi(f), we can consider $\theta L(X)$ as a subspace of $\theta(X \times \mathbb{R})$.

Theorem 3.3 A Urysohn space X is locally θ -H if and only if $\theta L(X)$ is closed in $\theta(X \times \mathbb{R})$.

Proof. First let X be locally θ -H. Then for each $A \in \theta(X \times \mathbb{R}) \setminus \theta L(X)$, there exist $x \in X$ and $r_1, r_2 \in \mathbb{R}$ with $r_1 < r_2$ such that $(x, r_1) \in A$ but $(x, r_2) \notin A$. Since X is locally θ -H, there exist an open neighbourhood V of x and a $\delta > 0$ such that cl V is a θ -closed, H-set and $cl V \times (r_2 - \delta, r_2 + \delta) \subset X \times \mathbb{R} \setminus A$. Put $K = cl V \times [r_2 - \delta, r_2 + \delta]$ and $U = V \times (-\infty, r_2 - \delta)$. Then K is an H-set in $X \times \mathbb{R}$, U is an open set in $X \times \mathbb{R}$ such that $A \in U^- \cap ((X \times \mathbb{R}) \setminus K)^+ \subset \theta(X \times \mathbb{R}) \setminus \theta L(X)$. Hence $\theta L(X)$ is closed in $\theta(X \times \mathbb{R})$.

Conversely, let X be not locally θ -H. Then there exists $x_0 \in X$ which has no θ -closed, H-set neighbourhood in X. Consider

$$A = (X \times [1, \infty)) \cup \{(x_0, 0)\} \in \theta(X \times \mathbb{R}) \setminus \theta L(X).$$

For each neighbourhood W of A in $\theta(X \times \mathbb{R})$, choose open sets $U_1, ..., U_n \subset X \times \mathbb{R}$ and an H-set $K \subset X \times \mathbb{R}$ such that $(x_0, 0) \in U_1$ and $A \in U_1^- \cap ... \cap U_n^- \cap ((X \times \mathbb{R}) \setminus K)^+ \subset W$. If we denote the projection map $p_1 : X \times \mathbb{R} \to X$, then as $p_1(K)$ is an H-set, $p_1(K)$ is not a neighbourhood of $x_0 \in X$, i.e. $p_1(U_1) \not\subset p_1(K)$. Choose $x_1 \in p_1(U_1) \setminus p_1(K)$. Now define $g \in \theta L(X)$ by

$$g(x) = \begin{cases} 0 \ , \ x = x_{_{1}} \\ 1 \ , \ x \neq x_{_{1}} \end{cases}$$

Then by identifying g with its epigraph, we can write $g = (X \times [1, \infty)) \cup (\{x_1\} \times [0, \infty))$. Now, $g \in U_1^- \cap ... \cap U_n^- \cap ((X \times \mathbb{R}) \setminus K)^+ \subset W$, which implies that $W \cap \theta L(X) \neq \phi$, i.e. $A \in cl \ \theta L(X)$. Thus $\theta L(X)$ is not closed.

Proposition 3.4 For an *H*-closed, Urysohn space X, if $\theta(X)$ is locally connected, then so is X.

Proof. Since, by Proposition 2.5 X is locally θ -H, there exists an open neighbourhood U of $x_0 \in X$ such that $cl \ U$ is a θ -closed, H-set. As $\theta(X)$ is locally connected and $U^- \cap (X \setminus bd \ U)^+$ is a neighbourhood of $\{x_0\}$ in $\theta(X)$, there exists a connected neighbourhood \mathcal{W} of $\{x_0\}$ in $\theta(X)$ such that $\mathcal{W} \subset U^- \cap (X \setminus bd \ U)^+$. Hence for each $A \in \mathcal{W}$, $A \cap U \neq \phi$

