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Abstract. Let H and K be compact subgroups of locally compact group G. By considering
the double coset space K \G/H, which equipped with an N -strongly quasi invariant measure
µ, for 1 ⩽ p ⩽ +∞, we make a norm decreasing linear map from Lp(G) onto Lp(K \G/H, µ)
and demonstrate that it may be identified with a quotient space of Lp(G). In addition, we
illustrate that Lp(K \ G/H, µ) is isometrically isomorphic to a closed subspace of Lp(G).
These assist us to study the structure of the classical Banach space created on a double coset
space by those produced on topological space.
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1. Introduction

Let G be a locally compact group and H be a closed subgroup of G and K a compact
subgroup of G. Then the double coset space of G by H and K, respectively, is

K \G/H = {KxH x ∈ G},
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which is first introduced by Liu in [7]. When K is trivial, a double coset space changes to
a homogeneous space G/H and whenH = K, a double coset space becomes a hypergroup
in which the homogeneous space G/H is a semi-hypergroup [5]. It is worth to mention
that the hypergroups play important roles in physics. The function spaces on a locally
compact group have particular structure, which may not be correct for function spaces
on a locally compact Hausdorff space. For instance, it is well known that L1(G) is an
involutive Banach algebra, where G is a locally compact topological group, while, L1(X)
is just a Banach space where X is a locally compact Hausdorff space.

Among all of locally compact Hausdorff spaces, it is worthwhile to consider homoge-
neous spaces and double coset spaces and study some structures and properties of their
function spaces. Recently, in [8], it is demonstrated a connection between Lp(G) and
Lp(G/H), where H is compact. This results motivate us to extend that for double coset
spaces. The rest of the paper is organized as follow.

Some preliminaries and notations about the double coset space K \G/H and related
measures on it are stated in section 2. In section 3, we demonstrate that Lp(K \G/H, µ)
may be identified as a quotient space of Lp(G), where 1 ⩽ p ⩽ +∞ and µ is a non zero
Radon measure arises from a rho function on the triple (K,G,H). Next, in section 4, by
limiting the domain of Qp (for a definition see Section 2) to a special closed subspace of
Lp(G), we demonstrate that Lp(K \G/H, µ) is isometrically isomorphic to this space.

2. Preliminaries and notation

Let G be a locally compact group and H be a closed subgroup of G and K a compact
subgroup of G. Throughout this paper, we denote the left Haar measures on G, H, and
K by m, ν1, and ν2, respectively and their modular functions by ∆G, ∆H , and ∆K ,
respectively. The notion of double coset space is a natural generalization of that of coset
space arising by two subgroups, simultaneously. Recall that if K \G/H is a double coset
space of G by H and K, then the elements of K \ G/H are given by KxH for x ∈ G.
The canonical mapping q : G→ K \G/H, defined by q(x) = KxH, is abbreviated by ẍ
and is surjective. The double coset space K \G/H, equipped with the quotient topology,
the largest topology that makes q continuous. In this topology q is also an open mapping
and proper, that is, for each compact set F ⊆ K \G/H, there is a compact set E ⊆ G
with q(E) = F . With the above mentioned assumptions, K \G/H is a locally compact
and Hausdorff space.

Let N be the normalizer of K in G, that is, N = {x ∈ G; xK = Kx}. Then there is a
naturally defined mapping φ : N×K \G/H → K \G/H given by φ(n, q(x)) = KnxH. It
may be verified that φ is a well-defined continuous action of N to K \G/H. Considering
K \G/H with this action, we denote φ(n, q(x)) by n·q(x). Note that this action generally
is not transitive. Also for a function g on G and x ∈ G, let Lxg and Rxg denote the
left translation and the right translation of g by x, respectively, which are defined by
Lxg(y) = g(x−1y) and Rxg(y) = g(yx).

We define the mapping Q from Cc(G) to Cc(K \G/H) by

Q(f)(KxH) =

∫
K

∫
H
f(k−1xh)dν1(h)dν2(k).

It is evident that Q is a well-defined continuous onto linear map, as well as supp(Q(f)) ⊆
q(supp(f)). Also Q(Lnf) = Ln(Q(f)) for all n ∈ N and f ∈ Cc(G).

