Journal of Linear and Topological Algebra Vol. 08, No. 03, 2019, 191-202

Ring endomorphisms with nil-shifting property

C. A. K. Ahmed^{a,*}, R. T. M. Salim^a

^aDepartment of Mathematics, Faculty of Science, University of Zakho, Kurdistan Region, Iraq.

Received 17 October 2018; Revised 16 May 2019; Accepted 26 May 2019.

Communicated by Shervin Sahebi

Abstract. Cohn called a ring R is reversible if whenever ab = 0, then ba = 0 for $a, b \in R$. The reversible property is an important role in noncommutative ring theory. Recently, Abdul-Jabbar et al. studied the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring). In this paper, we extend the CNZ property of a ring as follows: Let R be a ring and α an endomorphism of R, we say that R is right (resp., left) α -nil-shifting ring if whenever $a\alpha(b) = 0$ (resp., $\alpha(a)b = 0$) for nilpotents a, b in R, $b\alpha(a) = 0$ (resp., $\alpha(b)a = 0$). The characterization of α -nil-shifting rings and their related properties are investigated.

© 2019 IAUCTB. All rights reserved.

Keywords: CNZ ring, reversible ring, matrix ring, polynomial ring.2010 AMS Subject Classification: 46A19, 47L07.

1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. $N^*(R)$ and N(R) denote the upper nilradical (i.e., sum of nil ideals) and the set of all nilpotent elements in R, respectively. Note that $N^*(R) \subseteq N(R)$. Denote the n by n $(n \ge 2)$ full (resp., upper triangular) matrix ring over R by $Mat_n(R)$ (resp., $U_n(R)$). Denote $\{(a_{ij}) \in U_n(R) \mid \text{ the diagonal entries of } (a_{ij}) \text{ are all equal} \}$ by $D_n(R)$. Use e_{ij} , a matrix unit, for the matrix with (i, j)-entry 1 and elsewhere 0. The polynomial (resp., power series) ring with an indeterminate x over R is denoted by R[x] (resp., R[[x]]). \mathbb{Z}_n denotes the ring of integers modulo n.

 * Corresponding author.

© 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: chenar.ahmed@uoz.edu.krd (C. A. K. Ahmed); renas.salim@uoz.edu.krd (R. T. M. Salim).

A ring is called reduced if it has no non zero nilpotent elements. Cohn [6] called a ring R reversible if ab = 0 implies ba = 0 for $a, b \in R$. Recently, a ring R is said to satisfy the commutativity of nilpotent elements at zero (simply, R is called a CNZ ring) [1] if ab = 0 implies ba = 0 for $a, b \in N(R)$. Reversible rings are clearly CNZ, but not conversely as in [1, Example 1.1].

According to Krempa [14], an endomorphism α of a ring R is called *rigid* if $a\alpha(a) = 0$ implies a = 0 for $a \in R$, and a ring R is called α -rigid [9] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism and α -rigid rings are reduced rings by [9, Proposition 5]. Following [8], a ring R is said to be α -compatible if for each $a, b \in R$, $ab = 0 \Leftrightarrow a\alpha(b) = 0$. If R is an α -compatible ring, then the endomorphism α is clearly a monomorphism. The notion of an α -compatible ring is a generalization of α -rigid rings to the more general case where the ring is not assumed to be reduced.

In [4, Definition 2.1], an endomorphism α of a ring R is called right skew reversible if whenever ab = 0 for $a, b \in R$, $b\alpha(a) = 0$, and the ring R is called right α -skew reversible if there exists a right skew reversible endomorphism α of R. Similarly, left α -skew reversible rings are defined. A ring R is called α -skew reversible if it is both left and right α -skew reversible. Note that R is an α -rigid ring if and only if R is semiprime and right α -skew reversible for a monomorphism α of R by [4, Proposition 2.5(iii)]. We change over from "an α -reversible ring" in [4] to "an α -skew reversible ring" to cohere with other related definitions.

An endomorphism α of a ring R is called a right (resp., left) skew CNZ if whenever ab = 0 for $a, b \in N(R)$, $b\alpha(a) = 0$ (resp., $\alpha(b)a = 0$), and the ring R is called right (resp., left) α -skew CNZ if there exists a right (resp., left) skew CNZ endomorphism α of R; the ring R is called α -skew CNZ if it is both left and right α -skew CNZ [2, Definition 2.1].

In [5, Definition 2.1], a ring R with an endomorphism α is called right (resp., left) α -shifting if whenever $a\alpha(b) = 0$ (resp., $\alpha(a)b = 0$) for $a, b \in R$, $b\alpha(a) = 0$ (resp., $\alpha(b)a = 0$); and the ring R is called α -shifting if it is both right and left α -shifting. It is shown that R is an α -rigid ring if and only if R is right α -shifting and $aR\alpha(a) = 0$ implies a = 0 for any $a \in R$ in [5, Proposition 1.2].

Note that reversible rings are CNZ, and right α -skew reversible rings are right α -skew CNZ, but each converse does not hold by [1, Example 2.2] and [2, Example 2.6]. The concepts of reversible rings and right α -skew reversible rings do not imply each other by [4, Examples 2.2 and 2.3], and the concepts of CNZ rings and right α -skew CNZ rings are independent on each other by [1, Example 2.2] and [2, Example 2.6], using [1, Theorem 2.7]. Furthermore, the right α -skew reversible condition and the right α -shifting condition of a ring do not dependent on each other by [5, Example 1.1].

The following diagram shows all implications among the concepts above.

• {reduced rings} \longrightarrow {reversible rings} \longrightarrow {CNZ rings}

 $\{\alpha$ -compatible rings $\}$

• { α -rigid rings} \longrightarrow {right α -skew reversible rings} \longrightarrow {right α -skew CNZ rings}

{right α -shifting rings}

Proposition 1.1 Let R be an α -compatible ring. Then

(1) R is reversible if and only if R is right (left) α -skew reversible if and only if R is right (left) α -shifting.

(2) [2, Theorem 2.3(4)] R is CNZ if and only if R is right (left) α -skew CNZ.

Proof. (1) This is routine, noting that $ab = 0 \Leftrightarrow a\alpha(b) = 0 \Leftrightarrow \alpha(a)b = 0$ in R.

Based on the arguments above, in this paper, we introduce the notation of an α -nilshifting ring for an endomorphism α of a ring as a generalization of α -shifting rings and study its related properties. Throughout this paper, α denotes a nonzero endomorphism of a given ring, unless specified otherwise. We denote id_R for the identity endomorphism of a given ring R.

2. Right α -nil-shifting rings

We begin with the following definition.

