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Abstract. Cohn called a ring R is reversible if whenever ab = 0, then ba = 0 for a, b ∈ R.
The reversible property is an important role in noncommutative ring theory. Recently, Abdul-
Jabbar et al. studied the reversible ring property on nilpotent elements, introducing the
concept of commutativity of nilpotent elements at zero (simply, a CNZ ring). In this paper,
we extend the CNZ property of a ring as follows: Let R be a ring and α an endomorphism
of R, we say that R is right (resp., left) α-nil-shifting ring if whenever aα(b) = 0 (resp.,
α(a)b = 0) for nilpotents a, b in R, bα(a) = 0 (resp., α(b)a = 0). The characterization of
α-nil-shifting rings and their related properties are investigated.
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1. Introduction

Throughout this paper all rings are associative with identity. Let R be a ring. N∗(R)
and N(R) denote the upper nilradical (i.e., sum of nil ideals) and the set of all nilpotent
elements in R, respectively. Note that N∗(R) ⊆ N(R). Denote the n by n (n ⩾ 2)
full (resp., upper triangular) matrix ring over R by Matn(R) (resp., Un(R)). Denote
{(aij) ∈ Un(R) | the diagonal entries of (aij) are all equal} by Dn(R). Use eij , a matrix
unit, for the matrix with (i, j)-entry 1 and elsewhere 0. The polynomial (resp., power
series) ring with an indeterminate x over R is denoted by R[x] (resp., R[[x]]). Zn denotes
the ring of integers modulo n.

∗Corresponding author.
E-mail address: chenar.ahmed@uoz.edu.krd (C. A. K. Ahmed); renas.salim@uoz.edu.krd (R. T. M. Salim).

Print ISSN: 2252-0201 c⃝ 2019 IAUCTB. All rights reserved.
Online ISSN: 2345-5934 http://jlta.iauctb.ac.ir



192 C. A. K. Ahmed and R. T. M. Salim / J. Linear. Topological. Algebra. 08(03) (2019) 191-202.

A ring is called reduced if it has no non zero nilpotent elements. Cohn [6] called a ring
R reversible if ab = 0 implies ba = 0 for a, b ∈ R. Recently, a ring R is said to satisfy the
commutativity of nilpotent elements at zero (simply, R is called a CNZ ring) [1] if ab = 0
implies ba = 0 for a, b ∈ N(R). Reversible rings are clearly CNZ, but not conversely as
in [1, Example 1.1].

According to Krempa [14], an endomorphism α of a ring R is called rigid if aα(a) =
0 implies a = 0 for a ∈ R, and a ring R is called α-rigid [9] if there exists a rigid
endomorphism α of R. Note that any rigid endomorphism of a ring is a monomorphism
and α-rigid rings are reduced rings by [9, Proposition 5]. Following [8], a ring R is said to
be α-compatible if for each a, b ∈ R, ab = 0 ⇔ aα(b) = 0. If R is an α-compatible ring,
then the endomorphism α is clearly a monomorphism. The notion of an α-compatible
ring is a generalization of α-rigid rings to the more general case where the ring is not
assumed to be reduced.

In [4, Definition 2.1], an endomorphism α of a ring R is called right skew reversible if
whenever ab = 0 for a, b ∈ R, bα(a) = 0, and the ring R is called right α-skew reversible if
there exists a right skew reversible endomorphism α of R. Similarly, left α-skew reversible
rings are defined. A ring R is called α-skew reversible if it is both left and right α-skew
reversible. Note that R is an α-rigid ring if and only if R is semiprime and right α-skew
reversible for a monomorphism α of R by [4, Proposition 2.5(iii)]. We change over from
“an α-reversible ring” in [4] to “an α-skew reversible ring” to cohere with other related
definitions.

An endomorphism α of a ring R is called a right (resp., left) skew CNZ if whenever
ab = 0 for a, b ∈ N(R), bα(a) = 0 (resp., α(b)a = 0), and the ring R is called right (resp.,
left) α-skew CNZ if there exists a right (resp., left) skew CNZ endomorphism α of R; the
ring R is called α-skew CNZ if it is both left and right α-skew CNZ [2, Definition 2.1].

In [5, Definition 2.1], a ring R with an endomorphism α is called right (resp., left)
α-shifting if whenever aα(b) = 0 (resp., α(a)b = 0) for a, b ∈ R, bα(a) = 0 (resp.,
α(b)a = 0); and the ring R is called α-shifting if it is both right and left α-shifting. It
is shown that R is an α-rigid ring if and only if R is right α-shifting and aRα(a) = 0
implies a = 0 for any a ∈ R in [5, Proposition 1.2].

Note that reversible rings are CNZ, and right α-skew reversible rings are right α-skew
CNZ, but each converse does not hold by [1, Example 2.2] and [2, Example 2.6]. The
concepts of reversible rings and right α-skew reversible rings do not imply each other
by [4, Examples 2.2 and 2.3], and the concepts of CNZ rings and right α-skew CNZ
rings are independent on each other by [1, Example 2.2] and [2, Example 2.6], using [1,
Theorem 2.7]. Furthermore, the right α-skew reversible condition and the right α-shifting
condition of a ring do not dependent on each other by [5, Example 1.1].