Suppose that µ is a positive Radon measure on K \G/H. Then µ is called N -relatively
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invariant if there is a positive real character χ on N such that∫
K\G/H

Q(f)(nẍ)dµ(ẍ) = χ(n)

∫
K\G/H

Q(f)(ẍ)dµ(ẍ),

for all n ∈ N and f ∈ Cc(G). The function χ is called the modular function of µ. An N -
relatively invariant measure is said to be an N -invariant measure if its modular function
is identically 1. For more results about relatively invariant measure on double coset space
(see [3, 4, 9]).

For a positive Radon measure µ, let µn denote its translation by n ∈ N , that is,
µn(E) = µ(n · E) for any Borel set E in K \ G/H. The measure µ is called N -strongly
quasi-invariant if there exists a positive continuous function λ from N ×K \G/H such
that dµn(ÿ) = λ(n, ÿ)dµ(ÿ). A rho-function, for the triple (K,G,H), is a positive locally
integrable function ρ on G such that

ρ(kxh) = ∆H(h)∆K(k)
∆G(h) ρ(x),

for all x ∈ G, h ∈ H and k ∈ K. It is known that, for each triple (K,G,H), there exists
a rho-function ρ and a corresponding N -strongly quasi-invariant measure µ on K \G/H
such that ∫

K\G/H
Q(f)(ẍ)dµ(ẍ) =

∫
G
f(x)ρ(x)dm(x), (1)

for all f ∈ Cc(G). In this case, we have

λ(n, ÿ) =
ρ(ny)

ρ(y)
n ∈ N, ÿ ∈ K \G/H. (2)

A partially converse of this also holds (for more details see [4, Theorems 3.7 and 4.3]).
From now on, we consider the double coset space K \G/H with a N -strongly invariant
measure µ.

Among other things, in the following theorem is verified that (1) holds for all f ∈
L1(G).

Theorem 2.1 If µ is an N -strongly quasi-invariant measure on K \ G/H, then the
following hold:

(i) There is a measurable set A ⊆ K \ G/H such that µ(A) = 0, and for each f ∈
L1(G) the function (h, k) 7−→ f(k−1xh) is in L1(H ×K), where (h, k) ∈ H ×K,
and x ∈ G with q(x) /∈ A.

(ii) The function ẍ 7−→
∫
H×K f(k−1xh)d(ν1×ν2)(h, k) defined almost everywhere on

K \G/H, is integrable.
(iii) If f ∈ L1(G), then∫

K\G/H

∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k)dµ(ẍ) =

∫
G
f(x)ρ(x)dm(x)

or ∫
K\G/H

∫
H×K

f(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ) =

∫
G
f(x)dm(x).
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Proof. The proof is similar to [2]. ■

3. Lp(K \ G/H,µ) as a quotient space of Lp(G)

In this section, by taking H and K as compact subgroups of G and 1 ⩽ p ⩽ +∞,
we make a bounded linear map Qp of Lp(G) onto Lp(K \ G/H,µ) and illustrate that
Lp(K\G/H,µ) may be considered as a quotient space of Lp(G), whereK\G/H equipped
with an N -strongly measure arising from a rho-function.

In [3, 7] has been shown that, there is a surjective linear mapQ : Cc(G) → Cc(K\G/H)
such that

Q(f)(KxH) =

∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k), (f ∈ Cc(G), x ∈ G).

By using the fact thatH andK are compact, 1 ⩽ p < +∞, and also applying Minkowski’s
inequality for integrals,for f ∈ Cc(G), one may investigate that∫

K\G/H
|
∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k)|pdµ(ẍ)

⩽
∫
K\G/H

∫
H×K

|f(k−1xh)|pd(ν1 × ν2)(h, k)dµ(ẍ),

for all x ∈ G. By applying (1), we get

∥Q(f)∥p =

(∫
K\G/H

|Q(f)(ẍ)|pdµ(ẍ)

) 1

p

⩽
(∫

K\G/H

∫
H×K

|f(k−1xh)|pd(ν1 × ν2)(h, k)dµ(ẍ)

) 1

p

=

(∫
G
|f(x)|pρ(x)dm(x)

) 1

p

= ∥f · ρ
1

p ∥p.

Therefore, the surjective linear map Qp : Cc(G) → Cc(K \G/H) defined by

Qp(f)(ẍ) =

∫
H×K

f(k−1xh)

ρ(k−1xh)
1

p

d(ν1 × ν2)(h, k) (x ∈ G),

is norm decreasing with respect to ∥ · ∥p, that is,

∥Qp(f)∥p = ∥Q

(
f

ρ
1

p

)
∥p ⩽ ∥f∥p. (3)

Hence Qp is bounded and linear with respect to ∥ · ∥p and ∥Qp∥ ⩽ 1.
The next proposition states some properties of this linear map.
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Proposition 3.1 Suppose that H and K are compact subgroups of G and 1 ⩽ p < +∞.
Then Qp is onto and for all φ ∈ Cc(K \G/H), we have

∥φ∥p = inf{∥f∥p f ∈ Cc(G), φ = Qp(f)}.

