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Abstract. Let F be an field of zero characteristic and N∞(F) be the algebra of infinite
strictly upper triangular matrices with entries in F , and f : N∞(F) → N∞(F) be a non-
additive Lie centralizer of N∞(F); that is, a map satisfying that f([X,Y ]) = [f(X), Y ] for
all X,Y ∈ N∞(F). We prove that f(X) = λX, where λ ∈ F .
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1. Introduction and preliminaries

Consider a ring R. An additive mapping T : R → R is called a left (respectively right)
centralizer if T (ab) = T (a)b (respectively T (ab) = aT (b)) for all a, b ∈ R. The mapping
T is called a centralizer if it is a left and a right centralizer. The characterization of
centralizers on algebras or rings has been a widely discussed subject in various areas of
mathematics.

In [11], Zalar proved the following interesting result: if R is a 2-torsion free semiprime
ring and T is an additive mapping such that T (a2) = T (a)a (or T (a2) = aT (a)), then
T is a centralizer. Vukman [10] considered additive maps satisfying similar condition,
namely 2T (a2) = T (a)a+ aT (a) for any a ∈ R, and showed that if R is a 2-torsion free
semiprime ring, then T is also a centralizer. Since then centralizers have been intensively
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investigated by many mathematicians, let us name only [2–5, 7] and references included
in these works.

An additive map f : R → R, where R is a ring, is called a Lie centralizer of R if
f([x, y]) = [f(x), y] for all x, y ∈ R, where [x, y] is the Lie product of x and y.

Recently, Ghomanjani and Bahmani [8] dealt with the structure of Lie centralizers
of trivial extension algebras, whereas Fošner and Jing [6] studied Lie centralizers of
triangular rings.

Comes from the inspiration of this paper articles [1, 4, 6] in which the authors deal
with triangular algebras and rings and various maps connected to commutativity. In this
note we will consider non-additive Lie centralizers on strictly infinite upper triangular
matrices over an field of zero characteristic.

Let us recall one basic fact. Let F be an field of zero characteristic. Also, let N∞(F),
D∞(F) and T∞(F) denote the algebra of strictly infinite N×N upper triangular matrices
over F , the algebra of all infinite N× N diagonal matrices over F and the algebra of all
infinite N× N upper triangular matrices over F , respectively.

Throughout this article, J will represent the matrix J =
∞∑
i=1

Ei,i+1 and I∞ =
∞∑
i=1

Ei,i.

By CN∞(F)(X), we will denote the centralizer of the element X in the ring N∞(F) and
f : N∞(F) → N∞(F) will denote a non-additive map satisfying : f([X,Y ]) = [f(X), Y ]
for all X,Y ∈ N∞(F). We will say that f is a non-additive Lie centralizer of N∞(F).
Notice that it is easy to check that the N∞(F) has a trivial center Z (N∞(F)).

The main result in this paper is the following:

Theorem 1.1 Let F be an field of zero characteristic. If f : N∞(F) → N∞(F) is
a non-additive Lie centralizer then there exists λ ∈ F such that f(X) = λX for all
X ∈ N∞(F).

Notice that the converse is trivially true: every map f(X) = λX is a (non-additive)
Lie centralizer.

2. Proof of the main result

Let’s start with some properties of Lie centralizers.

Lemma 2.1 [6] Let f be a non-additive Lie centralizer of N∞(F). Then

(1) f(0) = 0,
(2) For every X,Y ∈ N∞(F) we have f([X,Y ]) = [X, f(Y )],
(3) f is a commuting map, i.e. f(X)X = Xf(X) for all X ∈ N∞(F).

Proof. (1) It suffices to notice that f(0) = f([0, 0]) = [f(0), 0] = 0.
(2) Observe that if f([X,Y ]) = [f(X), Y ], then we have f(XY −Y X) = f(X)Y −Y f(X).
Interchanging X and Y in the above identity, we have f(Y X−XY ) = f(Y )X−Xf(Y ).
Replacing X with −X, we arrive at f(XY − Y X) = Xf(Y ) − f(Y )X which can be
written as f([X,Y ]) = [X, f(Y )].
(3) From (1), one also gets [f(X), X] = f([X,X]) = f(0) = 0. ■

Remark 1 Let f be a non-additive Lie centralizer of N∞(F) and X ∈ CN∞(F)(Y ). Then
f(X) ∈ CN∞(F)(Y ). Indeed, if X ∈ CN∞(F)(Y ), then [X,Y ] = 0 and

0 = f(0) = f([X,Y ]) = [f(X), Y ].
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Lemma 2.2 Let f be a non-additive Lie centralizer of N∞(F). Then

(1) if A ∈ T∞(F), then [D0, A] = A if and only if A =
∞∑
i=1

aiEi,i+1;

(2) f(
∞∑
i=1

aiEi,i+1) =
∞∑
i=1

biEi,i+1;

(3) if A =
∞∑
i=1

aiEi,i+1 for some ai ∈ A, then [J∞, A] = 0 if and only if A = aJ∞ for

some a ∈ F ;
(4) there exists λ ∈ F such that f(J) = λJ .

Proof. Let D0 =
∞∑
k=1

(−k)Ek,k.

(1) Consider A =
∑

i⩽j aijEij ∈ T∞(F). Then [D0, A] = A if and only if (p− n) anp =

anp for all 1 ⩽ n < p ∈ N, and consequently A =
∞∑
i=1

ai,i+1Ei,i+1.

(2) Hence, if A =
∞∑
i=1

aiEi,i+1, [D0, A] = A. Thus f ([D0, A]) = [D0, f (A)] = f (A) .

Thus, f(A) =
∞∑
i=1

biEi,i+1.

