Journal of Linear and Topological Algebra Vol. 08, No. 04, 2019, 251-255

Non-additive Lie centralizer of infinite strictly upper triangular matrices

D. A. Aiat Hadj^a

^aDepartment of Mathematics, Centre Régional des Métiers d'Education et de Formation (CRMEF) Tangier, Morocco.

Received 22 January 2019; Revised 29 September 2019, Accepted 8 November 2019.

Communicated by Hamidreza Rahimi

Abstract. Let \mathcal{F} be an field of zero characteristic and $N_{\infty}(\mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in \mathcal{F} , and $f: N_{\infty}(\mathcal{F}) \to N_{\infty}(\mathcal{F})$ be a non-additive Lie centralizer of $N_{\infty}(\mathcal{F})$; that is, a map satisfying that f([X, Y]) = [f(X), Y] for all $X, Y \in N_{\infty}(\mathcal{F})$. We prove that $f(X) = \lambda X$, where $\lambda \in \mathcal{F}$.

© 2019 IAUCTB. All rights reserved.

Keywords: Lie centralizer, infinite strictly upper triangular matrices, commuting map.

2010 AMS Subject Classification: 16S50, 15A27,16U80, 15B99, 47B47, 16R60.

1. Introduction and preliminaries

Consider a ring R. An additive mapping $T: R \to R$ is called a left (respectively right) centralizer if T(ab) = T(a)b (respectively T(ab) = aT(b)) for all $a, b \in R$. The mapping T is called a centralizer if it is a left and a right centralizer. The characterization of centralizers on algebras or rings has been a widely discussed subject in various areas of mathematics.

In [11], Zalar proved the following interesting result: if R is a 2-torsion free semiprime ring and T is an additive mapping such that $T(a^2) = T(a)a$ (or $T(a^2) = aT(a)$), then T is a centralizer. Vukman [10] considered additive maps satisfying similar condition, namely $2T(a^2) = T(a)a + aT(a)$ for any $a \in R$, and showed that if R is a 2-torsion free semiprime ring, then T is also a centralizer. Since then centralizers have been intensively

© 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: ait_hadj@yahoo.com (D. A. Aiat Hadj).

investigated by many mathematicians, let us name only [2-5, 7] and references included in these works.

An additive map $f: R \to R$, where R is a ring, is called a Lie centralizer of R if f([x,y]) = [f(x),y] for all $x, y \in R$, where [x,y] is the Lie product of x and y.

Recently, Ghomanjani and Bahmani [8] dealt with the structure of Lie centralizers of trivial extension algebras, whereas Fošner and Jing [6] studied Lie centralizers of triangular rings.

Comes from the inspiration of this paper articles [1, 4, 6] in which the authors deal with triangular algebras and rings and various maps connected to commutativity. In this note we will consider non-additive Lie centralizers on strictly infinite upper triangular matrices over an field of zero characteristic.

Let us recall one basic fact. Let \mathcal{F} be an field of zero characteristic. Also, let $N_{\infty}(\mathcal{F})$, $D_{\infty}(\mathcal{F})$ and $T_{\infty}(\mathcal{F})$ denote the algebra of strictly infinite $\mathbb{N} \times \mathbb{N}$ upper triangular matrices over \mathcal{F} , the algebra of all infinite $\mathbb{N} \times \mathbb{N}$ diagonal matrices over \mathcal{F} and the algebra of all infinite $\mathbb{N} \times \mathbb{N}$ upper triangular matrices over \mathcal{F} , respectively.

Throughout this article, J will represent the matrix $J = \sum_{i=1}^{\infty} E_{i,i+1}$ and $I_{\infty} = \sum_{i=1}^{\infty} E_{i,i}$. By $C_{N_{\infty}(\mathcal{F})}(X)$, we will denote the centralizer of the element X in the ring $N_{\infty}(\mathcal{F})$ and $f: N_{\infty}(\mathcal{F}) \to N_{\infty}(\mathcal{F})$ will denote a non-additive map satisfying f([X,Y]) = [f(X),Y]for all $X, Y \in N_{\infty}(\mathcal{F})$. We will say that f is a non-additive Lie centralizer of $N_{\infty}(\mathcal{F})$. Notice that it is easy to check that the $N_{\infty}(\mathcal{F})$ has a trivial center $\mathcal{Z}(N_{\infty}(\mathcal{F}))$.