The following diagram shows all implications among the concepts above.
• {reduced rings} −→ {reversible rings} −→ {CNZ rings}

{α-compatible rings}
↗

• {α-rigid rings} −→ {right α-skew reversible rings} −→ {right α-skew CNZ
rings}

↘
{right α-shifting rings}

Proposition 1.1 Let R be an α-compatible ring. Then
(1) R is reversible if and only if R is right (left) α-skew reversible if and only if R is

right (left) α-shifting.
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(2) [2, Theorem 2.3(4)] R is CNZ if and only if R is right (left) α-skew CNZ.

Proof. (1) This is routine, noting that ab = 0 ⇔ aα(b) = 0 ⇔ α(a)b = 0 in R. ■

Based on the arguments above, in this paper, we introduce the notation of an α-nil-
shifting ring for an endomorphism α of a ring as a generalization of α-shifting rings and
study its related properties. Throughout this paper, α denotes a nonzero endomorphism
of a given ring, unless specified otherwise. We denote idR for the identity endomorphism
of a given ring R.

2. Right α-nil-shifting rings

We begin with the following definition.

Definition 2.1 An endomorphism α of a ring R is called right (resp., left) nil-shifting
if whenever aα(b) = 0 (resp., α(a)b = 0 ) for a, b ∈ N(R), bα(a) = 0 (resp., α(b)a = 0),
and the ring R is called a right (resp., left) α-nil-shifting if there exists a right (resp.,
left) nil-shifting endomorphism α of R. A ring R is called α-nil-shifting if it is both left
and right α-nil-shifting.

Any right α-shifting ring is clearly right α-nil-shifting but not conversely by next
example.

Example 2.2 Consider a ring R = U2(Z) with an endomorphism α defined by

α

((
a b
0 c

))
=

(
0 0
0 c

)
.

Then R is obviously right α-nil-shifting, since N(R) =

{(
0 b
0 0

)
| b ∈ Z

}
. For A =(

1 1
0 1

)
and B =

(
1 1
0 0

)
∈ R, we obtain Aα(B) =

(
1 1
0 1

)(
0 0
0 0

)
= 0, but Bα(a) =(

1 1
0 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
̸= 0, showing that R is not right α-shifting.

A ring R is a CNZ ring if R is one-sided idR-nil-shifting. Every subring S with α(S) ⊆ S
of a right α-nil-shifting is also right α-nil-shifting. We use this fact freely. It is easily
checked that R is CNZ if and only if R is right (left) α-skew CNZ if and only if R is right
(left) α-nil-shifting when R is an α-compatible ring, but there exists an α-nil-shifting
ring which is not right α-skew CNZ ring as follows.

Example 2.3 Let K be a field and A = K⟨a, b⟩ be the free algebra with noncommuting
indeterminates a, b over K. Define an automorphism δ of R by a 7→ b and b 7→ a. Let I
be the ideal of A generated by ab, ba, a3 and b3. Set R = A/I. Since δ(I) ⊆ I, we can
obtain an automorphism α of R by defining α(s + I) = δ(s) + I for s ∈ A. We identify
every element of A with its image in R for simplicity. Then R is not right α-skew CNZ.
For a, b ∈ N(R), ab = 0 but bα(a) = b2 ̸= 0 by the construction of I.

Now, we show that R is right α-nil-shifting. Note that
N(R) =

{
ha+ ka2 + sb+ tb2 | h, k, s, t ∈ K

}
. Let xα(y) = 0 for x = h1a+ k1a

2 + s1b+
t1b

2, y = h2a + k2a
2 + s2b + t2b

2 ∈ N(R) where hi, kj , sl, tm ∈ K. Then 0 = xα(y) =
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(h1a+ k1a
2 + s1b+ t1b

2)(h2b+ k2b
2 + s2a+ t2a

2) = h1s2a
2 + s1h2b

2 implies that

(h1 = 0, s1 = 0), (h1 = 0, h2 = 0), (s2 = 0, s1 = 0) or (s2 = 0, h2 = 0).

(i)h1 = 0, s1 = 0: Since x = k1a
2 + t1b

2 and y = h2a + k2a
2 + s2b + t2b

2, yα(x) =
(h2a+ k2a

2 + s2b+ t2b
2)(k1δ(a

2) + t1δ(b
2)) = (h2a+ k2a

2 + s2b+ t2b
2)(k1b

2 + t1a
2) = 0.

(ii) h1 = 0, h2 = 0: Since x = k1a
2 + s1b + t1b

2 and y = k2a
2 + s2b + t2b

2, yα(x) =
(k2a

2+s2b+ t2b
2)(k1δ(a

2)+s1δ(b)+ t1δ(b
2)) = (k2a

2+s2b+ t2b
2)(k1b

2+s1a+ t1a
2) = 0.

(iii) s2 = 0, s1 = 0: Since x = h1a + k1a
2 + t1b

2 and y = h2a + k2a
2 + t2b

2, yα(x) =
(h2a+k2a

2+t2b
2)(h1δ(a)+k1δ(a

2)+ t1δ(b
2)) = (h2a+k2a

2+t2b
2)(h1b+k1b

2+t1a
2) = 0

(iv)s2 = 0, h2 = 0: Since x = h1a + k1a
2 + s1b + t1b

2 and y = k2a
2 + t2b

2, yα(x) =
(k2a

2+t2b
2)(h1δ(a)+k1δ(a

2)+s1δ(b)+t1δ(b
2)) = (k2a

2+t2b
2)(h1b+k1b

2+s1a+t1a
2) = 0.