Definition 2.1 An endomorphism α of a ring R is called right (resp., left) nil-shifting if whenever $a\alpha(b) = 0$ (resp., $\alpha(a)b = 0$) for $a, b \in N(R)$, $b\alpha(a) = 0$ (resp., $\alpha(b)a = 0$), and the ring R is called a right (resp., left) α -nil-shifting if there exists a right (resp., left) nil-shifting endomorphism α of R. A ring R is called α -nil-shifting if it is both left and right α -nil-shifting.

Any right α -shifting ring is clearly right α -nil-shifting but not conversely by next example.

Example 2.2 Consider a ring $R = U_2(\mathbb{Z})$ with an endomorphism α defined by

$$\alpha\left(\begin{pmatrix}a & b\\ 0 & c\end{pmatrix}\right) = \begin{pmatrix}0 & 0\\ 0 & c\end{pmatrix}.$$

Then *R* is obviously right α -nil-shifting, since $N(R) = \left\{ \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \mid b \in \mathbb{Z} \right\}$. For $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \in R$, we obtain $A\alpha(B) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0$, but $B\alpha(a) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \neq 0$, showing that *R* is not right α -shifting.

A ring R is a CNZ ring if R is one-sided id_R -nil-shifting. Every subring S with $\alpha(S) \subseteq S$ of a right α -nil-shifting is also right α -nil-shifting. We use this fact freely. It is easily checked that R is CNZ if and only if R is right (left) α -skew CNZ if and only if R is right (left) α -nil-shifting when R is an α -compatible ring, but there exists an α -nil-shifting ring which is not right α -skew CNZ ring as follows.

Example 2.3 Let K be a field and $A = K\langle a, b \rangle$ be the free algebra with noncommuting indeterminates a, b over K. Define an automorphism δ of R by $a \mapsto b$ and $b \mapsto a$. Let I be the ideal of A generated by ab, ba, a^3 and b^3 . Set R = A/I. Since $\delta(I) \subseteq I$, we can obtain an automorphism α of R by defining $\alpha(s+I) = \delta(s) + I$ for $s \in A$. We identify every element of A with its image in R for simplicity. Then R is not right α -skew CNZ. For $a, b \in N(R)$, ab = 0 but $b\alpha(a) = b^2 \neq 0$ by the construction of I.

Now, we show that R is right α -nil-shifting. Note that $N(R) = \{ha + ka^2 + sb + tb^2 \mid h, k, s, t \in K\}. \text{ Let } x\alpha(y) = 0 \text{ for } x = h_1a + k_1a^2 + s_1b + t_1b^2, y = h_2a + k_2a^2 + s_2b + t_2b^2 \in N(R) \text{ where } h_i, k_j, s_l, t_m \in K. \text{ Then } 0 = x\alpha(y) = t_1a^2 + t_2b^2 \in N(R) \text{ where } h_i, k_j, s_l, t_m \in K. \text{ Then } 0 = x\alpha(y) = t_1a^2 + t_2b^2 \in N(R) \text{ where } h_i, k_j, s_l, t_m \in K. \text{ Then } 0 = x\alpha(y) = t_1a^2 + t_2b^2 \in N(R) \text{ where } h_i, k_j, s_l, t_m \in K. \text{ Then } 0 = x\alpha(y) = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 \in N(R) \text{ then } 0 = t_1a^2 + t_2b^2 + t_2b^2 = t_1a^2 + t_2b^2 + t_2$

193

194 C. A. K. Ahmed and R. T. M. Salim / J. Linear. Topological. Algebra. 08(03) (2019) 191-202.

 $(h_1a + k_1a^2 + s_1b + t_1b^2)(h_2b + k_2b^2 + s_2a + t_2a^2) = h_1s_2a^2 + s_1h_2b^2$ implies that

$$(h_1 = 0, s_1 = 0), (h_1 = 0, h_2 = 0), (s_2 = 0, s_1 = 0) \text{ or } (s_2 = 0, h_2 = 0)$$

(i) $h_1 = 0, s_1 = 0$: Since $x = k_1 a^2 + t_1 b^2$ and $y = h_2 a + k_2 a^2 + s_2 b + t_2 b^2$, $y\alpha(x) = (h_2 a + k_2 a^2 + s_2 b + t_2 b^2)(k_1 \delta(a^2) + t_1 \delta(b^2)) = (h_2 a + k_2 a^2 + s_2 b + t_2 b^2)(k_1 b^2 + t_1 a^2) = 0$. (ii) $h_1 = 0, h_2 = 0$: Since $x = k_1 a^2 + s_1 b + t_1 b^2$ and $y = k_2 a^2 + s_2 b + t_2 b^2$, $y\alpha(x) = (k_2 a^2 + s_2 b + t_2 b^2)(k_1 \delta(a^2) + s_1 \delta(b) + t_1 \delta(b^2)) = (k_2 a^2 + s_2 b + t_2 b^2)(k_1 b^2 + s_1 a + t_1 a^2) = 0$. (iii) $s_2 = 0, s_1 = 0$: Since $x = h_1 a + k_1 a^2 + t_1 b^2$ and $y = h_2 a + k_2 a^2 + t_2 b^2$, $y\alpha(x) = (h_2 a + k_2 a^2 + t_2 b^2)(h_1 \delta(a) + k_1 \delta(a^2) + t_1 \delta(b^2)) = (h_2 a + k_2 a^2 + t_2 b^2)(h_1 b + k_1 b^2 + t_1 a^2) = 0$ (iv) $s_2 = 0, h_2 = 0$: Since $x = h_1 a + k_1 a^2 + s_1 b + t_1 b^2$ and $y = k_2 a^2 + t_2 b^2$, $y\alpha(x) = (k_2 a^2 + t_2 b^2)(h_1 \delta(a) + k_1 \delta(a^2) + s_1 \delta(b) + t_1 \delta(b^2)) = (k_2 a^2 + t_2 b^2)(h_1 b + k_1 b^2 + s_1 a + t_1 a^2) = 0$. Therefore R is right α -nil-shifting. The proof for the left case is similar.

The next example shows that the concept of an α -nil-shifting ring is not left-right symmetric.

Example 2.4 We adapt [2, Example 2.2]. Consider a ring $R = U_2(\mathbb{Z}_4)$ and an endomorphism of R defined by $\alpha \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$. Note that $N(R) = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, c \in \{0, 2\}, b \in \mathbb{Z}_4 \right\}$. Let $A\alpha(B) = 0$ for $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and $B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \in N(R)$. Then aa' = 0 and it implies that $B\alpha(A) = 0$. Hence R is a right α -nil-shifting ring. Next, we show that R is not a left α -nil-shifting ring. To see this, take $A = \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \in N(R)$. Then $\alpha(A)B = 0$, but $\alpha(B)A = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \neq 0$.

Note that any domain with a monomorphism α is obviously α -nil-shifting, but the converse is not true by Example 2.4.