Proof. Take φ ∈ Cc(K \ G/H). Since Q : Cc(G) → Cc(K \ G/H) given by Q(f)(ẍ) =∫
H×K f(k−1xh)d(ν1× ν2)(h, k) is onto, there exists g ∈ Cc(G) such that Q(g) = φ. Now,

by choosing f = ρ
1

p · g, we get Qp(f) = φ. Now, according to norm decreasing of Qp, we
get

∥φ∥p ⩽ inf{∥f∥p f ∈ Cc(G), φ = Qp(f)}.

By assuming f0 = ρ
1

p (φoq), it is easy to check that f0 ∈ Cc(G), Qp(f) = φ. Now, by
applying the generalized Weil’s formula (Theorem 3·8 in [4]), one may get

∥f0∥pp =
∫
G
ρ(x)|(φoq)(x)|pdm(x) =

∫
K\G/H

Q(|φoq|p)(ẍ)dµ(ẍ)

=

∫
K\G/H

|φ(ẍ)|pdµ(ẍ) = ∥φ∥pp,

where µ is the N -strongly quasi invariant measure. This transmits that ∥φ∥p =
inf{∥f∥p f ∈ Cc(G), φ = Qp(f)}. ■

It is an easy investigation that if X and Y are dense subspaces of Banach spaces
X̃ and Ỹ , respectively, then every linear map T : X → Y with the property that
∥T (x)∥ = inf{∥z∥ z ∈ X, T (z) = T (x)} (x ∈ X) has a unique extension T̃ : X̃ → Ỹ
such that

∥T̃ (x)∥ = inf{∥z∥ z ∈ X̃, T̃ (z) = T̃ (x)} (x ∈ X̃).

Hence, by using Proposition 3.1, there is a surjective norm decreasing linear map
Qp : Lp(G) → Lp(K \ G/H) such that, for all φ ∈ Lp(K \ G/H, µ), we have
∥φ∥p = inf{∥f∥p f ∈ Lp(G), φ = Qp(f)}. It is important to mention that Qp in-
duces an isometrically isomorphism between Lp(G)/ kerQp and Lp(K \ G/H, µ), where
Lp(G)/ kerQp is equipped with the usual quotient norm. The following theorem shows
that for all f ∈ Lp(G),

Qp(f)(ẍ) =

∫
H×K

f(k−1xh)

ρ(k−1xh)
1

p

d(ν1 × ν2)(h, k), (µ− almost everywhere ẍ ∈ K \G/H).

Theorem 3.2 With the above notation, for all f ∈ Lp(G), 1 < p < ∞ and µ-a.e.
ẍ ∈ K \G/H, we have

Qp(f)(ẍ) =

∫
H×K

f(k−1xh)

ρ(k−1xh)
1

p

d(ν1 × ν2)(h, k).

Proof. Let f ∈ Lp(G). Select {fn}n∈N ⊆ Cc(G) such that ∥fn − f∥pp < 2−n. Since
|f |p ∈ L1(G), then by applying part (i) of Theorem 2.1, there is a null set A0 in K \G/H
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such that for each x ∈ G with ẍ ̸∈ A0, we have

∫
H×K

(
|f |p

ρ

)
(k−1xh)d(ν1 × ν2)(h, k) ∈ L1(K \G/H, µ).

Also (h, k) 7−→ |f |p

ρ
(k−1xh) ∈ L1(H ×K) for each x ∈ G for which ẍ /∈ A0. Since H and

K are compact, then according to Hölder’s inequality, for each x ∈ G with ẍ /∈ A0, we
have∣∣∣∣∣

∫
H×K

f

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k)

∣∣∣∣∣ ⩽
∫
H×K

|f |
ρ

1

p

(k−1xh)d(ν1 × ν2)(h, k)

⩽
(∫

H×K
(
|f |p

ρ
)(k−1xh)d(ν1 × ν2)(h, k)

) 1

p

×
(∫

H×K
d(ν1 × ν2)(h, k)