and $A \cap bd \ U = \phi$. As $\phi : X \to \theta(X), x \to \{x\}$ is an embedding, $\{x \in X : \{x\} \in \mathcal{W}\}$ is a neighbourhood of x_0 in X, thus $V = U \cap \cup \mathcal{W}$ is also a neighbourhood of x in X. We claim that V is connected. If not, then there exist two nonempty, disjoint open sets V_0 and V_1 in X such that $V \subset V_0 \cup V_1 \subset U, x_0 \in V_0$ and $V \cap V_1 \neq \phi$, i.e. $V \cap cl \ V_1 = V \cap V_1$, $V \cap cl \ V_0 = V \cap V_0$. Now, for each $A \in \mathcal{W}, \ A \cap U \neq \phi$ and $A \cap cl \ U = A \cap U \subset V \subset V_0 \cup V_1$, so that \mathcal{W} is being covered by the following pairwise, disjoint open sets $V_0^- \cap (X \setminus cl \ V_1)^+, V_1^- \cap (X \setminus cl \ V_0)^+, V_0^- \cap V_1^-$. Clearly, $\{x_0\} \in \mathcal{W} \cap V_0^- \cap (X \setminus cl \ V_1)^+$. As $V \cap V_1 \neq \phi, \ A \in \mathcal{W}$ such that $A \cap V_1 \neq \phi$, whence $A \in V_1^- \cap (X \setminus cl \ V_0)^+$ or $A \in V_0^- \cap V_1^-$. Thus \mathcal{W} meets one of $V_1^- \cap (X \setminus cl \ V_0)^+$ or $V_0^- \cap V_1^-$, which contradicts the fact that \mathcal{W} is connected.

Proposition 3.5 For an *H*-closed, Urysohn space X, if $\theta(X)$ is connected, then any non-empty open set in X is not an *H*-set.

Proof. If possible, let X has a non-empty open set U that is an H-set. Then U^- and $(X \setminus U)^+$ are disjoint non-empty open sets in $\theta(X)$ such that $\theta(X) = U^- \cup (X \setminus U)^+$, hence $\theta(X)$ is disconnected.

4. The hyperspace $\downarrow \theta C(X)$

In this section we investigate the properties of the hyperspace $\downarrow \theta C(X)$. We first recollect the following:

Definition 4.1 [4] A function $f : (X, \sigma) \to (Y, \gamma)$ is said to be θ -continuous at a point $x \in X$ if for each open neighbourhood V of f(x), there exists an open neighbouhood U of x such that $f(cl \ U) \subseteq cl \ V$. The function f is said to be θ -continuous on X if it is θ -continuous at each point x of X.

The family of all θ -continuous functions from a topological space (X, σ) to $\mathbb{I} = [0, 1]$ with the subspace topology of the reals will be denoted by $\theta C(X)$.

Definition 4.2 For every $f \in \theta C(X)$, the hypograph of f is defined by $\downarrow f = \{(x, y) \in X \times \mathbb{I} : y \leq f(x)\}$.

Remark 4 It is to be noted that for each $f \in \theta C(X)$, $\downarrow f \in \theta(X \times \mathbb{I})$. So by identifying each $f \in \theta C(X)$ with $\downarrow f \in \theta(X \times \mathbb{I})$, we can regard $\theta C(X)$ as the subset $\downarrow \theta C(X) = \{\downarrow f : f \in \theta C(X)\} \subset \theta(X \times \mathbb{I})$. So any topology on $\theta(X \times \mathbb{I})$ will give rise to a subspace topology on $\downarrow \theta C(X)$. Thus the above defined topology will induce a topology τ' on $\downarrow \theta C(X)$ which is being generated by

$$\{\bigcap_{i=1}^{n} V_{_{0}}^{^{-}} \cap V_{_{0}}^{^{+}} \cap \downarrow \theta C(X) : V_{_{1}}, ..., V_{_{n}} \text{ are open in } X \times (0,1], V_{_{0}} \text{ is } \theta \text{-open in } X \times (0,1] \text{ with its complement an } H\text{-set} \}.$$

Notation 4.3 For a closed set F in a topological space (X, σ) ,

$$F^* = (X \setminus F)^+ = \{A \in \theta(X) : A \cap F = \phi\}.$$

Theorem 4.4 $(\downarrow \theta C(X), \tau')$ is always T_1 .

Proof. Let $f, g \in \theta C(X)$ be such that $f \neq g$. Then there exists $x_0 \in X$ such that $f(x_0) \neq g(x_0)$. Let $f(x_0) < g(x_0)$. As f, g are θ -continuous, there exists an open neighbourhood W of x_0 such that $f(x) \leq a < b \leq g(x)$, for all $x \in cl W$, where $a = f(x_0)$ and $b = g(x_0)$. Then $\downarrow f \in (\{x_0\} \times [b, 1])^*$ and $\downarrow g \in (W \times (a, 1])^-$, but $\downarrow g \notin (\{x_0\} \times [b, 1])^*$ and

 $\downarrow f \not\in (W \times (a,1])^{\bar{}}.$ Hence $(\downarrow \theta C(X), \tau')$ is $T_{\scriptscriptstyle 1}.$

Theorem 4.5 For an *H*-closed, Urysohn space $X, \downarrow \theta C(X)$ is T_2 if and only if there exists a dense open subset U of X which is locally θ -H.