Proposition 2.5 For a ring R with an endomorphism α , we have the following statements.

(1) If $N(R)^2 = 0$, then R is an α -nil-shifting ring.

(2) Let R be a CNZ ring. Then (i) R is right α -nil-shifting if and only if R is α -nil-shifting; and (ii) if R is right α -skew CNZ and α is a monomorphism, then R is right α -nil-shifting.

(3) Let R be a right α -nil-shifting ring with a monomorphism α . Then ab = 0 if and only if $b\alpha^2(a) = 0$.

(4) Let $\alpha^2 = id_R$. Then R is right α -nil-shifting if and only if R is CNZ.

Proof. (1) It follows from the fact that $\alpha(N(R)) \subseteq N(R)$.

(2) (i) Suppose that R is a right α -nil-shifting ring and let $\alpha(a)b = 0$ for $a, b \in N(R)$. Then $b\alpha(a) = 0$ and so $a\alpha(b) = 0$. Thus $\alpha(b)a = 0$ since R is CNZ and $\alpha(b) \in N(R)$. Hence R is left α -nil-shifting, entailing that R is α -nil-shifting.

(ii) Suppose that R is right α -skew CNZ with an monomorphism α and let $a\alpha(b) = 0$ for $a, b \in N(R)$. Then $0 = \alpha(b)\alpha(a) = \alpha(ba)$ and so ba = 0 since α is a monomorphism. So ab = 0 and hence $b\alpha(a) = 0$ by hypothesis, showing that R is right α -nil-shifting.

(3) For $a, b \in N(R)$, ab = 0 if and only if $\alpha(a)\alpha(b) = 0$ if and only if $b\alpha^2(a) = 0$.

(4) Suppose that R is right α -nil-shifting and let ab = 0 for $a, b \in N(R)$. By (3), we have $b\alpha^2(a) = 0$ and so ba = 0. Thus, R is CNZ.

Conversely, assume that R is CNZ and let $a\alpha(b) = 0$ for $a, b \in N(R)$. Then $\alpha(b)a = 0$,

since $\alpha(b) \in N(R)$. Hence, $0 = \alpha(\alpha(b))a = \alpha^2(b)\alpha(a) = b\alpha(a)$ showing that R is right α -nil-shifting.

The converse of Proposition 2.5(1) does not hold by Example 2.4(1). Example 2.4 shows that the condition "R is a CNZ ring" in Proposition 2.5(2) cannot be dropped. In fact, the ring $R = U_2(\mathbb{Z}_4)$ is right α -skew CNZ but not CNZ by [2, Example 2.4].

Theorem 2.6 (1) Let α_{γ} be an endomorphism of a ring R_{γ} for each $\gamma \in \Gamma$. Then the following are equivalent:

(i) R_{γ} is a right α_{γ} -nil-shifting ring for each $\gamma \in \Gamma$.

(ii) The direct sum $\bigoplus_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} is right $\bar{\alpha}$ -nil-shifting for the endomorphism $\bar{\alpha}$: $\bigoplus_{\gamma \in \Gamma} R_{\gamma} \to \bigoplus_{\gamma \in \Gamma} R_{\gamma}$ defined by $\bar{\alpha}((a_{\gamma})_{\gamma \in \Gamma}) = (\alpha_{\gamma}(a_{\gamma}))_{\gamma \in \Gamma}$.

(iii) The direct product $\prod_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} is right $\bar{\alpha}$ -nil-shifting for the endomorphism $\bar{\alpha} : \prod_{\gamma \in \Gamma} R_{\gamma} \to \prod_{\gamma \in \Gamma} R_{\gamma}$ defined by $\bar{\alpha}((a_{\gamma})_{\gamma \in \Gamma}) = (\alpha_{\gamma}(a_{\gamma}))_{\gamma \in \Gamma}$.

(2) Let S be a ring and $\sigma : R \to S$ a ring isomorphism. Then R is a right α -nil-shifting if and only if S is a right $\sigma \alpha \sigma^{-1}$ -nil-shifting.

Proof. (1) It is enough to show (i)) \Rightarrow (iii), since the class of α -nil-shifting rings is closed under subrings. Note that $N(\prod_{\gamma \in \Gamma} R_{\gamma}) \subseteq \prod_{\gamma \in \Gamma} N(R_{\gamma})$ and $\alpha_{\gamma}(R_{\gamma}) \subseteq R_{\gamma}$ for each $\gamma \in \Gamma$. Suppose that R_{γ} is right α -nil-shifting for each $\gamma \in \Gamma$ and let $A\bar{\alpha}(B) = 0$ where $A = (a_{\gamma})_{\gamma \in \Gamma}, B = (b_{\gamma})_{\gamma \in \Gamma} \in N(\prod_{\gamma \in \Gamma} R_{\gamma})$. Then $a_{\gamma}\alpha(b_{\gamma}) = 0$ for each $\gamma \in \Gamma$ and $b_{\gamma}\alpha(a_{\gamma}) = 0$ since R_{γ} is right α -nil-shifting and $a_{\gamma}, b_{\gamma} \in N(R_{\gamma})$. Thus $B\bar{\alpha}(A) = 0$, entailing that the direct product $\prod_{\gamma \in \Gamma} R_{\gamma}$ of R_{γ} is right $\bar{\alpha}$ -nil-shifting.

(2) Clearly, $N(S) = \sigma(N(R))$. Then $a, b \in N(R)$ if and only if $a' = \sigma(a), b' = \sigma(b) \in N(S)$. So, $a\alpha(b) = 0 \Leftrightarrow \sigma(a\alpha(b)) = 0 \Leftrightarrow 0 = \sigma(a)\sigma\alpha(b)) = \sigma(a)\sigma\alpha\sigma^{-1}(\sigma(b)) \Leftrightarrow a'\sigma\alpha\sigma^{-1}(b') = 0$. The proof is complete.

Corollary 2.7 Let R be a ring with an endomorphism α . If e is a central idempotent of a ring R with $\alpha(e) = e$ and $\alpha(1-e) = 1-e$, then eR and (1-e)R are right α -nil-shifting if and only if R is right α -nil-shifting.

Proof. It comes from Theorem 2.6(1), since $R \cong eR \oplus (1-e)R$ and the class of right α -nil-shifting rings is closed under subrings.

Recall that for a ring R with an endomorphism α and an ideal I of R, if I is an α -ideal (i.e., $\alpha(I) \subseteq I$) of R, then $\bar{\alpha} : R/I \to R/I$ defined by $\bar{\alpha}(a+I) = \alpha(a) + I$ for $a \in R$ is an endomorphism of a factor ring R/I.