Therefore R is right α-nil-shifting. The proof for the left case is similar.

The next example shows that the concept of an α-nil-shifting ring is not left-right
symmetric.

Example 2.4 We adapt [2, Example 2.2]. Consider a ring R = U2(Z4) and

an endomorphism of R defined by α

((
a b
0 c

))
=

(
a 0
0 0

)
. Note that N(R) ={(

a b
0 c

)
| a, c ∈ {0, 2}, b ∈ Z4

}
. Let Aα(B) = 0 for A =

(
a b
0 c

)
and B =

(
a′ b′

0 c′

)
∈

N(R). Then aa′ = 0 and it implies that Bα(A) = 0. Hence R is a right α-nil-shifting ring.

Next, we show that R is not a left α-nil-shifting ring. To see this, take A =

(
2 1
0 2

)
, B =(

2 0
0 0

)
∈ N(R). Then α(A)B = 0, but α(B)A =

(
2 0
0 0

)(
2 1
0 2

)
=

(
0 2
0 0

)
̸= 0.

Note that any domain with a monomorphism α is obviously α-nil-shifting, but the
converse is not true by Example 2.4.

Proposition 2.5 For a ring R with an endomorphism α, we have the following state-
ments.

(1) If N(R)2 = 0, then R is an α-nil-shifting ring.
(2) Let R be a CNZ ring. Then (i) R is right α-nil-shifting if and only if R is α-nil-

shifting; and (ii) if R is right α-skew CNZ and α is a monomorphism, then R is right
α-nil-shifting.

(3) Let R be a right α-nil-shifting ring with a monomorphism α. Then ab = 0 if and
only if bα2(a) = 0.

(4) Let α2 = idR. Then R is right α-nil-shifting if and only if R is CNZ.

Proof. (1) It follows from the fact that α(N(R)) ⊆ N(R).
(2) (i) Suppose that R is a right α-nil-shifting ring and let α(a)b = 0 for a, b ∈ N(R).

Then bα(a) = 0 and so aα(b) = 0. Thus α(b)a = 0 since R is CNZ and α(b) ∈ N(R).
Hence R is left α-nil-shifting, entailing that R is α-nil-shifting.

(ii) Suppose that R is right α-skew CNZ with an monomorphism α and let aα(b) = 0
for a, b ∈ N(R). Then 0 = α(b)α(a) = α(ba) and so ba = 0 since α is a monomorphism.
So ab = 0 and hence bα(a) = 0 by hypothesis, showing that R is right α-nil-shifting.

(3) For a, b ∈ N(R), ab = 0 if and only if α(a)α(b) = 0 if and only if bα2(a) = 0.
(4) Suppose that R is right α-nil-shifting and let ab = 0 for a, b ∈ N(R). By (3), we

have bα2(a) = 0 and so ba = 0. Thus, R is CNZ.
Conversely, assume that R is CNZ and let aα(b) = 0 for a, b ∈ N(R). Then α(b)a = 0,
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since α(b) ∈ N(R). Hence, 0 = α(α(b))a = α2(b)α(a) = bα(a) showing that R is right
α-nil-shifting. ■

The converse of Proposition 2.5(1) does not hold by Example 2.4(1). Example 2.4
shows that the condition “R is a CNZ ring” in Proposition 2.5(2) cannot be dropped. In
fact, the ring R = U2(Z4) is right α-skew CNZ but not CNZ by [2, Example 2.4].

Theorem 2.6 (1) Let αγ be an endomorphism of a ring Rγ for each γ ∈ Γ. Then the
following are equivalent:

(i) Rγ is a right αγ-nil-shifting ring for each γ ∈ Γ.
(ii) The direct sum

⊕
γ∈ΓRγ of Rγ is right ᾱ-nil-shifting for the endomorphism ᾱ :⊕

γ∈ΓRγ →
⊕

γ∈ΓRγ defined by ᾱ((aγ)γ∈Γ) = (αγ(aγ))γ∈Γ.

(iii) The direct product
∏

γ∈ΓRγ of Rγ is right ᾱ-nil-shifting for the endomorphism

ᾱ :
∏

γ∈ΓRγ →
∏

γ∈ΓRγ defined by ᾱ((aγ)γ∈Γ) = (αγ(aγ))γ∈Γ.

(2) Let S be a ring and σ : R → S a ring isomorphism. Then R is a right α-nil-shifting
if and only if S is a right σασ−1-nil-shifting.

Proof. (1) It is enough to show (i))⇒(iii), since the class of α-nil-shifting rings is closed
under subrings. Note that N(

∏
γ∈ΓRγ) ⊆

∏
γ∈ΓN(Rγ) and αγ(Rγ) ⊆ Rγ for each

γ ∈ Γ. Suppose that Rγ is right α-nil-shifting for each γ ∈ Γ and let Aᾱ(B) = 0
where A = (aγ)γ∈Γ, B = (bγ)γ∈Γ ∈ N(

∏
γ∈ΓRγ). Then aγα(bγ) = 0 for each γ ∈ Γ

and bγα(aγ) = 0 since Rγ is right α-nil-shifting and aγ , bγ ∈ N(Rγ). Thus Bᾱ(A) = 0,
entailing that the direct product

∏
γ∈ΓRγ of Rγ is right ᾱ-nil-shifting.