Proof. Take $f, g \in \theta C(X)$, $x_0 \in cl W$ and $a, b \in \mathbb{I}$ as in the proof of the above theorem. Since $f, g \in \theta C(X)$, we assume that $x_0 \in U$. As U is locally θ -H, there exists an open set V in X such that $x_0 \in V \subseteq cl V \subseteq cl(U \cap W)$ and cl V is a θ -closed, H-set. As for all $x \in cl V$, $f(x) \leq a < b \leq g(x)$, $(cl V \times [c, 1])^* \cap \downarrow \theta C(X)$ and $(V \times (c, 1])^- \cap \downarrow \theta C(X)$ are disjoint neighbourhoods of $\downarrow f$ and $\downarrow g$ respectively, where $c = \frac{a+b}{2}$.

Conversely, let us define $U = \bigcup \{int \ K : K \text{ is an } H\text{-set in } X\}$. Then U is open, so that $cl \ U = cl_{\theta}U$. As X is H-closed, $cl \ U$ becomes $\theta\text{-closed}$ and hence an H-set. Thus U is locally $\theta\text{-}H$. If possible, let U be not dense in X. Then there exists a nonempty open set V in X such that interior of every H-set of V is empty. As X is Tychonoff, there exists $f \in \theta C(X)$ such that $f(X \setminus V) = \{1\}$ and $f(x_0) = 0$ for some $x_0 \in V$. As $\downarrow \theta C(X)$ is T_2 , there exist disjoint open neighbourhoods \mathcal{U} and \mathcal{V} in $\downarrow \theta C(X)$ such that $\downarrow \underline{1} \in \mathcal{U}$ and $\downarrow f \in \mathcal{V}$. Then there exist open sets $G_1, ..., G_n, ..., G_m \subset X \times (0, 1]$ and an H-set $K \subset X \times (0, 1]$ such that

$$\downarrow \underline{1} \in \overline{G_1} \cap \ldots \cap \overline{G_n} \cap \downarrow \theta C(X) \subset \mathcal{U} \text{ and } \downarrow f \in \overline{G_{n+1}} \cap \ldots \cap \overline{G_m} \cap \overline{K}^* \cap \downarrow \theta C(X) \subset \mathcal{V}.$$

As $f(X \setminus V) = \{1\}$, $p_1(K) \subset V$, so that $int p_1(K) = \phi$. For every $i \leq m$, $p_1(G_i) \setminus p_1(K) \neq \phi$, since $p_1(G_i)$ is a non-empty open set in X. Take $x_i \in p_1(G_i) \setminus p_1(K)$. As X is Tychonoff, there exists an $h \in \theta C(X)$ such that $h(x_i) = 1$, for $i \leq m$ and $h(p_1(K)) = \{0\}$. Then $\downarrow h \in \mathcal{U} \cap \mathcal{V}$, a contradiction.

Theorem 4.6 For an *H*-closed, Urysohn space *X*, if $\downarrow \theta C(X)$ is first countable, then there exist *H*-sets $H_1 \subset H_2 \subset ...$ in *X* such that every *H*-set in *X* in contained in some H_n . In particular, $X = \bigcup_{n=1}^{\infty} H_n$.

Proof. Since $\downarrow \ \theta C(X)$ is first countable, there exist *H*-sets K_1, K_2, \dots in $X \times (0, 1]$ such that $\{K_n^* \cap \downarrow \ \theta C(X) : n \in \mathbb{N}\}$ is a neighbourhood base of $\downarrow \ \underline{0}$ in $\downarrow \ \theta C(X)$. Then $p_1(K_n) = H_n, n \in \mathbb{N}$ are *H*-sets in *X*. We have to show that every *H*-set H_0 in *X* is a subset of some H_n . If not, choose $x_n \in H_0 \setminus H_n$ and define $f_n \in \theta C(X)$ by $f_n(x_n) = 1$, $f_n(H_n) = \{0\}$. Then $\downarrow \ f_n \in K_n^*$, for all $n \in \mathbb{N}$ and hence $\downarrow \ f_n \to \downarrow \ \underline{0}$ in $\downarrow \ \theta C(X)$, whereas $\downarrow \ f_n \not\subset (H_0 \times \{1\})^*$ which is a neighbourhood of $\downarrow \ \underline{0}$, a contradiction.