Example 2.8 (1) Let K be a field and $R = K\langle a, b \rangle$ be the free algebra with noncommuting indeterminates a, b over K. Then R is a domain. Define an automorphism α of R by $a \mapsto b$ and $b \mapsto a$. Then R is obviously an α -nil-shifting ring. Now, let I be the ideal of R generated by ab, a^2 and b^3 . For $a + I, b + I \in N(R/I)$, we get $(a + I)\overline{\alpha}((b + I)) = (a + I)(\alpha(b) + I)) = a^2 + I = I$, but $(b + I)\overline{\alpha}((a + I)) = b^2 + I \neq I$ by the construction of I. Thus, R/I is not right $\overline{\alpha}$ -nil-shifting. This concludes that the class of right α -nil-shifting rings is not closed under homomorphic images.

(2) We refer to [2, Example 2.8]. Let A be a reduced ring and consider a ring $R = U_3(A)$ with an endomorphism α defined by

$$\alpha \left(\begin{pmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & d & e \\ 0 & 0 & f \end{pmatrix}.$$

196C. A. K. Ahmed and R. T. M. Salim / J. Linear. Topological. Algebra. 08(03) (2019) 191-202.

Then
$$N(R) = \left\{ \begin{pmatrix} 0 & b & c \\ 0 & 0 & d \\ 0 & 0 & 0 \end{pmatrix} \mid b, c, d \in A \right\}$$
. For $x = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $y = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \in N(R)$,

we obtain $x\alpha(y) = 0$, but $y\alpha(x) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$. Thus, R is not right α -nil-shifting. Now, for a nonzero proper ideal $I = \begin{pmatrix} 0 & 0 & A \\ 0 & 0 & A \\ 0 & 0 & A \end{pmatrix}$ of $R, R/I \cong U_2(A)$ is right $\bar{\alpha}$ -nil-shifting

by Proposition 2.5(1) and obviously,

Theorem 2.9 Let R be a ring with an endomorphism α . For an α -ideal I of R, let R/Ibe a right $\bar{\alpha}$ -nil-shifting ring for some ideal I of a ring R with $\alpha(I) \subseteq I$. If I is an α -rigid as a ring without identity, then R is a right α -nil-shifting ring.

Proof. Let $a\alpha(b) = 0$ for $a, b \in N(R)$. Then $b\alpha(a) \in I$ since R/I is a right $\bar{\alpha}$ -nil-shifting ring. Then $b\alpha(a)\alpha(b\alpha(a)) = 0$ and so $b\alpha(a) = 0$, since $b\alpha(a) \in I$ and I is an α -rigid (and so reduced). Thus, R is right α -nil-shifting.

The condition "I is α -rigid as a ring without identity" in Theorem 2.9 is not superfluous by Example 2.8(2): In fact, $(x+I)\bar{\alpha}(x+I) = I$, where $x = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \notin I$.

For a ring R with an endomorphism α and $n \ge 2$, the corresponding $(a_{ij}) \to (\alpha(a_{ij}))$ induces an endomorphism of $Mat_n(R)$, $U_n(R)$ and $D_n(R)$, respectively. We denote them by $\bar{\alpha}$. Notice that for a reduced ring R, both $U_2(R)$ and $D_2(R)$ are $\bar{\alpha}$ -nil-shifting for any endomorphism α of R by Proposition 2.5(1). We will freely use these facts without reference.

However, there exists a reduced ring A with an endomorphism α such that $Mat_2(A)$ is not right $\bar{\alpha}$ -nil-shifting as follows.

Example 2.10 Define an automorphism α of \mathbb{Z}_2 by $0 \mapsto 1$ and $1 \mapsto 0$. Consider $R = Mat_2(\mathbb{Z}_2)$. For $a = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in N(R)$, we have

$$a\bar{\alpha}(b) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \bar{\alpha} \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \alpha(1) & \alpha(1) \\ \alpha(1) & \alpha(1) \end{pmatrix} = 0,$$

but

$$b\bar{\alpha}(a) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha(0) & \alpha(1) \\ \alpha(0) & \alpha(0) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \neq 0.$$

Thus, $Mat_2(A)$ is not right $\bar{\alpha}$ -nil-shifting.

Remark 1 Note that $Mat_n(R)$, $D_n(R)$ and $U_n(R)$, for $n \ge 3$ are not right $\bar{\alpha}$ -nil-shifting for any ring R with an endomorphism α such that $\alpha(1) \neq 0$ (e.g., α is a monomorphism). Let R be a ring with an endomorphism α such that $\alpha(1) \neq 0$. For the ring $D_3(R)$, consider

$$e_{12}, e_{23} \in N(D_3((R))).$$
 Then $e_{23}\bar{\alpha}(e_{12}) = 0$, but $e_{12}\bar{\alpha}(e_{23}) = \begin{pmatrix} 0 & 0 & \alpha(1) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$ showing

that $D_3(R)$ is not right $\bar{\alpha}$ -nil-shifting.

Similarly, we can show that $D_m(R)$ for $m \ge 4$ is not right $\bar{\alpha}$ -nil-shifting. Consequently, it can be obtained that $Mat_n(R)$ and $U_n(R)$ for $n \ge 3$ are not right $\bar{\alpha}$ -nil-shifting, since the class of α -nil-shifting rings is closed under subrings S with $\alpha(S) \subseteq S$.

One may ask whether both $D_2(R)$ and $U_2(R)$ are right $\bar{\alpha}$ -nil-shifting when either R is a reversible ring or R is a right α -nil-shifting ring with an endomorphism α . However the answer is negative by the following example.

Example 2.11 (1) We apply the ring construction and argument in [13, Example 2.1]. Consider the free algebra $A = \mathbb{Z}_2\langle a_0, a_1, a_2, b_0, b_1, b_2, c \rangle$ with noncommuting indeterminates $a_0, a_1, a_2, b_0, b_1, b_2, c$ over \mathbb{Z}_2 . Define an automorphism δ of A by

 $a_0, a_1, a_2, b_0, b_1, b_2, c \mapsto b_0, b_1, b_2, a_0, a_1, a_2, c,$

respectively. Let B be the set of all polynomials with zero constant terms in A and consider the ideal I of A generated by

$$\begin{split} &a_0a_0, a_0a_1 + a_1a_0, a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, a_1b_2 + a_2b_1, a_2b_2, a_0rb_0, a_2rb_2, \\ &b_0a_0, b_0a_1 + b_1a_0, b_0a_2 + b_1a_1 + b_2a_0, b_1a_2 + b_2a_1, b_2a_2, b_0ra_0, b_2ra_2, \\ &(a_0 + a_1 + a_2)r(b_0 + b_1 + b_2), (b_0 + b_1 + b_2)r(a_0 + a_1 + a_2) \text{ and } r_1r_2r_3r_4, \end{split}$$

where $r, r_1, r_2, r_3, r_4 \in B$. Then clearly $B^4 \subseteq I$. Set R = A/I. Since $\delta(I) \subseteq I$, we can obtain an automorphism α of R by defining $\alpha(s+I) = \delta(s) + I$ for $s \in A$. We identify every element of A with its image in R for simplicity. Then R is a reversible ring by the argument in [13, Example 2.1]. Note that R is not right α -nil-shifting, since $a_0\alpha(b_0) = a_0\delta(b_0) = a_0a_0 = 0$ for $a_0, b_0 \in N(R)$, but $b_0\alpha(a_0) = b_0\delta(a_0) = b_0^2 \neq 0$.