(2) Clearly, N(S) = σ(N(R)). Then a, b ∈ N(R) if and only if a′ = σ(a), b′ = σ(b) ∈
N(S). So, aα(b) = 0 ⇔ σ(aα(b)) = 0 ⇔ 0 = σ(a)σα(b)) = σ(a)σασ−1(σ(b)) ⇔
a′σασ−1(b′) = 0. The proof is complete. ■

Corollary 2.7 Let R be a ring with an endomorphism α. If e is a central idempotent of
a ring R with α(e) = e and α(1−e) = 1−e, then eR and (1−e)R are right α-nil-shifting
if and only if R is right α-nil-shifting.

Proof. It comes from Theorem 2.6(1), since R ∼= eR ⊕ (1 − e)R and the class of right
α-nil-shifting rings is closed under subrings. ■

Recall that for a ring R with an endomorphism α and an ideal I of R, if I is an α-ideal
(i.e., α(I) ⊆ I) of R, then ᾱ : R/I → R/I defined by ᾱ(a+ I) = α(a)+ I for a ∈ R is an
endomorphism of a factor ring R/I.

Example 2.8 (1) Let K be a field and R = K⟨a, b⟩ be the free algebra with non-
commuting indeterminates a, b over K. Then R is a domain. Define an automorphism
α of R by a 7→ b and b 7→ a. Then R is obviously an α-nil-shifting ring. Now, let
I be the ideal of R generated by ab, a2 and b3. For a + I, b + I ∈ N(R/I), we get
(a+ I)ᾱ((b+ I)) = (a+ I)(α(b) + I)) = a2 + I = I, but (b+ I)ᾱ((a+ I)) = b2 + I ̸= I
by the construction of I. Thus, R/I is not right ᾱ-nil-shifting. This concludes that the
class of right α-nil-shifting rings is not closed under homomorphic images.

(2) We refer to [2, Example 2.8]. Let A be a reduced ring and consider a ring R = U3(A)
with an endomorphism α defined by

α

a b c
0 d e
0 0 f

 =

0 0 0
0 d e
0 0 f

 .
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Then N(R) =


0 b c
0 0 d
0 0 0

 | b, c, d ∈ A

 . For x =

0 0 1
0 0 1
0 0 0

 and y =

0 1 1
0 0 1
0 0 0

 ∈ N(R),

we obtain xα(y) = 0, but yα(x) =

0 0 1
0 0 0
0 0 0

 ̸= 0. Thus, R is not right α-nil-shifting.

Now, for a nonzero proper ideal I =

0 0 A
0 0 A
0 0 A

 of R, R/I ∼= U2(A) is right ᾱ-nil-shifting

by Proposition 2.5(1) and obviously, α(I) ⊆ I.

Theorem 2.9 Let R be a ring with an endomorphism α. For an α-ideal I of R, let R/I
be a right ᾱ-nil-shifting ring for some ideal I of a ring R with α(I) ⊆ I. If I is an α-rigid
as a ring without identity, then R is a right α-nil-shifting ring.

Proof. Let aα(b) = 0 for a, b ∈ N(R). Then bα(a) ∈ I since R/I is a right ᾱ-nil-shifting
ring. Then bα(a)α(bα(a)) = 0 and so bα(a) = 0, since bα(a) ∈ I and I is an α-rigid (and
so reduced). Thus, R is right α-nil-shifting. ■

The condition “I is α-rigid as a ring without identity” in Theorem 2.9 is not superfluous

by Example 2.8(2): In fact, (x+ I)ᾱ(x+ I) = I, where x =

0 1 0
0 0 0
0 0 0

 /∈ I.

For a ring R with an endomorphism α and n ⩾ 2, the corresponding (aij) → (α(aij))
induces an endomorphism of Matn(R), Un(R) and Dn(R), respectively. We denote them
by ᾱ. Notice that for a reduced ring R, both U2(R) and D2(R) are ᾱ-nil-shifting for
any endomorphism α of R by Proposition 2.5(1). We will freely use these facts without
reference.

However, there exists a reduced ring A with an endomorphism α such that Mat2(A)
is not right ᾱ-nil-shifting as follows.

Example 2.10 Define an automorphism α of Z2 by 0 7→ 1 and 1 7→ 0. Consider R =

Mat2(Z2). For a =

(
0 1
0 0

)
, b =

(
1 1
1 1

)
∈ N(R), we have

aᾱ(b) =

(
0 1
0 0

)
ᾱ

((
1 1
1 1

))
=

(
0 1
0 0

)(
α(1) α(1)
α(1) α(1)

)
= 0,

but

bᾱ(a) =

(
1 1
1 1

)(
α(0) α(1)
α(0) α(0)

)
=

(
1 1
1 1

)(
1 0
1 1

)
=

(
0 1
0 1

)
̸= 0.

Thus, Mat2(A) is not right ᾱ-nil-shifting.

Remark 1 Note that Matn(R), Dn(R) and Un(R), for n ⩾ 3 are not right ᾱ-nil-shifting
for any ring R with an endomorphism α such that α(1) ̸= 0 (e.g., α is a monomorphism).
Let R be a ring with an endomorphism α such that α(1) ̸= 0. For the ring D3(R), consider

e12, e23 ∈ N(D3((R))). Then e23ᾱ(e12) = 0, but e12ᾱ(e23) =

0 0 α(1)
0 0 0
0 0 0

 ̸= 0 showing

that D3(R) is not right ᾱ-nil-shifting.
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Similarly, we can show that Dm(R) for m ⩾ 4 is not right ᾱ-nil-shifting. Consequently,
it can be obtained that Matn(R) and Un(R) for n ⩾ 3 are not right ᾱ-nil-shifting, since
the class of α-nil-shifting rings is closed under subrings S with α(S) ⊆ S.