) 1

p′

=

(∫
H×K

(
|f |p

ρ
)(k−1xh)d(ν1 × ν2)(h, k)

) 1

p

,

where p′ is the conjugate exponent of p. Now, by using Theorem 2.1, part (iii) and the
above inequality, we have

∫
K\G/H

|
∫
H×K

f

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k)|pdµ(ẍ)

⩽
∫
K\G/H

(

∫
H×K

|f |p

ρ
(k−1xh)d(ν1 × ν2)(h, k))dµ(ẍ)

=

∫
G
|f |p(x)dm(x) = ∥f∥pp,

which implies that

∞∑
n=1

∫
K\G/H

|
∫
H×K

(f − fn)

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k)|pdµ(ẍ) ⩽
∞∑
n=1

∥f − fn∥pp

⩽
∞∑
n=1

2−n < +∞.

Therefore, almost everywhere with respect to µ

∣∣∣∣∣
∫
H×K

(
f

ρ
1

p

(k−1xh)− fn

ρ
1

p

(k−1xh))d(ν1 × ν2)(h, k)

∣∣∣∣∣
p

→ 0.
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In other words

lim
n
Qp(fn)(ẍ) =

∫
H×K

f

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k),

almost everywhere with respect to µ. Consequently, almost everywhere with respect to
µ, we may write

Qp(f)(ẍ) =

∫
H×K

f

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k).

■

Remark 1 By applying Theorem 3.2, it is straight-forward to verify that Qp from Lp(G)
onto Lp(K \G/H,µ) is bounded, linear, onto, and ∥Qp∥ ⩽ 1.

Note that Theorem 3.2 also holds for p = +∞, by considering 1
+∞ = 0. We first require

the following lemma and proposition.

Lemma 3.3 If H and K are compact subgroups of the locally compact group G, then
a subset E of K \G/H is a null set if and only if q−1(E) is a null set of G.

Proof. The proof is similar to Lemma 2·22 in [6]. ■

Proposition 3.4 Let the assumptions of Proposition 3.1 be hold and let f ∈ Lp(G).

Then ρ
1

p (Qp(f)oq) ∈ Lp(G) and ∥ρ
1

p (Qp(f)oq)∥p = ∥Qp(f)∥p.

Proof. For all f ∈ Lp(G) by applying Theorem 3.2, we may get

Qp(f)(ẍ) =

∫
H×K

f

ρ
1

p

(k−1xh)d(ν1 × ν2)(h, k),

for µ-almost all ẍ ∈ K\G/H and hence by Lemma 3.3 for almost all x ∈ G. Furthermore,
according to Minkowski’s inequality for integrals, we have

(∫
G
|ρ

1

p (x)(Qp(f)oq)(x)|pdm(x)

) 1

p

=

(∫
G
ρ(x)|

∫
H×K

(
f

ρ
1

p

)(k−1xh)d(ν1 × ν2)(h, k)|pdm(x)

) 1

p

⩽
∫
H×K

(∫
G
|f(k−1xh)|pdm(x)

) 1

p

d(ν1 × ν2)(h, k)

= ∥f∥p.
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Hence, ρ
1

p (Qp(f)oq) ∈ Lp(G) and

∥ρ
1

p (Qp(f)oq)∥pp =
∫
G
|ρ

1

p (x)(Qp(f)oq)(x)|pdm(x)

=

∫
G
ρ(x)|(Qp(f) ◦ q)(x)|pdm(x)

=

∫
K\G/H

∫
H×K

|(Qp(f)oq)(k
−1xh)|pd(ν1 × ν2)(h, k)dµ(x)

= ∥Qp(f)∥pp.

■

Theorem 3.5 Suppose that H and K are compact subgroups of G. Then there is a
surjective norm decreasing linear map Q∞ : L∞(G) → L∞(K \ G/H, µ) such that, for
all f ∈ L∞(G), we have

Q∞(f)(ẍ) =

∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k) (µ-a.e.ẍ ∈ K \G/H),

and for all φ ∈ L∞(K \G/H, µ),

∥φ∥∞ = inf{∥f∥∞, f ∈ L∞(G), φ = Q∞(f)}.

Proof. Let f ∈ L∞(G) be arbitrary and from now be fixed and for φ ∈ L1(K \G/H, µ),
put φρ = ρ(φ ◦ q). Note that φρ ∈ L1(G). We define the linear functional Sf on L1(K \
G/H,µ) as follows:

Sf (φ) =

∫
G
φρ(x)f(x)dm(x).