 $a_0\alpha(b_0) = a_0\delta(b_0) = a_0a_0 = 0$ for $a_0, b_0 \in N(R)$, but $b_0\alpha(a_0) = b_0\delta(a_0) = b_0^2 \neq 0$. Now, we show that $D_2(R)$ is not right $\bar{\alpha}$ -nil-shifting. For $x = \begin{pmatrix} a_0 & a_1 \\ 0 & a_0 \end{pmatrix}$ and $y = \begin{pmatrix} b_0 & b_1 \\ 0 & b_0 \end{pmatrix}$ in $N(D_2(R))$, we have $x\bar{\alpha}(y) = 0$ by the construction of I. But

$$y\bar{\alpha}(x) = \begin{pmatrix} b_0 & b_1 \\ 0 & b_0 \end{pmatrix} \bar{\alpha} \left(\begin{pmatrix} a_0 & a_1 \\ 0 & a_0 \end{pmatrix} \right) = \begin{pmatrix} b_0 & b_1 \\ 0 & b_0 \end{pmatrix} \begin{pmatrix} \delta(a_0) & \delta(a_1) \\ 0 & \delta(a_0) \end{pmatrix} = \begin{pmatrix} b_0 & b_1 \\ 0 & b_0 \end{pmatrix}^2 \neq 0,$$

entailing that $D_2(R)$ is not right $\bar{\alpha}$ -nil-shifting. Therefore, we conclude that both $D_n(R)$ and $U_n(R)$ for $n \ge 2$ need not be right $\bar{\alpha}$ -nil-shifting.

(2) We use [2, Example 3.5]. Consider a ring $R = U_2(A)$ over a reduced ring A and an endomorphism α of R is defined by

$$\alpha\left(\begin{pmatrix}a & b\\ 0 & c\end{pmatrix}\right) = \begin{pmatrix}a & -b\\ 0 & c\end{pmatrix}.$$

Then R is right α -nil-shifting by Proposition 2.5(1). Clearly R is not reversible. For

$$A = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \text{ and } B = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in N(D_2(R))$$

with $A^3 = 0$ and $B^2 = 0$, we have $A\bar{\alpha}(B) = 0$ but

$$B\bar{\alpha}(A) = \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \alpha \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \alpha \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \\ \alpha \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \alpha \begin{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \\ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{pmatrix} \neq 0.$$

Thus, $D_2(R)$ is not right $\bar{\alpha}$ -nil-shifting, and it implies that $D_n(R)$ and $U_n(R)$ for $n \ge 2$ need not be right $\bar{\alpha}$ -nil-shifting, when R is right α -nil-shifting with an endomorphism α .

Theorem 2.12 For a ring R with an endomorphism α , the following are equivalent:

- (1) R is α -rigid;
- (2) $U_2(R)$ is $\bar{\alpha}$ -nil-shifting;
- (3) $U_2(R)$ is right $\bar{\alpha}$ -nil-shifting.

Proof. Recall that if R is an α -rigid ring, then R is reduced and $\alpha(1) = 1$ by [9, Proposition 5]. So, it is enough to show that $(3) \Rightarrow (1)$. Let $U_2(R)$ be right $\bar{\alpha}$ -nil-shifting and assume on the contrary that R is not α -rigid. Then there exists $0 \neq a \in R$ with $a\alpha(a) = 0$. For $A = \begin{pmatrix} a & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix} \in N(U_2(R))$, we have $A\bar{\alpha}(B) = 0$ but $B\bar{\alpha}(A) = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \neq 0$, entailing that $U_2(R)$ is not right $\bar{\alpha}$ -shifting. This induces a contradiction, and so such a cannot exist. Thus R is α -rigid.

As a corollary of Proposition 2.5(4) and Theorem 2.12, we get the following.

Corollary 2.13 [1, Theorem 2.7] A ring R is reduced if and only if $U_2(R)$ is a CNZ ring.

The ring " $U_2(R)$ " in Theorem 2.12 cannot be replaced by the ring " $D_2(R)$ " as follows.

Example 2.14 Consider the direct sum $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and the endomorphism defined by $\alpha((a, b)) = (b, a)$. Then R is a commutative reduced ring, and so $D_2(R)$ is $\bar{\alpha}$ -nil-shifting. But R is not α -rigid, since $(1, 0)\alpha((1, 0)) = (0, 0)$ for $(1, 0) \in R$.

For a ring R and $n \ge 2$, let $V_n(R)$ be the ring of all matrices (a_{ij}) in $D_n(R)$ such that $a_{st} = a_{(s+1)(t+1)}$ for $s = 1, \ldots, n-2$ and $t = 2, \ldots, n-1$. Note that $V_n(R) \cong \frac{R[x]}{x^n R[x]}$. Note that $V_n(R)$ over an α -rigid ring R is $\bar{\alpha}$ -shifting by [5, Theorem 3.13(2)] and hence $\bar{\alpha}$ -nil-shifting.

3. Extensions of right α -nil-shifting rings

For a ring R with an endomorphism α , we denote $R[x; \alpha]$ a skew polynomial ring (also called an Ore extension of endomorphism type) whose elements are the polynomials $\sum_{i=0}^{n} a_i x^i, a_i \in R$, where the addition is defined as usual and the multiplication subject to the relation $xa = \alpha(a)x$ for any $a \in R$. The set $\{x^j\}_{j\geq 0}$ is easily seen to be a left Ore subset of $R[x; \alpha]$, so that one can localize $R[x; \alpha]$ and form the skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$. Elements of $R[x, x^{-1}; \alpha]$ are finite sums of elements of the form $x^{-j}ax^i$ where $a \in R$ and i and j are nonnegative integers. The skew power series ring is denoted by $R[[x; \alpha]]$, whose elements are the series $\sum_{i=0}^{\infty} a_i x^i$ for some $a_i \in R$ and nonnegative integers i. The skew Laurent power series ring $R[[x, x^{-1}; \alpha]]$ which contains $R[[x;\alpha]]$ as a subring, arises as the localization of $R[[x;\alpha]]$ with respect to the Ore set $\{x^j\}_{j \ge 0}$, and when α is an automorphism of R, it consists elements of the form $a_s x^s + a_{s+1} x^{s+1} + \dots + b_0 + b_1 x + \dots$, for some $a_i, b_j \in R$ and integers s, i, j, where the addition is defined as usual and the multiplication is defined by the rule $xa = \alpha(a)x$ for any $a \in R$. Note that $\alpha(1) = 1$ for any skew Laurent power series (skew Laurent polynomial) ring $R[[x, x^{-1}; \alpha]](R[x, x^{-1}; \alpha])$, since $1x^n = x^n = x1x^{n-1} = \alpha(1)x^n$ for any $n \ge 1$ where 1 is the identity of R. For a ring R with endomorphism α , the corresponding $\sum a_i x^i \to \sum \alpha(a_i)x^i$ induces an endomorphism of $R[x; \alpha]$, $R[x, x^{-1}; \alpha]$, $R[[x; \alpha]]$ and $R[[x, x^{-1}; \alpha]]$, respectively. We denote them by $\overline{\alpha}$.