One may ask whether both D2(R) and U2(R) are right ᾱ-nil-shifting when either R
is a reversible ring or R is a right α-nil-shifting ring with an endomorphism α. However
the answer is negative by the following example.

Example 2.11 (1) We apply the ring construction and argument in [13, Example 2.1].
Consider the free algebra A = Z2⟨a0, a1, a2, b0, b1, b2, c⟩ with noncommuting indetermi-
nates a0, a1, a2, b0, b1, b2, c over Z2. Define an automorphism δ of A by

a0, a1, a2, b0, b1, b2, c 7→ b0, b1, b2, a0, a1, a2, c,

respectively. Let B be the set of all polynomials with zero constant terms in A and
consider the ideal I of A generated by

a0a0, a0a1 + a1a0, a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2) and r1r2r3r4,

where r, r1, r2, r3, r4 ∈ B. Then clearly B4 ⊆ I. Set R = A/I. Since δ(I) ⊆ I, we
can obtain an automorphism α of R by defining α(s + I) = δ(s) + I for s ∈ A. We
identify every element of A with its image in R for simplicity. Then R is a reversible
ring by the argument in [13, Example 2.1]. Note that R is not right α-nil-shifting, since
a0α(b0) = a0δ(b0) = a0a0 = 0 for a0, b0 ∈ N(R), but b0α(a0) = b0δ(a0) = b20 ̸= 0.

Now, we show that D2(R) is not right ᾱ-nil-shifting. For x =

(
a0 a1
0 a0

)
and y =

(
b0 b1
0 b0

)
in N(D2(R)), we have xᾱ(y) = 0 by the construction of I. But

yᾱ(x) =

(
b0 b1
0 b0

)
ᾱ

((
a0 a1
0 a0

))
=

(
b0 b1
0 b0

)(
δ(a0) δ(a1)
0 δ(a0)

)
=

(
b0 b1
0 b0

)2

̸= 0,

entailing that D2(R) is not right ᾱ-nil-shifting. Therefore, we conclude that both Dn(R)
and Un(R) for n ⩾ 2 need not be right ᾱ-nil-shifting.

(2) We use [2, Example 3.5]. Consider a ring R = U2(A) over a reduced ring A and an
endomorphism α of R is defined by

α

((
a b
0 c

))
=

(
a −b
0 c

)
.

Then R is right α-nil-shifting by Proposition 2.5(1). Clearly R is not reversible. For

A =


(
0 1
0 0

) (
0 1
0 1

)
(
0 0
0 0

) (
0 1
0 0

)
 and B =


(
0 1
0 0

) (
0 1
0 0

)
(
0 0
0 0

) (
0 1
0 0

)
 ∈ N(D2(R))
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with A3 = 0 and B2 = 0, we have Aᾱ(B) = 0 but

Bᾱ(A) =


(
0 1
0 0

) (
0 1
0 0

)
(
0 0
0 0

) (
0 1
0 0

)



α

((
0 1
0 0

))
α

((
0 1
0 1

))

α

((
0 0
0 0

))
α

((
0 1
0 0

))
 =


(
0 0
0 0

) (
0 1
0 0

)
(
0 0
0 0

) (
0 0
0 0

)
 ̸= 0.

Thus, D2(R) is not right ᾱ-nil-shifting, and it implies that Dn(R) and Un(R) for n ⩾ 2
need not be right ᾱ-nil-shifting, when R is right α-nil-shifting with an endomorphism α.

Theorem 2.12 For a ring R with an endomorphism α, the following are equivalent:
(1) R is α-rigid;
(2) U2(R) is ᾱ-nil-shifting;
(3) U2(R) is right ᾱ-nil-shifting.

Proof. Recall that if R is an α-rigid ring, then R is reduced and α(1) = 1 by [9,
Proposition 5]. So, it is enough to show that (3)⇒(1). Let U2(R) be right ᾱ-nil-shifting
and assume on the contrary that R is not α-rigid. Then there exists 0 ̸= a ∈ R with

aα(a) = 0. For A =

(
a 1
0 0

)
and B =

(
a 0
0 0

)
∈ N(U2(R)), we have Aᾱ(B) = 0 but

Bᾱ(A) =

(
0 a
0 0

)
̸= 0, entailing that U2(R) is not right ᾱ-shifting. This induces a contra-

diction, and so such a cannot exist. Thus R is α-rigid. ■

As a corollary of Proposition 2.5(4) and Theorem 2.12, we get the following.

Corollary 2.13 [1, Theorem 2.7] A ring R is reduced if and only if U2(R) is a CNZ
ring.

The ring “U2(R)” in Theorem 2.12 cannot be replaced by the ring “D2(R)” as follows.

Example 2.14 Consider the direct sum R = Z2⊕Z2 and the endomorphism defined by
α((a, b)) = (b, a). Then R is a commutative reduced ring, and so D2(R) is ᾱ-nil-shifting.
But R is not α-rigid, since (1, 0)α((1, 0)) = (0, 0) for (1, 0) ∈ R.