Theorem 4.7 If X and $\downarrow \theta C(X)$ are both first countable, then X is locally θ -H.

Proof. If possible, let there exists $x_0 \in X$ which has no *H*-set neighbourhood. As *X* is first countable, there exists a decreasing sequence of open neighbourhood base $\{U_n : n \in \mathbb{N}\}$ at x_0 . Also, as $\downarrow \theta C(X)$ is first countable, there exist *H*-sets $K_1 \subset K_2 \subset ...$ in $X \times (0, 1]$ such that $\{K_n^* \cap \downarrow \theta C(X) : n \in \mathbb{N}\}$ is a neighbourhood base of $\downarrow \underline{0}$ in $\downarrow \theta C(X)$. As for all $n \in \mathbb{N}$, $U_n \not\subset p_1(K_n)$, choose $x_n \in U_n \setminus p_1(K_n)$. Then $x_n \to x_0$ in *X*. Since *X* is Tychonoff, there exists $f_n \in \theta C(X)$ such that $f_n(x_n) = 1$ and $f_n(p_1(K_n) \cup (X \setminus U_n)) = \{0\}$. So, $\downarrow f_n \in K_n^*$ and hence $\downarrow f_n \to \downarrow \underline{0}$. But, $(\{x_n : n \in \mathbb{N}\} \times \{1\})^* \cap \downarrow \theta C(X)$ is a neighbourhood of $\downarrow \underline{0}$ in $\downarrow \theta C(X)$ containing no $\downarrow f_n$, a contradiction.

Theorem 4.8 Consider the following statements :

(a) $\downarrow \theta C(X)$ is first countable.

(b) There exists a countable family \mathcal{U} of non-empty open sets in X such that every nonempty open set in X includes an element of \mathcal{U} .

 $(c) \downarrow \theta C(X)$ is separable.

Then $(a) \Rightarrow (b) \Rightarrow (c)$ hold in general.

In addition, if X is H-closed, $(b) \Rightarrow (a)$ also holds.

Proof. (a) \Rightarrow (b): As $\downarrow \theta C(X)$ is first countable, let

$$\{(G_1^n)^- \cap \dots \cap (G_{k(n)}^n)^- \cap \downarrow \theta C(X) : n \in \mathbb{N}\}$$

be a countable neighbourhood base at $\downarrow \underline{1}$ in $\downarrow \theta C(X)$. Consider $\mathcal{U} = \{p_1(G_i^n) : i = i\}$ $1, 2, ..., k(n), n \in \mathbb{N}$. Then \mathcal{U} is a countable family of non-empty open sets in X. It remains to show that every non-empty open set U in X includes an element of \mathcal{U} . Take $f \in \theta C(X)$ such that $f(X \setminus U) = \{1\}$ and $f(x_0) = 0$ for some point $x_0 \in U$. As $\downarrow \theta C(X)$

is $T_1, \downarrow f \notin \bigcap_{i=1}^{n} (G_i^n)^-$, for $n \in \mathbb{N}$ and hence $\downarrow f \notin (G_i^n)^-$, for some i = 1, 2, ..., k(n). Then

 $\downarrow f \cap G_i^n = \phi$. As $f(X \setminus U) = \{1\}$, we have $p_1(G_i^n) \subset U$.

 $(\mathbf{b}) \Rightarrow (\mathbf{c})$: Let \mathcal{U} be a countable family of non-empty open sets in X satisfying condition (b). For every $U \in \mathcal{U}, r \in \mathbb{Q} \cap (0,1]$ and $x \in U$, there exists θ -continuous $f_{U,r}: X \to [0,r]$ such that $f_{U,r}(X \setminus U) = \{0\}$ and $f_{U,r}(x) = r$. Let

$$D = \{\max\{f_{U,r} : U \in \mathcal{F}, r \in F\} : \mathcal{F} \text{ and } F \text{ are finite subsets of } \mathcal{U} \text{ and } \mathbb{Q} \cap (0,1]$$
respectively}.