The concept of a right α -nil-shifting ring does not go up to skew polynomial rings (skew power series rings) by next example.

Example 3.1 We adapt the ring in [12, Example 2.8], based on [13, Example 2.1]. Take the same A and the automorphism δ of A as in Example 2.11. Let C be the set of all polynomials with zero constant terms in A and consider the ideal I of A generated by

$$\begin{split} &a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0, a_1b_2 + a_2b_1, a_2b_2, a_0rb_0, a_2rb_2, \\ &b_0a_0, b_0a_1 + b_1a_0, b_0a_2 + b_1a_1 + b_2a_0, b_1a_2 + b_2a_1, b_2a_2, b_0ra_0, b_2ra_2, \\ &(a_0 + a_1 + a_2)r(b_0 + b_1 + b_2), (b_0 + b_1 + b_2)r(a_0 + a_1 + a_2), \\ &a_0a_0, a_2a_2, a_0ra_0, a_2ra_2, b_0b_0, b_2b_2, b_0rb_0, b_2rb_2, r_1r_2r_3r_4, \\ &a_0a_1 + a_1a_0, a_0a_2 + a_1a_1 + a_2a_0, a_1a_2 + a_2a_1, b_0b_1 + b_1b_0, b_0b_2 + b_1b_1 + b_2b_0, b_1b_2 + b_2b_1, \\ &(a_0 + a_1 + a_2)r(a_0 + a_1 + a_2), (b_0 + b_1 + b_2)r(b_0 + b_1 + b_2), \end{split}$$

where $r, r_1, r_2, r_3, r_4 \in C$. Then clearly $C^4 \subseteq I$. Set R = A/I. Since $\delta(I) \subseteq I$, we can obtain an automorphism α of R by defining $\alpha(s+I) = \delta(s) + I$ for $s \in A$. We identify every element of A with its image in R for simplicity. For $p(x) = a_0 + a_1 x^2 + a_2 x^4$, $q(x) = b_0 c + b_1 c x^2 + b_2 c x^4 \in N(R[x; \alpha])$, since $C^4 \subseteq I$ we have

$$p(x)\bar{\alpha}(q(x)) = (a_0 + a_1x^2 + a_2x^4)(a_0c + a_1cx^2 + a_2cx^4) = 0$$

but, since $b_0cb_1 + b_1cb_0 \neq 0$ we have

$$q(x)\bar{\alpha}(p(x)) = (b_0c + b_1cx^2 + b_2cx^4)(b_0 + b_1x^2 + b_2x^4) \neq 0.$$

Thus $R[x; \alpha]$ is not right $\bar{\alpha}$ -nil-shifting ring. Notice that R is reversible and right α -skew CNZ by [13, Example 2.1] and [2, Example 3.6], respectively. Thus R is a right α -nil-shifting ring by Proposition 2.5(2-ii), since α is an automorphism of R.

Following [3], a ring R is called skew power-serieswise α -Armendariz if $a_i b_j = 0$ for all i and j whenever p(x)q(x) = 0 for $p(x) = \sum_{i=0}^{\infty} a_i x^i$, $q(x) = \sum_{j=0}^{\infty} b_j x^j \in R[[x; \alpha]]$. It is shown that R is a α -rigid ring if and only if R is reduced and skew power-serieswise α -Armendariz in [3, Theorem 3.3(1)]. It is obvious that skew power-serieswise α -Armendariz property of a ring is inherited to its subrings, and α is clearly a monomorphism by help of [3, Theorem 3.3(3)]. (We also change over from "a skew power series Armendariz ring with the endomorphism α " in [3] to "a skew power-serieswise α -Armendariz ring".)

Note that every skew power-serieswise α -Armendariz ring is α -compatible by help of [12, Proposition 3.14], and thus the concepts of CNZ rings, right α -skew CNZ rings and right α -nil-shifting rings are coincided in skew power-serieswise α -Armendariz rings.

Lemma 3.2 [16, Theorem 2.13] Let R be a skew power-serieswise α -Armendariz ring and α an automorphism of R. If we let S is one of symbols $R[x; \alpha], R[x, x^{-1}; \alpha], R[[x; \alpha]]$

or $R[[x, x^{-1}; \alpha]]$, then N(RS) = N(R)S.

Theorem 3.3 Let R be a skew power-serieswise α -Armendariz ring and α an automorphism of R. Then the following are equivalent:

- (1) R is right α -nil-shifting.
- (2) $R[x;\alpha]$ is a right $\bar{\alpha}$ -nil-shifting.
- (3) $R[x, x^{-1}; \alpha]$ is a right $\bar{\alpha}$ -nil-shifting.
- (4) $R[[x; \alpha]]$ is a right $\bar{\alpha}$ -nil-shifting.
- (5) $R[[x, x^{-1}; \alpha]]$ is a right $\bar{\alpha}$ -nil-shifting.

Proof. It suffices to show that $(1) \Rightarrow (5)$: Assume that (1) holds R is right α -nil-shifting. Let $p(x)\bar{\alpha}(q(x)) = 0$ for $p(x) = \sum_{i=0}^{\infty} a_i x^i, q(x) = \sum_{j=0}^{\infty} b_j x^j \in N(R[[x, x^{-1}; \alpha]])$. Then $a_i, b_j \in N(R)$ by Lemma 3.2 and so $a_i \alpha(b_j) = 0$ for all i, j. Thus, $b_j \alpha(a_i) = 0$ by (1) and $b_j \alpha^n(a_i) = 0$ for any non negative integer n, since R is α -compatible as noted above. This yields $q(x)\bar{\alpha}(p(x)) = 0$, and thus, $R[[x, x^{-1}; \alpha]]$ is right $\bar{\alpha}$ -nil-shifting.