The main result in this paper is the following:

Theorem 1.1 Let \mathcal{F} be an field of zero characteristic. If $f: N_{\infty}(\mathcal{F}) \to N_{\infty}(\mathcal{F})$ is a non-additive Lie centralizer then there exists $\lambda \in \mathcal{F}$ such that $f(X) = \lambda X$ for all $X \in N_{\infty}(\mathcal{F}).$

Notice that the converse is trivially true: every map $f(X) = \lambda X$ is a (non-additive) Lie centralizer.

2. Proof of the main result

Let's start with some properties of Lie centralizers.

Lemma 2.1 [6] Let f be a non-additive Lie centralizer of $N_{\infty}(\mathcal{F})$. Then

- (1) f(0) = 0,
- (2) For every $X, Y \in N_{\infty}(\mathcal{F})$ we have f([X, Y]) = [X, f(Y)],
- (3) f is a commuting map, i.e. f(X)X = Xf(X) for all $X \in N_{\infty}(\mathcal{F})$.

Proof. (1) It suffices to notice that f(0) = f([0,0]) = [f(0),0] = 0. (2) Observe that if f([X,Y]) = [f(X),Y], then we have f(XY-YX) = f(X)Y-Yf(X). Interchanging X and Y in the above identity, we have f(YX - XY) = f(Y)X - Xf(Y). Replacing X with -X, we arrive at f(XY - YX) = Xf(Y) - f(Y)X which can be written as f([X, Y]) = [X, f(Y)].

(3) From (1), one also gets [f(X), X] = f([X, X]) = f(0) = 0.

Remark 1 Let f be a non-additive Lie centralizer of $N_{\infty}(\mathcal{F})$ and $X \in C_{N_{\infty}(\mathcal{F})}(Y)$. Then $f(X) \in C_{N_{\infty}(\mathcal{F})}(Y)$. Indeed, if $X \in C_{N_{\infty}(\mathcal{F})}(Y)$, then [X, Y] = 0 and

$$0 = f(0) = f([X, Y]) = [f(X), Y].$$

Lemma 2.2 Let f be a non-additive Lie centralizer of $N_{\infty}(\mathcal{F})$. Then

- (1) if $A \in T_{\infty}(\mathcal{F})$, then $[D_0, A] = A$ if and only if $A = \sum_{i=1}^{\infty} a_i E_{i,i+1}$;
- (2) $f(\sum_{i=1}^{\infty} a_i E_{i,i+1}) = \sum_{i=1}^{\infty} b_i E_{i,i+1};$
- (2) $J(\sum_{i=1}^{\infty} a_i E_{i,i+1}) = \sum_{i=1}^{\infty} b_i E_{i,i+1};$ (3) if $A = \sum_{i=1}^{\infty} a_i E_{i,i+1}$ for some $a_i \in A$, then $[J_{\infty}, A] = 0$ if and only if $A = a J_{\infty}$ for
- (4) there exists $\lambda \in \mathcal{F}$ such that $f(J) = \lambda J$.

Proof. Let $D_0 = \sum_{k=1}^{\infty} (-k) E_{k,k}$. (1) Consider $A = \sum_{i \leq j} a_{ij} E_{ij} \in T_{\infty}(\mathcal{F})$. Then $[D_0, A] = A$ if and only if $(p - n) a_{np} = \sum_{i \leq j} a_{ij} E_{ij} \in T_{\infty}(\mathcal{F})$. a_{np} for all $1 \leq n , and consequently <math>A = \sum_{i=1}^{\infty} a_{i,i+1} E_{i,i+1}$.

(2) Hence, if
$$A = \sum_{i=1}^{\infty} a_i E_{i,i+1}$$
, $[D_0, A] = A$. Thus $f([D_0, A]) = [D_0, f(A)] = f(A)$.
Thus, $f(A) = \sum_{i=1}^{\infty} b_i E_{i,i+1}$.

(3) As in (1), consider $A = \sum_{i=1}^{\infty} a_i E_{i,i+1}$ for some $a_i \in \mathcal{F}$. Then [J, A] = 0 if and only if

 $A = aJ \text{ for some } a \in \mathcal{F}.$ Indeed, $f(J) = \sum_{i=1}^{\infty} a_i E_{i,i+1}$ by (1). Thus, 0 = f(0) = f([J, J]) = [J, f(J)]. Hence, there exists $\lambda \in \mathcal{F}$ such that $f(J) = \lambda J$.