Then $\downarrow D = \{\downarrow f : f \in D\}$ is a countable subset of $\downarrow \theta C(X)$. We show that $\downarrow D$ is dense in $\downarrow \theta C(X)$. Let $f \in \theta C(X)$, K be an H-set in $X \times (0,1]$ and $G_1, G_2, ..., G_k$ be open in $X \times (0,1]$ such that $\downarrow f \in G_1^- \cap ... \cap G_k^- \cap K^* \cap \downarrow \theta C(X)$. We have $x_1, ..., x_k \in X$ such that $\{x_i\} \times [0, f(x_i)] \cap G_i \neq \phi$ for each $i \leq k$. As $\{x_i\} \times [0, f(x_i)] \cap K = \phi$, there exist an open neighbourhood W_i of x_i in X and $s_i < t_i$ such that $W_i \times (s_i, t_i) \subset G_i$ and $W_i \times [0, t_i] \cap K = \phi$. Choose $r_i \in \mathbb{Q} \cap (s_i, t_i)$ and $U_i \in \mathcal{U}$ such that $U_i \subset W_i$. Then $\downarrow f_{U_i, r_i} \in G_i^- \cap K^*$ and thus $\downarrow \max\{f_{U_i, r_i} : i \leq k\} \in \downarrow D \cap G_1^- \cap \ldots \cap G_k^- \cap K^*$. Next, let X be H-closed.

n

 $(\mathbf{b}) \Rightarrow (\mathbf{a})$: Let \mathcal{U} be a countable family of non-empty open sets in X satisfying condition (b). Then $\mathcal{G} = \{U \times (s,t) : U \in \mathcal{U}, s < t \in \mathbb{Q} \cap (0,1)\}$ is a countable family of non-empty open sets in $X \times \mathbb{I}$ satisfying condition (b). For every $f \in \theta C(X)$ and $n \in \mathbb{N}$, let

$$\mathcal{G}(f) = \{ G \in \mathcal{G} : \downarrow f \in G^{-} \} \text{ and } K_n(f) = \{ (x,t) \in X \times \mathbb{I} : t \ge f(x) + \frac{1}{n} \}.$$

For every open set H in $X \times (0,1]$ with $\downarrow f \in H^-$, there exists $x_0 \in X$ such that $\{x_0\} \times [0, f(x_0)] \cap H \neq \phi$. As $f(x_0) > 0$, there exist an open neighbourhood V of x_0 in X and $s < t \in \mathbb{Q} \times (0,1)$ such that $s < f(x_0), V \times (s,t) \subset H$ and s < f(x) for every $x \in V$. Then there exists $U \in \mathcal{U}$ such that $U \subset V$. Thus $U \times (s,t) \in \mathcal{G}$ and $\downarrow f \in \overline{G} \subset H^-$. Again, for every *H*-set *K* in $X \times \mathbb{I}$ with $\downarrow f \in K^*$, by *H*-closedness of *X*, there exists $n \in \mathbb{N}$ such that $K \subset K_n(f)$ and thus $\downarrow f \in K_n(f)^* \subset K^*$. Thus

$$\{G_1^- \cap \dots \cap G_{i}^- \cap K_n(f)^* \cap \downarrow \theta C(X) : G_i \in \mathcal{G}(f), i \leqslant k; k, n \in \mathbb{N}\}$$

is a countable neighbourhood base at $\downarrow f$ in $\downarrow \theta C(X)$.

Notation 4.9 If X is H-closed, then every θ -closed subset of an H-closed space is an *H*-set and thus in this case the topology τ' on $\downarrow \theta C(X)$ is generated by

$$\{\bigcap_{i=1}^{\circ}V_{_{0}}^{^{-}}\cap V_{_{0}}^{^{+}}\cap \downarrow \theta C(X):V_{_{1}},...,V_{_{n}} \text{ are open in } X\times (0,1], V_{_{0}} \text{ is } \theta \text{-open in } X\times (0,1]\}.$$

Theorem 4.10 For an *H*-closed space X, if $\downarrow \theta C(X)$ is second countable, then X is also a second countable space.