Hence Sf is a continuous function. Indeed, by Theorem 2.1, we have

|Sf (φ)| =
∣∣∣ ∫

G
φρ(x)f(x)dm(x)

∣∣∣
⩽
∫
G
|φρ(x)||f(x)|dm(x)

⩽ ∥f∥∞
∫
G
|φρ(x)|dm(x)

= ∥f∥∞
∫
K\G/H

∫
H×K

|φρ(k
−1xh)|

ρ(k−1xh)
d(ν1, ν2)(h, k)dµ(ẍ)

= ∥f∥∞
∫
K\G/H

|φ(ẍ)|dµ(ẍ)
(∫

H×K
d(ν1 × ν2)(h, k)

)
= ∥f∥∞∥φ∥1.

Hence |Sf (φ)| ⩽ ∥f∥∞∥φ∥1. Now, since L∞(K \G/H, µ) is the dual of L1(K \G/H, µ),
so there is ψf ∈ L∞(K \ G/H, µ) such that Sf = ψf . Now, according to Theorem 2.1
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and by using the fact that H and K are compact, for each φ ∈ L1(K \G/H, µ), we have

⟨ψf , φ⟩ =
∫
G
φρ(x)f(x)dm(x)

=

∫
K\G/H

∫
H×K

φρ(k
−1xh)f(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

=

∫
K\G/H

φ(ẍ)
(∫

H×K
f(k−1xh)d(ν1 × ν2)(h, k)

)
dµ(ẍ).

Therefore, for µ-a.e. ẍ ∈ K \G/H, we have

ψf (ẍ) =

∫
K×K

f(k−1xh)d(ν1 × ν2)(h, k).

Consequently, Q∞ : L∞(G) → L∞(K \G/H, µ) given by

Q∞(f)(ẍ) =

∫
K\G/H

f(k−1xh)d(ν1 × ν2)(h, k),

for µ-a.e. ẍ ∈ K \G/H, is a well-defined linear mapping. Furthermore, for all f ∈ L∞(G)

∥f∥∞ = sup{|⟨f, g⟩|; g ∈ L1(G), ∥g∥ ⩽ 1}

⩾ sup{|⟨f, φρ⟩|; φ ∈ L1(K \G/H), ∥φ∥ ⩽ 1}

= sup{|⟨Q∞f, φ⟩|; φ ∈ L1(K \G/H), ∥φ∥ ⩽ 1} = ∥Q∞f∥∞.

In addition, by taking φ ∈ L∞(K \G/H, µ), we have φoq ∈ L∞(G), Q∞(φoq) = φ and
∥φoq∥∞ = ∥φ∥∞. Therefore, Q∞ is onto and

∥φ∥∞ = inf{∥f∥∞; f ∈ L∞(G), φ = Q∞f}.

■

As mentioned at the beginning of this section and by Theorem 3.5, there is an isomet-
rically isomorphism between L∞(K \G/H, µ) and L∞(G)/ kerQ∞.

Remark 2 By using the fact that Lp(K \G/H, µ) ∼= Lp(G)/ kerQp for all 1 ⩽ p ⩽ +∞,
every left modular structure of Lp(G) induces a left module structure on Lp(K \G/H, µ),
whenever kerQp is an invariant subspace of Lp(G) under the module action. Specially,
it is well known that Lp(G) is a left Banach L1(G) module for 1 ⩽ p ⩽ +∞, using the
convolution of function as the left action.

Note that if K ◁G, f ∈ L1(G), and g ∈ kerQp, then ρ
1

p (Qpg ◦ q) = 0 in Lp(G). So, for
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almost all x ∈ G and hence for µ-almost all ẍ ∈ K \G/H, we have

Qp(f ∗ g)(KxH) =

∫
H×K

(f ∗ g)(k−1xh)

ρ
1

p (k−1xh)
d(ν1 × ν2)(h, k)

=

∫
H×K

(∫
G

f(y)g(y−1k−1xh)

ρ
1

p (k−1xh)
dm(y)

)
d(ν1 × ν2)(h, k)

=

∫
G

(∫
H×K

f(y)g(y−1k−1xh)

ρ
1

p (k−1xh)
d(ν1 × ν2)(h, k)dm(y)

=
1

ρ
1

p (x)

∫
H×K

(∫
G
f(y)g(ky−1xh)dm(y)

)
d(ν1 × ν2)(h, k)

=
1

ρ
1

p (x)

∫
G
f(y)

(∫
H×K

g(k−1y−1xh)

ρ
1

p (k−1y−1xh)
ρ

1

p (k−1y−1xh)
)
d(ν1 × ν2)(h, k)dm(y)

=
1

ρ
1

p (x)

∫
G
f(y)ρ

1

pQp(g ◦ q)(y−1x)dm(y)

=
1

ρ
1

p (x)
f ∗ ρ

1

pQp(g ◦ q)(x) = 0.