For a ring R and n ⩾ 2, let Vn(R) be the ring of all matrices (aij) in Dn(R) such that

ast = a(s+1)(t+1) for s = 1, . . . , n − 2 and t = 2, . . . , n − 1. Note that Vn(R) ∼= R[x]
xnR[x] .

Note that Vn(R) over an α-rigid ring R is ᾱ-shifting by [5, Theorem 3.13(2)] and hence
ᾱ-nil-shifting.

3. Extensions of right α-nil-shifting rings

For a ring R with an endomorphism α, we denote R[x;α] a skew polynomial ring
(also called an Ore extension of endomorphism type) whose elements are the polynomials∑n

i=0 aix
i, ai ∈ R, where the addition is defined as usual and the multiplication subject

to the relation xa = α(a)x for any a ∈ R. The set {xj}j⩾0 is easily seen to be a
left Ore subset of R[x;α], so that one can localize R[x;α] and form the skew Laurent
polynomial ring R[x, x−1;α]. Elements of R[x, x−1;α] are finite sums of elements of the
form x−jaxi where a ∈ R and i and j are nonnegative integers. The skew power series
ring is denoted by R[[x;α]], whose elements are the series

∑∞
i=0 aix

i for some ai ∈ R and
nonnegative integers i. The skew Laurent power series ring R[[x, x−1;α]] which contains
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R[[x;α]] as a subring, arises as the localization of R[[x;α]] with respect to the Ore
set {xj}j⩾0, and when α is an automorphism of R, it consists elements of the form
asx

s + as+1x
s+1 + · · · + b0 + b1x + · · · , for some ai, bj ∈ R and integers s, i, j, where

the addition is defined as usual and the multiplication is defined by the rule xa = α(a)x
for any a ∈ R. Note that α(1) = 1 for any skew Laurent power series (skew Laurent
polynomial) ring R[[x, x−1;α]](R[x, x−1;α]), since 1xn = xn = x1xn−1 = α(1)xn for any
n ⩾ 1 where 1 is the identity of R. For a ring R with endomorphism α, the corresponding∑

aix
i →

∑
α(ai)x

i induces an endomorphism of R[x;α], R[x, x−1;α], R[[x;α]] and
R[[x, x−1;α]], respectively. We denote them by ᾱ.

The concept of a right α-nil-shifting ring does not go up to skew polynomial rings
(skew power series rings) by next example.

Example 3.1 We adapt the ring in [12, Example 2.8], based on [13, Example 2.1]. Take
the same A and the automorphism δ of A as in Example 2.11. Let C be the set of all
polynomials with zero constant terms in A and consider the ideal I of A generated by

a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2, a0rb0, a2rb2,

b0a0, b0a1 + b1a0, b0a2 + b1a1 + b2a0, b1a2 + b2a1, b2a2, b0ra0, b2ra2,

(a0 + a1 + a2)r(b0 + b1 + b2), (b0 + b1 + b2)r(a0 + a1 + a2),

a0a0, a2a2, a0ra0, a2ra2, b0b0, b2b2, b0rb0, b2rb2, r1r2r3r4,

a0a1 + a1a0, a0a2 + a1a1 + a2a0, a1a2 + a2a1, b0b1 + b1b0, b0b2 + b1b1 + b2b0, b1b2 + b2b1,

(a0 + a1 + a2)r(a0 + a1 + a2), (b0 + b1 + b2)r(b0 + b1 + b2),

where r, r1, r2, r3, r4 ∈ C. Then clearly C4 ⊆ I. Set R = A/I. Since δ(I) ⊆ I, we can
obtain an automorphism α of R by defining α(s + I) = δ(s) + I for s ∈ A. We identify
every element of A with its image in R for simplicity. For p(x) = a0+a1x

2+a2x
4, q(x) =

b0c+ b1cx
2 + b2cx

4 ∈ N(R[x;α]), since C4 ⊆ I we have

p(x)ᾱ(q(x)) = (a0 + a1x
2 + a2x

4)(a0c+ a1cx
2 + a2cx

4) = 0

but, since b0cb1 + b1cb0 ̸= 0 we have

q(x)ᾱ(p(x)) = (b0c+ b1cx
2 + b2cx

4)(b0 + b1x
2 + b2x

4) ̸= 0.

Thus R[x;α] is not right ᾱ-nil-shifting ring. Notice that R is reversible and right α-
skew CNZ by [13, Example 2.1] and [2, Example 3.6], respectively. Thus R is a right
α-nil-shifting ring by Proposition 2.5(2-ii), since α is an automorphism of R.

Following [3], a ring R is called skew power-serieswise α-Armendariz if aibj = 0 for all
i and j whenever p(x)q(x) = 0 for p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞

j=0 bjx
j ∈ R[[x;α]]. It is

shown that R is a α-rigid ring if and only if R is reduced and skew power-serieswise α-
Armendariz in [3, Theorem 3.3(1)]. It is obvious that skew power-serieswise α-Armendariz
property of a ring is inherited to its subrings, and α is clearly a monomorphism by help
of [3, Theorem 3.3(3)]. (We also change over from “a skew power series Armendariz ring
with the endomorphism α” in [3] to “a skew power-serieswise α-Armendariz ring”.)