Let R be a ring and α a monomorphism of R. Now, we consider the Jordan's construction of an over-ring of R by α (see [11] for more details). Let $A(R, \alpha)$ be the subset $\{x^{-i}rx^i \mid r \in R \text{ and } i \ge 0\}$ of the skew Laurent polynomial ring $R[x, x^{-1}; \alpha]$. Note that for $j \ge 0$, $x^jr = \alpha^j(r)x^j$ implies $rx^{-j} = x^{-j}\alpha^j(r)$ for $r \in R$. This yields that for each $j \ge 0$ we have $x^{-i}rx^i = x^{-(i+j)}\alpha^j(r)x^{i+j}$. It follows that $A(R, \alpha)$ forms a subring of $R[x, x^{-1}; \alpha]$ with the following natural operations: $x^{-i}rx^i + x^{-j}sx^j = x^{-(i+j)}(\alpha^j(r) + \alpha^i(s))x^{i+j}$ and $(x^{-i}rx^i)(x^{-j}sx^j) = x^{-(i+j)}\alpha^j(r)\alpha^i(s)x^{i+j}$ for $r, s \in R$ and $i, j \ge 0$. Note that $A(R, \alpha)$ is an over-ring of R, and the map $\bar{\alpha} : A(R, \alpha) \to A(R, \alpha)$ defined by $\bar{\alpha}(x^{-i}rx^i) = x^{-i}\alpha(r)x^i$ is an automorphism of $A(R, \alpha)$. Jordan showed, with the use of left localization of the skew polynomial $R[x; \alpha]$ with respect to the set of powers of x, that for any pair (R, α) , such an extension $A(R, \alpha)$ always exists in [11]. This ring $A(R, \alpha)$ is usually said to be the Jordan extension of R by α .

Proposition 3.4 For a ring R with a monomorphism α , R is right α -nil-shifting if and only if the Jordan extension $A = A(R, \alpha)$ of R by α is right $\bar{\alpha}$ -nil-shifting.

Proof. It is sufficient to show the necessity. Suppose that R is right α -nil-shifting and $c\bar{\alpha}(d) = 0$ for $c = x^{-i}rx^i$, $d = x^{-j}sx^j \in N(A)$ for $i, j \ge 0$. Then $r, s \in N(R)$ obviously. From $c\bar{\alpha}(d) = 0$, we get $\alpha^j(r)\alpha^{i+1}(s) = 0$ and so $0 = \alpha^i(s)\alpha(\alpha^j(r)) = \alpha^i(s)\alpha^{j+1}(r)$ by hypothesis. Hence,

$$d\bar{\alpha}(c) = (x^{-j}sx^j)\bar{\alpha}(x^{-i}rx^i) = (x^{-j}sx^j)(x^{-i}\alpha(r)x^i)$$

= $x^{-(j+i)}\alpha^i(s)\alpha^j(\alpha(r))x^{i+j} = x^{-(j+i)}\alpha^i(s)\alpha^{j+1}(r))x^{i+j} = 0.$

Therefore, the Jordan extension A is right $\bar{\alpha}$ -nil-shifting.

Let R be an algebra over a commutative ring S. Due to Dorroh [7], the Dorroh extension of R by S is the Abelian group $R \times S$ with multiplication given by $(r_1, s_1)(r_2, s_2) =$ $(r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$ for $r_i \in R$ and $s_i \in S$. We use D to denote the Dorroh extension of R by S. For an S-endomorphism α of R and the Dorroh extension D of R by S, $\bar{\alpha}: D \to D$ defined by $\bar{\alpha}(r, s) = (\alpha(r), s)$ is an S-algebra homomorphism.

Theorem 3.5 Let R be an algebra over a commutative reduced ring S with an S-endomorphism α . Then R is a right α -nil-shifting ring if and only if the Dorroh extension D of R by S is a right $\bar{\alpha}$ -nil-shifting.

Proof. It can be easily checked that N(D) = (N(R), 0) since S is a commutative reduced

ring. Then every nilpotent element D is of the form (r, 0) for some nilpotent element r of R. Thus, $(r_1, 0)\overline{\alpha}((r_2, 0)) = (0, 0)$ if and only if $r_1\alpha(r_2) = 0$. This implies that R is right α -nil-shifting if and only if the Dorroh extension D is $\overline{\alpha}$ -nil-shifting.

An element u of a ring R is right regular if ur = 0 implies r = 0 for $r \in R$. Similarly, left regular is defined, and regular means if it is both left and right regular (and hence not a zero divisor). Assume that M is a multiplicatively closed subset of R consisting of central regular elements. Let α be an automorphism of R and assume $\alpha(m) = m$ for every $m \in M$. Then $\alpha(m^{-1}) = m^{-1}$ in $M^{-1}R$ and the induced map $\bar{\alpha}m : M^{-1}R \to M^{-1}R$ defined by $\bar{\alpha}(u^{-1}a) = u^{-1}\alpha(a)$ is also an automorphism.

Proposition 3.6 Let R be a ring with an automorphism α and assume that there exists a multiplicatively closed subset M of R consisting of central regular elements and $\alpha(m) = m$ for every $m \in M$. Then R is a right α -nil-shifting ring if and only if $M^{-1}R$ is a right $\bar{\alpha}$ -nil-shifting ring.

Proof. It suffices to prove the necessary condition. First, note that $N(M^{-1}R) = M^{-1}N(R)$. Suppose that R is right α -nil-shifting. Let $A\bar{\alpha}(B) = 0$ with $A = u^{-1}a$, $B = v^{-1}b \in N(M^{-1}R)$ where $u, v \in M$ and $a, b \in N(R)$. Then $a\alpha(b) = 0$ and so $b\alpha(a) = 0$ by assumption. Thus,

$$B\bar{\alpha}(A) = v^{-1}b\bar{\alpha}(u^{-1}a) = v^{-1}u^{-1}b\alpha(a) = 0$$

showing that $M^{-1}R$ is a right $\bar{\alpha}$ -nil-shifting ring.

Let R be a ring with an endomorphism α . Recall that the map $R[x] \to R[x]$ (resp., $R[x, x^{-1}] \to R[x, x^{-1}]$) defined by $\sum_{i=0}^{m} a_i x^i \mapsto \sum_{i=0}^{m} \alpha(a_i) x^i$ (resp., $\sum_{i=0}^{\infty} a_i x^i \mapsto \sum_{i=0}^{\infty} \alpha(a_i) x^i$) is an endomorphism of R[x] (resp., $R[x, x^{-1}]$), and clearly the map extends α . We still denote the extended maps $R[x] \to R[x]$ and $R[x, x^{-1}] \to R[x, x^{-1}]$ by $\overline{\alpha}$.

Corollary 3.7 Let R be a ring with an endomorphism α such that $\alpha(1) = 1$. Then R[x] is a right $\bar{\alpha}$ -nil-shifting if and only if $R[x; x^{-1}]$ is a right $\bar{\alpha}$ -nil-shifting.