This shows that kerQp is invariant under the module action of L1(G) on Lp(G). This
makes Lp(K \G/H, µ) a Banach left L1(G)-module, where the action is defined by

L1(G)× Lp(K \G/H,µ) → Lp(K \G/H, µ),
(f, φ) 7→ Qp(f ∗ g)

in which g ∈ Lp(G) and ψ = Qp(g).

4. Lp(K \ G/H,µ) as a closed subspace of Lp(G)

In the last section, we introduce the linear mapping Qp as a connection between two
spaces Lp(G) and Lp(K \ G/H, µ), (1 ⩽ p ⩽ ∞), and we found some properties of this
mapping. In this section, we demonstrate that Lp(K\G/H, µ) is isometrically isomorphic
to a closed subspace of Lp(G).

For closed subgroups H and K of G, put

Cc(K : G : H) = {f ∈ Cc(G) RhLkf = f, h ∈ H, k ∈ K},

which is a subalgebra of Cc(G) with pointwise multiplication. Note that if K ◁G, then
Cc(K : G : H) with the convolution on Cc(G) is also a subalgebra of Cc(G).
We ascertain by Lp(K : G : H) the closure of Cc(K : G : H) in Lp(G) for all 1 ⩽ p < +∞,
and we set

L∞(K : G : H) = {f ∈ L∞(G); RhLkf = f, h ∈ H, k ∈ K},

where Lkf,Rhf are the left and right translations on f by k and h, respectively. If H
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and K are compact and 1 ⩽ p < +∞, then Qp(f) ∈ Cc(K \G/H,µ), and we have

ρ(x)
1

p (Qp(f)oq)(x) =

∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k) = f(x),

for all f ∈ Cc(K : G : H). Therefore, Cc(K : G : H) = {ρ
1

p (φoq); φ ∈ Cc(K \G/H)}.

Theorem 4.1 Suppose that H and K are compact subgroups of G and 1 ⩽ p < +∞.

Then Lp(K : G : H) = {ρ
1

p (φoq) φ ∈ Lp(K \ G/H)}. In particular, f = ρ
1

p (Qp(f)oq)
for all f ∈ Lp(K : G : H).

Proof. Assume that 1 ⩽ p < +∞ and f ∈ Lp(K : G : H). Select a sequence {fn} ⊆
Cc(K : G : H) in such a way that ∥fn − fn∥p → 0. Then by using Lemma 3.4, we may
write

∥f − ρ
1

p (Qp(f)oq)∥p ⩽ ∥f − fn∥p + ∥ρ
1

p (Qp(fn − f)oq)∥p
⩽ ∥f − fn∥p + ∥Qp(fn − f)∥p ⩽ 2∥f − fn∥p.

Hence, we have f = ρ
1

p (Qp(f)oq) in Lp(G). Therefore, by density of Cc(K \ G/H) in
Lp(K \G/H, µ) the proof is complete. ■

Remark 3 Since H and K are compact, it is easy to check that Theorem 4.1, for p = ∞,
also holds.

Next, we illustrate that Lp(K \G/H,µ) is isometrically isomorphic to Lp(K : G : H).

Theorem 4.2 Let the assumptions of Theorem 4.1 be hold. Then Lp(K \ G/H,µ) is
isometrically isomorphic to Lp(K : G : H). More precisely, the restriction of Qp on
Lp(K : G : H) is an isometrically isomorphism.