Lemma 2.3 [9] Suppose that \mathcal{F} is an arbitrary field. If $G, H \in UT_{\infty}(\mathcal{F})$ are such that $g_{i,i+1} = h_{i,i+1} \neq 0$ for all $1 \leq i \leq n-1$, then G and H are conjugated in $UT_{\infty}(\mathcal{F})$.

Here $UT_{\infty}(\mathcal{F})$ is the multiplicative group of infinite $\mathbb{N} \times \mathbb{N}$ upper triangular matrices with only 1's in the main diagonal. From the lemma above we obtain the following corollary.

Corollary 2.4 Let \mathcal{F} be a field. For every $A = \sum_{i \leq j} a_{ij} E_{ij}$, where $a_{i,i+1} \neq 0$, there exists $B \in T_{\infty}(\mathcal{F})$ such that $B^{-1}AB = J$.

Proof. Let A be a matrix in $N_{\infty}(\mathcal{F})$ of the mentioned form. Then $I_{\infty} + A$ is a unitriangular matrix, let's notice first that there exists $B_1 \in D_{\infty}(\mathcal{F})$ such that $(B_1^{-1}AB_1)_{i,i+1} = 1$ for all $i \in \mathbb{N}$. We can construct $B_1 \in D_{\infty}(\mathcal{F})$ recursively by:

$$(B_1)_{11} = 1,$$
 $(B_1)_{i+1,i+1} = (B_1)_{ii} \cdot (A_{i,i+1})^{-1}$ for $i \ge 1.$

Consider matrix $B_1^{-1}AB$ and $I_n + B_1^{-1}AB \in UT_{\infty}(\mathcal{F})$. The unitriangular matrices $I_{\infty} + J$ and $I_{\infty} + B_1^{-1}AB$ fulfill the condition in Lemma 2.3. Hence, there exists $B_2 \in UT_{\infty}(\mathcal{F})$ such that $I_{\infty} + J = B_2^{-1}(I_{\infty} + B_1^{-1}AB_1)B_2$. Then, $J = B_2^{-1}(B_1^{-1}AB_1)B_2$. Takin $B = B_1B_2 \in T_{\infty}(\mathcal{F})$, we obtain $J = B^{-1}AB$ as wanted.

Lemma 2.5 Let $A = \sum_{i < j} a_{ij} E_{ij}$, be a matrix in $N_{\infty}(\mathcal{F})$ with $a_{i,i+1} \neq 0$ for every $i \ge 1$. Then there exists $\lambda_A \in \mathcal{F}$ such that $f(A) = \lambda_A A$.

Proof. If $A = \sum_{i < j} a_{ij} E_{ij}$, where $a_{i,i+1} \neq 0$, there exists $T \in T_{\infty}(\mathcal{F})$ such that $TAT^{-1} = J$, by the previous corollary. Define $h : N_{\infty}(\mathcal{F}) \to N_{\infty}(\mathcal{F})$ by h(X) =

 $Tf(T^{-1}XT)T^{-1}$. Then h is a non-additive Lie centralizer. Indeed,

$$\begin{split} h([A,B]) &= Tf(T^{-1}[A,B]T)T^{-1} \\ &= Tf(T^{-1}(AB-BA)T)T^{-1} \\ &= Tf(T^{-1}ATT^{-1}BT - T^{-1}BTT^{-1}AT)T^{-1} \\ &= Tf([T^{-1}AT,T^{-1}BT])T^{-1} \\ &= T[f(T^{-1}AT),T^{-1}BT]T^{-1} \\ &= T\left(f(T^{-1}AT)T^{-1}BT - T^{-1}BTf(T^{-1}AT)\right)T^{-1} \\ &= Tf(T^{-1}AT)T^{-1}B - BTf(T^{-1}AT)T^{-1} \\ &= [Tf(T^{-1}AT)T^{-1},B] \\ &= [h(A),B] \end{split}$$

for all $A, B \in N_{\infty}(\mathcal{F})$. Hence, $h(J) = \lambda_A J$ by Lemma 2.2. Then

$$Tf(A)T^{-1} = Tf(T^{-1}(TAT^{-1})T)T^{-1} = h(J) = \lambda_A J = \lambda_A TAT^{-1}.$$

Multiplying the left and right sides by T^{-1} and T respectively yields $f(A) = \lambda_A A$.