Proof. It directly follows from Proposition 3.6. For, letting $M = \{1, x, x^2, \dots\}$, M is a multiplicatively closed subset of R[x] such that $R[x, x^{-1}] = M^{-1}R[x]$ and $\bar{\alpha}(x) = x$ since $\alpha(1) = 1$.

A ring R is called right Ore if for given $a, b \in R$ with b is regular, there exists $a_1, b_1 \in R$ with b_1 regular such that $ab_1 = ba_1$. It is well-known fact that R is a right Ore ring if and only if the classical right quotient ring Q(R) of R exists. Let R be a ring with the classical right quotient ring Q(R). Then each automorphism α of R extends to Q(R)by setting $\bar{\alpha}(ab^{-1}) = \alpha(a)(\alpha(b))^{-1}$ for $a, b \in R$, assuming that $\alpha(b)$ is regular for each regular element $b \in R$.

Recall that a ring R is called NI [15] if $N^*(R) = N(R)$. Note that R is NI if and only if N(R) forms an ideal if and only if $R/N^*(R)$ is reduced.

Theorem 3.8 Let R be a right Ore ring with the classical right quotient ring Q(R) of R and α an automorphism of R. If Q(R) is an NI ring, then R is a right α -nil-shifting ring if and only if Q(R) is a right $\bar{\alpha}$ -nil-shifting ring.

Proof. It suffices to establish the necessity. Let Q(R) be an NI ring and R be a right α -nil-shifting. Then R is NI by [10, Lemma 2.1]. We freely use these assumption without reference in the following procedure. Let $A\bar{\alpha}(B) = 0$ for $A = ab^{-1}$, $B = cd^{-1} \in N(Q(R))$, where $a, b, c, d \in R$ with b, d regular. Set I and J be the ideals of Q(R) generated by A and $\bar{\alpha}(B)$, respectively. Then both I and J are nil with $a = Ab \in I$ and $\alpha(c) =$

 $B\alpha(d) \in J$, and so $a, \alpha(c) \in N(R)$ and moreover $c \in N(R)$. Since R is right Ore, there exist $c_1, b_1 \in R$ with b_1 regular such that $bc_1 = \alpha(c)b_1$ and $c_1b_1^{-1} = b^{-1}\alpha(c)$. Here note that $c_1 \in N(R)$. Indeed, $bc_1 = \alpha(c)b_1 \in J$ and so $c_1 = b^{-1}(bc_1) \in J$. From $0 = A\bar{\alpha}(B) = ab^{-1}\bar{\alpha}(cd^{-1}) = ab^{-1}\alpha(c)\alpha(d)^{-1} = ac_1b_1^{-1}\alpha(d^{-1})$, we have $0 = ac_1 = a\alpha(c')$ putting $c_1 = \alpha(c')$ for some $c' \in N(R)$ and so $c'\alpha(a) = 0$ implies $c'\alpha(a)\alpha(b) = 0$. Thus $c'\alpha(ab) = 0 \Rightarrow ab\alpha(c') = 0 \Rightarrow abc_1 = 0 \Rightarrow a\alpha(c)b_1 = 0 \Rightarrow a\alpha(c) = 0 \text{ and } c\alpha(a) = 0.$

Now for $a \in N(R)$, $d \in R$ with d regular, there exist $a_1 \in N(R)$, $d_1 \in R$ with d_1 regular such that $da_1 = \alpha(a)d_1$ where $\alpha(a) \in N(R)$ and $a_1d_1^{-1} = d^{-1}\alpha(a)$ by the same computation as above. Then $a_1 = d^{-1}\alpha(a)d_1 \in N(R)$ because $\alpha(a) \in N(R)$. Put $a_1 = \alpha(a')$ for some $a' \in N(R)$. Then, we have

$$0 = c\alpha(a) = c\alpha(a)d_1 = cda_1 = cd\alpha(a')$$

$$\Rightarrow \quad 0 = a'\alpha(c)\alpha(d) \quad \Rightarrow \quad a'\alpha(c) = 0, \text{ since } \alpha(d) \text{ is regular}$$

$$\Rightarrow \quad 0 = c\alpha(a') = ca_1.$$

Thus.

$$B\bar{\alpha}(A) = cd^{-1}\bar{\alpha}(ab^{-1}) = c(d^{-1}\alpha(a))\alpha(b)^{-1} = ca_1d_1^{-1}\alpha(b)^{-1} = 0,$$

concluding that Q(R) is right $\bar{\alpha}$ -nil-shifting.

References

- [1] A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, Y. Lee, On Commutativity of nilpotent elements at zero, Comm. Korean. Math. Soc. 32 (4) (2017), 811-826.
- [2] A. M. Abdul-Jabbar, C. A. K. Ahmed, T. K. Kwak, Y. Lee, Y. J. Seo, Zero commutativity of nilpotent elements skewed by ring endomorphisms, Comm. Algebra. 45 (11) (2017), 4881-4895.
- [3] M. Başer, A. Harmanci, T. K. Kwak, Generalized semicommutative rings and their extensions, Bull. Korean. Math. Soc. 45 (2008), 285-297.
- [4] M. Başer, C. Y. Hong, T. K. Kwak, On extended reversible rings, Algebra. Colloq. 16 (2009), 37-48.
 [5] M. Başer, F. Kaynabca, T. K. Kwak, Ring endomorphism with the reversible condition, Comm. Korean Math. Soc. 25 (2010), 349-364.
- P. M. Cohn, Reversible rings, Bull. London. Math. Soc. 31 (1999), 641-648.
- J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88.
- E. Hashemi, A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta. Math. Hungar. 107 (2005), 207-[8] 224.
- [9] C. Y. Hong, N. K. Kim, T. K. Kwak, Ore extension of Baer and p.p.-rings, J. Pure. Appl. Algebra. 151 (2000), 215-226.
- [10] S. U. Hwang, Y. C. Jeon, Y. Lee, Structure and topological conditions of NI rings, J. Algebra. 302 (2006), 186-199.
- [11] D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. Lond. Math. Soc. 25 (1982), 435-448.
- [12] N. K. Kim, T. K. Kwak, Y. Lee, Insertion-of-Factors-Property skewed by ring endomorphisms, Taiwan. J. Math. 18 (2014), 849-869.
- [13] N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure. Appl. Algebra. 185 (2003), 207-223.
- J. Krempa, Some example of reduced rings, Algebra. Colloq. 3 (1996), 289-300. [14]
- [15] G. Marks, On 2-primal Ore extensions, Comm. Algebra. 29 (2001), 2113-2123.
- [16] A. R. Nasr-Isfahani, A. Moussavi, On skew power serieswise Armendariz rings, Comm. Algebra. 39 (2011), 3114-3132.