Proof. Let 1 ⩽ p ⩽ +∞. By the definition of Lp(K : G : H) and the density of
Cc(K \ G/H) in Lp(K \ G/H, µ), it is enough to show that the mapping Qp : Cc(K :
G : H) → Cc(K \ G/H) is an isometrically isomorphism, where Cc(K : G : H) and
Cc(K \G/H) are equipped with ∥ · ∥p. For this, first we note that if φ ∈ Cc(K \G/H),

then ρ
1

p (φoq) ∈ Cc(K : G : H) and Qp(ρ
1

p (φoq)) = φ. Now, by taking f ∈ Cc(K : G : H),
we may write,

∥Qp(f)∥pp =
∫
K\G/H

|Qp(f)(ẍ)|pdµ(ẍ)

=

∫
K\G/H

∣∣∣ ∫
H×K

f(k−1xh)

ρ
1

p (k−1xh)
d(ν1 × ν2)(h, k)

∣∣∣pdµ(ẍ)
=

∫
K\G/H

|f(x)|p

ρ(x)
dµ(ẍ)

=

∫
K\G/H

∫
H×K

|f(k−1xh)|p

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

=

∫
G
|f(x)|pdm(x) = ∥f∥pp.
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The consequence, for the case p = +∞, is obtained by applying Theorem 4.1, that is,

∥Q∞(f)∥∞ = ∥f∥∞,

for all f ∈ L∞(K : G : H). ■

In the sequel, we aim to find an adjoint of Qp for all 1 ⩽ p < +∞.

Theorem 4.3 Suppose that H and K are compact subgroups of G. Then if Q∗
p : L

p′
(K \

G/H, µ) → Lp′
(G) is the adjoint of Qp, we have Q∗

p(ψ) = ρ
1

p′ (ψ ◦ q) for all ψ ∈ Lp′
(K \

G/H, µ).

Proof. First suppose that 1 < p < +∞ and ψ ∈ Lp′
(K \ G/H,µ), then by using the

fact that H and K are compact and according to Theorem 2.1 and Proposition 3.4, for
each f ∈ Lp(G), we have

⟨Q∗
p(ψ), f⟩ = ⟨ψ,Qp(f)⟩

=

∫
K\G/H

ψ(ẍ)Qp(f)(ẍ)dµ(ẍ)

=

∫
K\G/H

∫
H×K

ψ ◦ q(k−1xh)f(k−1xh)

ρ
1

p (k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

=

∫
K\G/H

∫
H×K

ρ
1

p′ (ψ ◦ q)(k−1xh)f(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

=

∫
G
ρ

1

p′ (ψ ◦ q)(x)f(x)dm(x)

= ⟨ρ
1

p′ (ψ ◦ q), f⟩.

Therefore Q∗
p(ψ) = ρ

1

p′ (ψ ◦ q). Now suppose that p = 1, ψ ∈ L∞(K \G/H, µ). Then, for
each f ∈ L1(G), by using Theorem 2.1 and the compactness of H and K, we have

⟨Q∗
1(ψ), f⟩ = ⟨ψ,Q1(f)⟩

=

∫
K\G/H

ψ(ẍ)Q1(f)(ẍ)dµ(ẍ)

=

∫
K\G/H

∫
H×K

ψ ◦ q(k−1xh)f(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

= ⟨ψ ◦ q, f⟩.

Therefore assuming 1
∞ = 0, we have Q∗

1(ψ) = ψ ◦ q. ■

Corollary 4.4 For each 1 ⩽ p ⩽ +∞, the adjoint of Qp, that is, Q
∗
p which introduced

in Theorem 4.3 is isometric.

Proof. Suppose that ψ ∈ Lp′
(K\G/H, µ). Then, by using Theorem 2.1 and compactness
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of H and K, we have

∥Q∗
p(ψ)∥

p′

p′ =

∫
G
|ρ

1

p′ (ψ ◦ q)(x)|p′
dm(x)

=

∫
K\G/H

∫
H×K

ρ(k−1xh)|ψ ◦ q|p′
(k−1xh)

ρ(k−1xh)
d(ν1 × ν2)(h, k)dµ(ẍ)

=

∫
K\G/H

|ψ(ẍ)p′
dµ(ẍ)

= ∥ψ∥p
′

p′ .

Hence ∥Q∗
p(ψ)∥p′ = ∥ψ∥p′ . That is Q∗

p is isometric. ■

In the following, we give another characterization of Lp(K : G : H).

Proposition 4.5 Suppose that H and K are compact subgroups of G. Then, for all
1 ⩽ p ⩽ +∞, we have

Lp(K : G : H) = {f ∈ Lp(G), LkRhf = f in Lp(G), h ∈ H, k ∈ K}.