Note that every skew power-serieswise α-Armendariz ring is α-compatible by help of
[12, Proposition 3.14], and thus the concepts of CNZ rings, right α-skew CNZ rings and
right α-nil-shifting rings are coincided in skew power-serieswise α-Armendariz rings.

Lemma 3.2 [16, Theorem 2.13] Let R be a skew power-serieswise α-Armendariz ring
and α an automorphism of R. If we let S is one of symbols R[x;α], R[x, x−1;α], R[[x;α]]
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or R[[x, x−1;α]], then N(RS) = N(R)S.

Theorem 3.3 Let R be a skew power-serieswise α-Armendariz ring and α an automor-
phism of R. Then the following are equivalent:

(1) R is right α-nil-shifting.
(2) R[x;α] is a right ᾱ-nil-shifting.
(3) R[x, x−1;α] is a right ᾱ-nil-shifting.
(4) R[[x;α]] is a right ᾱ-nil-shifting.
(5) R[[x, x−1;α]] is a right ᾱ-nil-shifting.

Proof. It suffices to show that (1)⇒(5): Assume that (1) holds R is right α-nil-shifting.
Let p(x)ᾱ(q(x)) = 0 for p(x) =

∑∞
i=0 aix

i, q(x) =
∑∞

j=0 bjx
j ∈ N(R[[x, x−1;α]]). Then

ai, bj ∈ N(R) by Lemma 3.2 and so aiα(bj) = 0 for all i, j. Thus, bjα(ai) = 0 by (1) and
bjα

n(ai) = 0 for any non negative integer n, since R is α-compatible as noted above.
This yields q(x)ᾱ(p(x)) = 0, and thus, R[[x, x−1;α]] is right ᾱ-nil-shifting. ■

Let R be a ring and α a monomorphism of R. Now, we consider the Jordan’s con-
struction of an over-ring of R by α (see [11] for more details). Let A(R,α) be the
subset

{
x−irxi | r ∈ R and i ⩾ 0

}
of the skew Laurent polynomial ring R[x, x−1;α].

Note that for j ⩾ 0, xjr = αj(r)xj implies rx−j = x−jαj(r) for r ∈ R. This yields
that for each j ⩾ 0 we have x−irxi = x−(i+j)αj(r)xi+j . It follows that A(R,α) forms
a subring of R[x, x−1;α] with the following natural operations: x−irxi + x−jsxj =
x−(i+j)(αj(r) + αi(s))xi+j and (x−irxi)(x−jsxj) = x−(i+j)αj(r)αi(s)xi+j for r, s ∈ R
and i, j ⩾ 0. Note that A(R,α) is an over-ring of R, and the map ᾱ : A(R,α) → A(R,α)
defined by ᾱ(x−irxi) = x−iα(r)xi is an automorphism of A(R,α). Jordan showed, with
the use of left localization of the skew polynomial R[x;α] with respect to the set of pow-
ers of x, that for any pair (R,α), such an extension A(R,α) always exists in [11]. This
ring A(R,α) is usually said to be the Jordan extension of R by α.

Proposition 3.4 For a ring R with a monomorphism α, R is right α-nil-shifting if and
only if the Jordan extension A = A(R,α) of R by α is right ᾱ-nil-shifting.

Proof. It is sufficient to show the necessity. Suppose that R is right α-nil-shifting and
cᾱ(d) = 0 for c = x−irxi, d = x−jsxj ∈ N(A) for i, j ⩾ 0. Then r, s ∈ N(R) obviously.
From cᾱ(d) = 0, we get αj(r)αi+1(s) = 0 and so 0 = αi(s)α(αj(r)) = αi(s)αj+1(r) by
hypothesis. Hence,

dᾱ(c) = (x−jsxj)ᾱ(x−irxi) = (x−jsxj)(x−iα(r)xi)

= x−(j+i)αi(s)αj(α(r))xi+j = x−(j+i)αi(s)αj+1(r))xi+j = 0.

Therefore, the Jordan extension A is right ᾱ-nil-shifting. ■

LetR be an algebra over a commutative ring S. Due to Dorroh [7], the Dorroh extension
of R by S is the Abelian group R × S with multiplication given by (r1, s1)(r2, s2) =
(r1r2+s1r2+s2r1, s1s2) for ri ∈ R and si ∈ S. We use D to denote the Dorroh extension
of R by S. For an S-endomorphism α of R and the Dorroh extension D of R by S,
ᾱ : D → D defined by ᾱ(r, s) = (α(r), s) is an S-algebra homomorphism.

Theorem 3.5 Let R be an algebra over a commutative reduced ring S with an S-
endomorphism α. Then R is a right α-nil-shifting ring if and only if the Dorroh extension
D of R by S is a right ᾱ-nil-shifting.

Proof. It can be easily checked that N(D) = (N(R), 0) since S is a commutative reduced
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ring. Then every nilpotent element D is of the form (r, 0) for some nilpotent element r
of R. Thus, (r1, 0)ᾱ((r2, 0)) = (0, 0) if and only if r1α(r2) = 0. This implies that R is
right α-nil-shifting if and only if the Dorroh extension D is ᾱ-nil-shifting. ■

An element u of a ring R is right regular if ur = 0 implies r = 0 for r ∈ R. Similarly,
left regular is defined, and regular means if it is both left and right regular (and hence
not a zero divisor). Assume that M is a multiplicatively closed subset of R consisting of
central regular elements. Let α be an automorphism of R and assume α(m) = m for every
m ∈ M . Then α(m−1) = m−1 in M−1R and the induced map ᾱm : M−1R → M−1R
defined by ᾱ(u−1a) = u−1α(a) is also an automorphism.