Proof. Let

$$\{U_{\scriptscriptstyle 1}^{n^-}\cap\ldots\cap U_{\scriptscriptstyle m(n)}^{n^-}\cap \big(\bigcup_{i=1}^{m(n)}U_{\scriptscriptstyle i}^n\big)^+\cap \downarrow \theta C(X):n\in\mathbb{N}\}$$

be a countable base for $\downarrow \theta C(X)$ and \mathcal{B} be a countable base for \mathbb{I} . For $n \in \mathbb{N}$, $i \leq m(n)$ and $B \in \mathcal{B}$, let

 $V(n, i, B) = \{x \in X : H \times B \subset U_i^n, \text{ for some open set } H \text{ containing } x \text{ in } X\}.$

Then V(i, n, B) is open in X and $V(i, n, B) \times B \subset U_i^n$. Let \mathcal{C} be the family of all finite intersections of sets of the form V(i, n, B). Then \mathcal{C} is a countable open base for X, in fact, for any open set V in X and $x \in V$, there exists $f \in \theta C(X)$ such that f(x) = 0 and $f(X \setminus V) = \{1\}$. Let $U_1 = X \times [0, \frac{1}{2})$ and $U_2 = V \times [0, 1]$. Then

$$\downarrow f \in U_1^- \cap U_2^- \cap (U_1 \cup U_2)^+ \cap \downarrow \theta C(X).$$

Then there exists $n \in \mathbb{N}$ such that

$$\downarrow f \in U_{1}^{n^{-}} \cap ... \cap U_{m(n)}^{n^{-}} \cap (\bigcup_{i=1}^{m(n)} U_{i}^{n^{-}})^{+} \subset U_{1}^{-} \cap U_{2}^{-} \cap (U_{1} \cup U_{2})^{+} \cap \downarrow \theta C(X).$$

Then for every $t \in \mathbb{I}$ there exists $i(t) \leq m(n)$ such that $(x,t) \in U_{i(t)}^n$. Hence there exist $B_t \in \mathcal{B}$ and an open set H in X such that $(x,t) \in H \times B_t \subset U_{i(t)}^n$. Then $(x,t) \in V(n,i(t), B_t) \times B_t \subset U_{i(t)}^n$. Choose a finite subcover $\{B_{t_j} : j = 1, 2, ..., l\}$ of the open cover $\{B_t : t \in \mathbb{I}\}$ of \mathbb{I} and let $G = \bigcap_{j=1}^l V(n, i(t_j), B_{t_j})$. Then $x \in G \in \mathcal{C}$. It now suffices to show that $G \subset V$. Otherwise, choose $y \in G \setminus V$ and $g \in \theta C(X)$ such that g(y) = 1 and $g(X \setminus G) = \{0\}$. Let $h = f \lor g \in \theta C(X)$. Then $\downarrow h \notin \langle U_1, U_2 \rangle (\equiv U_1^- \cap U_2^- \cap (U_1 \cup U_2)^+)$. Again,

$$\begin{split} G \times \mathbb{I} &= \bigcap_{j=1}^{l} V(n, i(t_{j}), B_{t_{j}}) \times (\bigcup_{j=1}^{l} B_{t_{j}}) \subset \bigcup_{j=1}^{l} U_{i(t_{j})}^{n} \subset \bigcup_{i=1}^{m(n)} U_{i}^{n} \\ & \Rightarrow \downarrow h = \downarrow f \cup \downarrow g \subset \downarrow f \cup (G \times \mathbb{I}) \subset \bigcup_{i=1}^{m(n)} U_{i}^{n}. \end{split}$$

Thus, $\downarrow h \in \langle U_1^n \cap ... \cap U_{m(n)}^n \rangle \cap \downarrow \theta C(X)$. Since $\downarrow h \supset \downarrow f$ and $\downarrow f \cap U_i^n \neq \phi$ for every $i \leq m(n)$, a contradiction.

Acknowledgement

The author is thankful to the referee for some valuable comments to improve the paper.

References

- [1] R. F. Dickman, J. R. Porter, θ-perfect and θ-absolutely closed functions, Illinois J. Math. 21 (1977), 42-60.
- [2] G. Di Maio, Lj. D. R. Kočinac, Some covering properties of hyperspaces, Topology Appl. 155 (2008), 1959-1969.
- [3] J. M. G. Fell, A Hausdorff topology for the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962), 472-476.
- [4] S. Fomin, Extensions of topological spaces, Ann. Math. 44 (1943), 471-480.
- [5] S. Ganguly, S. Jana, R. Sen, A new hyperspace topology and the study of the function space θ^* -LC(X,Y), Mat. Vesnik. 61 (2009), 181-193.
- [6] F. Hausdorff, Mengenlehre, 3rd ed., Springer, Berlin, 1927.
 [7] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- [8] N. V. Veličko, H-closed topological spaces, Amer. Math. Trans. 78 (1968), 103-118.