Now, we wish to extend Lemma 2.5 to all elements of $N_{\infty}(\mathcal{F})$. In order to do it, let's introduce the set that we will denote by $\mathcal{S} = \{B = (b_{ij}) \in N_{\infty}(\mathcal{F}) : b_{i,i+1} \neq 0 \ \forall i \geq 1\}$. This set has an important property that is established below.

Lemma 2.6 Let \mathcal{F} be a field. Every element of $N_{\infty}(\mathcal{F})$ can be written as a sum of at most two elements of \mathcal{S} .

Proof. If $a_{i,i+1} \neq 0$ for all $i \ge 1$, then A belongs in S, so there is nothing to prove. If A is not in S, then we can define B_1 and B_2 as follows:

$$(B_1)_{ij} = \begin{cases} a_{i,i+1} - b_i & \text{if } j = i+1\\ a_{ij} & \text{if } j > i+1, \end{cases} , \qquad (B_2)_{ij} = \begin{cases} b_i & \text{if } j = i+1\\ 0 & \text{otherwise,} \end{cases}$$

where b_i is a nonzero different elements of \mathcal{F} from $a_{i,i+1}$. It is easy to see that B_1 and B_2 are in \mathcal{S} , and $A = B_1 + B_2$, so we wanted.

Lemma 2.7 Let \mathcal{F} be a field. Then f(A + B) = f(A) + f(B) for arbitrary elements $A, B \in N_{\infty}(\mathcal{F})$.

Proof. For any A, B, X of $N_{\infty}(\mathcal{F})$, we have

$$[f (A + B), X] = f ([A + B, X])$$

= [A + B, f (X)]
= [A, f (X)] + [B, f (X)]
= [f (A), X] + [f (B), X]
= [f (A) + f (B), X],

which implies that $f(A+B) - f(A) - f(B) \in \mathcal{Z}(N_{\infty}(\mathcal{F}))$. Thus, f(A+B) = f(A) + f(B).

Proof of Theorem 1.1: Let $A, B \in S$ be two non-commuting elements. By lemma 2.5, $f(A) = \lambda_A A$, $f(B) = \lambda_B B$, $\lambda_A, \lambda_B \in \mathcal{F}$. Since f is non-additive Lie centralizer, we have

$$f([A, B]) = [f(A), B] = \lambda_A[A, B]$$

= [A, f(B)] = $\lambda_B[A, B]$

Then, $[A, B] \neq 0$ implies that $\lambda_A = \lambda_B$. If $A, B \in S$ commute, then we take $C \in S$ that does not commute neither with A nor with B. As we have just seen, $\lambda_A = \lambda_C$ and $\lambda_B = \lambda_C$. Given $X \in N_{\infty}(\mathcal{F})$. We know by lemma 2.6 that there exist $A, B \in S$ such that X = A + B (we can assume that $X \notin S$). Then f(X) = f(A) + f(B) by lemma 2.7. Thus, $f(X) - \lambda_A A - \lambda_B B = f(X) - \lambda X$ for $\lambda \in \mathcal{F}$ such that $f(A) = \lambda A$ for all $A \in S$; that is, $f(X) = \lambda X$, and Theorem 1.1 is proved.

Acknowledgments

The author would like to thank the referee for providing useful suggestions which served to improve this paper.

References

- J. Bounds, Commuting maps over the ring of strictly upper triangular matrices, Linear Algebra Appl. 507 (2016), 132-136.
- [2] M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385-394.
- M. Brešar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings, Trans. Amer. Math. Soc. 335 (1993), 525-546.
- [4] W. S. Cheung, Commuting maps of triangular algebras, J. London Math. Soc. 63 (2) (2001), 117-127.
- [5] D. Eremita, Commuting traces of upper triangular matrix rings, Aequat. Math. 91 (2017), 563-578.
- [6] A. Fošner, W. Jing, Lie centralizers on triangular rings and nest algebras, Adv. Oper. Theory, in press.
- [7] W. Franca, Commuting maps on some subsets of matrices that are not closed under addition, Linear Algebra Appl. 437 (2012), 388-391.
- [8] F. Ghomanjani, M. A. Bahmani, A note on Lie centralizer maps, Palest. J. Math. 7 (2) (2018), 468-471.
- [9] R. Slowik, Expressing infinite matrices as products of involutions, Linear Algebra Appl. 438 (2013), 399-404.
 [10] J. Vukman, An identity related to centralizers in semiprime rings, Comment. Math. Univ. Carolin. 40 (3) (1999), 447-456.
- [11] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (4) (1991), 609-614.