Proof. First, assume that f ∈ Lp(K : G : H). Then by using Theorem 4.1, we can write

LkRhf(x) = LkRh(ρ
1

p (Qp(f)oq))(x) = ρ
1

p (k−1xh)(Qp(f)oq)(k
−1xh)

= ρ
1

p (x)(Qp(f)oq)(x) = f(x),

for µ-almost all ẍ ∈ K \ G/H and m-almost all x ∈ G ( using Lemma 3.3). Hence,
LkRhf = f as elements of Lp(G). Now, suppose that f ∈ Lp(G) and LkRhf = f for all
h ∈ H and k ∈ K. By the duality of Lp(K \G/H) and Lp′

(K \G/H), for all g ∈ Lp′
(G),

we may write

⟨ρ
1

p (Qp(f)oq), g⟩ =
∫
G
ρ

1

pQp(f)(ẍ)g(x)dm(x)

=

∫
G

(∫
H×K

f(k−1xh)d(ν1 × ν2)(h, k)

)
g(x)dm(x)

=

∫
H×K

(∫
G
LkRhf(x)g(x)dm(x)

)
d(ν1 × ν2)(h, k)

=

∫
H×K

⟨LkRhf, g⟩d(ν1 × ν2)(h, k)

=

∫
H×K

⟨f, g⟩d(ν1 × ν2)(h, k) = ⟨f, g⟩,

where p and p′ are conjugate exponents. Hence, f = ρ
1

p (Qp(f)oq) ∈ Lp(K : G : H). ■

Remark 4 Note that for each 1 ⩽ p < +∞ with conjugate exponent p′, by using the
fact that Lp′

(K \G/H, µ) −→ Lp(K \G/H, µ)∗ we get an isometric isomorphism between
Lp′

(K : G : H) and Lp(K : G : H)∗ regarding the following commutative diagram:
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Therefore for each f ∈ Lp(K : G : H) and g ∈ Lp′
(K : G : H), we have ⟨f, g⟩ =

⟨Qp(f), Qp′(g)⟩. Now using the facts Qp(f) ◦ q = f

ρ
1
p
and Qp′(g) ◦ q = g

ρ
1
p′
, we get,

⟨Qp(f), Qp′(g)⟩ =
∫
K\G/H

Qp(f)(ẍ)Qp′(g)(ẍ)dµ(ẍ)

=

∫
K\G/H

g

ρ
1

p′
(x)
(∫

H×K
d(ν1 × ν2)(h, k)

)
× 1

ρ
1

p (x)

∫
H×K

f(k−1
1 xh1)d(ν1 × ν2)(k1, h1)

)
dµ(ẍ)

=

∫
K\G/H

g(x)

ρ
1

p
+ 1

p′ (x)

∫
H×K

f(k−1
1 xh1)d(ν1 × ν2)(h1, k1)dµ(ẍ)

=

∫
K\G/H

∫
H×K

f · g(k−1
1 xh1)

ρ(k−1
1 xh1)

d(ν1 × ν2)(h1, k1)dµ(ẍ)

=

∫
G
f(x)g(x)dm(x) = ⟨f, g⟩.

In the special case p = 2, we conclude that Q2 : L2(K : G : H) → L2(K \ G/H,µ) is a
unitary mapping, we use this, to get some results for the Hilbert space L2(K \G/H, µ).
For a given Hilbert space, it is often useful to find an orthonormal basis, a Riesz basis or
a frame as the generalization of a basis, to get a sequence {gn}n∈N such that any vector
f can be written as f =

∑∞
n=1 cngn for some scalers cn, n ∈ N (See [1]). To construct a

frame for the Hilbert space L2(K \G/H, µ), it is instrumental to assert that the mapping
Q2 : L

2(G) → L2(K \G/H, µ) is the orthogonal projection of L2(G) on L2(K \G/H, µ),
by considering L2(K \G/H, µ) as a closed subspace of L2(G).

In fact, Theorem 4.1 shows that for all 1 ⩽ p ⩽ +∞, the mapping f 7→ ρ
1

p

(
Qp(f) ◦ q

)
is

a projection on Lp(G). Particularly, one may easily check that

{
L2(G) → L2(K : G : H) ⊆ L2(G)

f 7→ ρ
1

2

(
Q2(f) ◦ q

)
,

is the orthogonal projection of L2(G) on L2(K\G/H). This help us to study the structure
of the Lp-space constructing on a double coset space via those created on a topological
group. For instance, Q2 maps every frame L2(G) onto a frame of L2(K \ G/H, µ) and

if {φn}n∈N is a frame for L2(K \ G/H, µ), then {ρ
1

2 (φ ◦ q)}n∈N is a frame sequence in
L2(G).
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