(3) As in (1), consider A =
∞∑
i=1

aiEi,i+1 for some ai ∈ F . Then [J,A] = 0 if and only if

A = aJ for some a ∈ F .

Indeed, f(J) =
∞∑
i=1

aiEi,i+1 by (1) . Thus, 0 = f(0) = f([J, J ]) = [J, f (J)]. Hence, there

exists λ ∈ F such that f(J) = λJ. ■

Lemma 2.3 [9] Suppose that F is an arbitrary field. If G,H ∈ UT∞(F) are such that
gi,i+1 = hi,i+1 ̸= 0 for all 1 ⩽ i ⩽ n− 1, then G and H are conjugated in UT∞(F).

Here UT∞(F) is the multiplicative group of infinite N × N upper triangular matrices
with only 1’s in the main diagonal. From the lemma above we obtain the following
corollary.

Corollary 2.4 Let F be a field. For every A =
∑

i⩽j aijEij , where ai,i+1 ̸= 0, there

exists B ∈ T∞(F) such that B−1AB = J .

Proof. Let A be a matrix in N∞(F) of the mentioned form. Then I∞+A is a unitriangu-
lar matrix, let’s notice first that there exists B1 ∈ D∞(F) such that (B−1

1 AB1)i,i+1 = 1
for all i ∈ N. We can construct B1 ∈ D∞(F) recursively by:

(B1)11 = 1, (B1)i+1,i+1 = (B1)ii · (Ai,i+1)
−1 for i ⩾ 1.

Consider matrix B−1
1 AB and In+B−1

1 AB ∈ UT∞(F). The unitriangular matrices I∞+J
and I∞ +B−1

1 AB fulfill the condition in Lemma 2.3. Hence, there exists B2 ∈ UT∞(F)
such that I∞ + J = B−1

2 (I∞ + B−1
1 AB1)B2. Then, J = B−1

2 (B−1
1 AB1)B2. Takin B =

B1B2 ∈ T∞(F), we obtain J = B−1AB as wanted. ■

Lemma 2.5 Let A =
∑

i<j aijEij , be a matrix in N∞(F) with ai,i+1 ̸= 0 for every i ⩾ 1.

Then there exists λA ∈ F such that f(A) = λAA.

Proof. If A =
∑

i<j aijEij , where ai,i+1 ̸= 0, there exists T ∈ T∞(F) such that

TAT−1 = J , by the previous corollary. Define h : N∞(F) → N∞(F) by h(X) =
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Tf(T−1XT )T−1. Then h is a non-additive Lie centralizer. Indeed,

h([A,B]) = Tf(T−1[A,B]T )T−1

= Tf(T−1 (AB −BA)T )T−1

= Tf(T−1ATT−1BT − T−1BTT−1AT )T−1

= Tf([T−1AT, T−1BT ])T−1

= T [f(T−1AT ), T−1BT ]T−1

= T
(
f(T−1AT )T−1BT − T−1BTf(T−1AT )

)
T−1

= Tf(T−1AT )T−1B −BTf(T−1AT )T−1

= [Tf(T−1AT )T−1, B]

= [h (A) , B]

for all A,B ∈ N∞(F). Hence, h(J) = λAJ by Lemma 2.2. Then

Tf(A)T−1 = Tf(T−1(TAT−1)T )T−1 = h(J) = λAJ = λATAT−1.

Multiplying the left and right sides by T−1 and T respectively yields f(A) = λAA. ■

Now, we wish to extend Lemma 2.5 to all elements of N∞(F). In order to do it, let’s
introduce the set that we will denote by S = {B = (bij) ∈ N∞(F) : bi,i+1 ̸= 0 ∀i ⩾ 1}.
This set has an important property that is established below.

Lemma 2.6 Let F be a field. Every element of N∞(F) can be written as a sum of at
most two elements of S.

Proof. If ai,i+1 ̸= 0 for all i ⩾ 1, then A belongs in S, so there is nothing to prove. If A
is not in S, then we can define B1 and B2 as follows:

(B1)ij =

{
ai,i+1 − bi if j = i+ 1

aij if j > i+ 1,
, (B2)ij =

{
bi if j = i+ 1

0 otherwise,

where bi is a nonzero different elements of F from ai,i+1. It is easy to see that B1 and
B2 are in S, and A = B1 +B2, so we wanted. ■

Lemma 2.7 Let F be a field. Then f(A + B) = f(A) + f(B) for arbitrary elements
A,B ∈ N∞(F).

Proof. For any A,B,X of N∞(F), we have

[f (A+B) , X] = f ([A+B,X])

= [A+B, f (X)]

= [A, f (X)] + [B, f (X)]

= [f (A) , X] + [f (B) , X]

= [f (A) + f (B) , X],
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which implies that f(A+B)−f(A)−f(B) ∈ Z (N∞(F)). Thus, f(A+B) = f(A)+f(B).
■

Proof of Theorem 1.1: Let A,B ∈ S be two non-commuting elements. By lemma
2.5, f(A) = λAA, f(B) = λBB, λA, λB ∈ F . Since f is non-additive Lie centralizer, we
have

f ([A,B]) = [f (A) , B] = λA[A,B]
= [A, f(B)] = λB[A,B]

Then, [A,B] ̸= 0 implies that λA = λB. If A,B ∈ S commute, then we take C ∈ S
that does not commute neither with A nor with B. As we have just seen, λA = λC and
λB = λC . Given X ∈ N∞(F). We know by lemma 2.6 that there exist A,B ∈ S such
that X = A+B (we can assume that X /∈ S). Then f(X) = f(A)+ f(B) by lemma 2.7.
Thus, f(X)− λAA− λBB = f(X)− λX for λ ∈ F such that f(A) = λA for all A ∈ S;
that is, f(X) = λX, and Theorem 1.1 is proved.
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