Proposition 3.6 Let R be a ring with an automorphism α and assume that there
exists a multiplicatively closed subset M of R consisting of central regular elements and
α(m) = m for every m ∈ M . Then R is a right α-nil-shifting ring if and only if M−1R is
a right ᾱ-nil-shifting ring.

Proof. It suffices to prove the necessary condition. First, note that N(M−1R) =
M−1N(R). Suppose that R is right α-nil-shifting. Let Aᾱ(B) = 0 with A = u−1a,
B = v−1b ∈ N(M−1R) where u, v ∈ M and a, b ∈ N(R). Then aα(b) = 0 and so
bα(a) = 0 by assumption. Thus,

Bᾱ(A) = v−1bᾱ(u−1a) = v−1u−1bα(a) = 0

showing that M−1R is a right ᾱ-nil-shifting ring. ■

Let R be a ring with an endomorphism α. Recall that the map R[x] → R[x] (resp.,
R[x, x−1] → R[x, x−1]) defined by

∑m
i=0 aix

i 7→
∑m

i=0 α(ai)x
i (resp.,

∑∞
i=0 aix

i 7→∑∞
i=0 α(ai)x

i) is an endomorphism of R[x] (resp., R[x, x−1]), and clearly the map ex-
tends α. We still denote the extended maps R[x] → R[x] and R[x, x−1] → R[x, x−1] by
ᾱ.

Corollary 3.7 Let R be a ring with an endomorphism α such that α(1) = 1. Then R[x]
is a right ᾱ-nil-shifting if and only if R[x;x−1] is a right ᾱ-nil-shifting.

Proof. It directly follows from Proposition 3.6. For, letting M = {1, x, x2, · · · }, M is a
multiplicatively closed subset of R[x] such that R[x, x−1] = M−1R[x] and ᾱ(x) = x since
α(1) = 1. ■

A ring R is called right Ore if for given a, b ∈ R with b is regular, there exists a1, b1 ∈ R
with b1 regular such that ab1 = ba1. It is well-known fact that R is a right Ore ring if
and only if the classical right quotient ring Q(R) of R exists. Let R be a ring with the
classical right quotient ring Q(R). Then each automorphism α of R extends to Q(R)
by setting ᾱ(ab−1) = α(a)(α(b))−1 for a, b ∈ R, assuming that α(b) is regular for each
regular element b ∈ R.

Recall that a ring R is called NI [15] if N∗(R) = N(R). Note that R is NI if and only
if N(R) forms an ideal if and only if R/N∗(R) is reduced.

Theorem 3.8 Let R be a right Ore ring with the classical right quotient ring Q(R) of
R and α an automorphism of R. If Q(R) is an NI ring, then R is a right α-nil-shifting
ring if and only if Q(R) is a right ᾱ-nil-shifting ring.

Proof. It suffices to establish the necessity. Let Q(R) be an NI ring and R be a right
α-nil-shifting. Then R is NI by [10, Lemma 2.1]. We freely use these assumption without
reference in the following procedure. Let Aᾱ(B) = 0 for A = ab−1, B = cd−1 ∈ N(Q(R)),
where a, b, c, d ∈ R with b, d regular. Set I and J be the ideals of Q(R) generated by
A and ᾱ(B), respectively. Then both I and J are nil with a = Ab ∈ I and α(c) =
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Bα(d) ∈ J , and so a, α(c) ∈ N(R) and moreover c ∈ N(R). Since R is right Ore,
there exist c1, b1 ∈ R with b1 regular such that bc1 = α(c)b1 and c1b

−1
1 = b−1α(c).

Here note that c1 ∈ N(R). Indeed, bc1 = α(c)b1 ∈ J and so c1 = b−1(bc1) ∈ J . From
0 = Aᾱ(B) = ab−1ᾱ(cd−1) = ab−1α(c)α(d)−1 = ac1b

−1
1 α(d−1), we have 0 = ac1 = aα(c′)

putting c1 = α(c′) for some c′ ∈ N(R) and so c′α(a) = 0 implies c′α(a)α(b) = 0. Thus
c′α(ab) = 0 ⇒ abα(c′) = 0 ⇒ abc1 = 0 ⇒ aα(c)b1 = 0 ⇒ aα(c) = 0 and cα(a) = 0.

Now for a ∈ N(R), d ∈ R with d regular, there exist a1 ∈ N(R), d1 ∈ R with
d1 regular such that da1 = α(a)d1 where α(a) ∈ N(R) and a1d

−1
1 = d−1α(a) by the

same computation as above. Then a1 = d−1α(a)d1 ∈ N(R) because α(a) ∈ N(R). Put
a1 = α(a′) for some a′ ∈ N(R). Then, we have

0 = cα(a) = cα(a)d1 = cda1 = cdα(a′)

⇒ 0 = a′α(c)α(d) ⇒ a′α(c) = 0, since α(d) is regular

⇒ 0 = cα(a′) = ca1.

Thus,

Bᾱ(A) = cd−1ᾱ(ab−1) = c(d−1α(a))α(b)−1 = ca1d
−1
1 α(b)−1 = 0,

concluding that Q(R) is right ᾱ-nil-shifting. ■
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