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Abstract. The aim of this paper is to establish the equivalence between the concepts of an
S-metric space and a cone S-metric space using some topological approaches. We introduce a
new notion of a TV S-cone S-metric space using some facts about topological vector spaces.
We see that the known results on cone S-metric spaces (or N -cone metric spaces) can be
directly obtained from the studies on S-metric spaces.
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1. Introduction

The study of cone metric spaces was started with the paper [10]. Since then, various
studies have been obtained on cone metric spaces. But, using the topological aspects and
some different approaches, it was proved that the notions of a metric space and a cone
metric space are equivalent (for example, see [4, 5, 13, 14] for more details).

Recently, S-metric spaces have been introduced as a generalization of metric spaces
in [25]. Many fixed-point results have been extensively studied since then using various
approaches (see [15, 17–29]). The relationships between a metric and an S-metric were
given with some counter examples (see [11, 12, 21]). Then, Dhamodharan and Krish-
nakumar introduced a new generalized metric space called as a cone S-metric space [2].
This metric space is also called as N -cone metric space by Malviya and Fisher in [16].
Some well-known fixed-point results were generalized on both cone S-metric and N -cone
metric spaces (for example, [2, 6, 16]).
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In the present work, we show the topological equivalence of an S-metric space and a
cone S-metric space. To do this, we introduce a new notion called as a TV S-cone S-metric
space as a generalization of both metric and cone S-metric (or N -cone metric) spaces. In
Section 2, we recall some necessary definitions and lemmas in the sequel. In Section 3, we
present a notion of a TV S-cone S-metric space and establish the equivalence between new
this space and a cone S-metric space. Also, we see that some known theorems studied on
cone S-metric spaces (or N -cone metric spaces) can be directly obtained from the studies
on S-metric spaces. In Section 4, we investigate the relationships between an S-metric
space and a cone S-metric space in view of their topological properties. In Section 5,
we give a brief account of review about the obtained results and draw a diagram which
shows the relations among some known generalized metric spaces.

2. Preliminaries

In this section, we recall some necessary notions and results related to cone, S-metric
and cone S-metric (or N -cone metric).

Definition 2.1 [25] Let X be a nonempty set and S : X×X×X → [0,∞) be a function
satisfying the following conditions for all u, v, z, a ∈ X :

(1) S(u, v, z) ⩾ 0,
(2) S(u, v, z) = 0 if and only if u = v = z,
(3) S(u, v, z) ⩽ S(u, u, a) + S(v, v, a) + S(z, z, a).

Then the function S is called an S-metric on X and the pair (X,S) is called an S-metric
space.

Definition 2.2 [25] Let (X,S) be an S-metric space and {un} be a sequence in this
space.

(1) A sequence {un} ⊂ X converges to u ∈ X if S(un, un, u) → 0 as n → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n ⩾ n0 we have
S(un, un, u) < ε.

(2) A sequence {un} ⊂ X is a Cauchy sequence if S(un, un, um) → 0 as n,m → ∞,
that is, for each ε > 0, there exists n0 ∈ N such that for all n,m ⩾ n0 we have
S(un, un, um) < ε.

(3) The S-metric space (X,S) is complete if every Cauchy sequence is a convergent
sequence.

Lemma 2.3 [25] Let (X,S) be an S-metric space and u, v ∈ X. Then we have

S(u, u, v) = S(v, v, u).

Definition 2.4 [25] Let (X,S) be an S-metric space. For r > 0 and u ∈ X, the open
ball BS(u, r) defined as follows:

BS(u, r) = {v ∈ X : S(v, v, u) < r}.

Definition 2.5 [10] Let E be a real Banach space and K be a subset of E. K is called
a cone if and only if

(1) K is closed, nonempty and K ̸= {0},
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(2) If a, b ∈ R with a, b ⩾ 0 and u, v ∈ K, then au+ bv ∈ K,
(3) If u ∈ K and −u ∈ K then u = 0.

Then the pair (E,K) is called a cone space. Given a cone K ⊂ E, a partial ordering
≾ with respect to K is defined by u ≾ v if and only if v−u ∈ K. It was written u ≺ v to
indicate that u ≾ v but u ̸= v. Also u ≪ v stands for v − u ∈ intK where intK denotes
the interior of K [10].

Lemma 2.6 [14] Let (E,K) be a cone space with u ∈ K and v ∈ intK. Then one can
find n ∈ N such that u ≪ nv.

Lemma 2.7 [14] Let v ∈ intK. If u ⩾ v for all u then u ∈ intK.

Lemma 2.8 [14] Let (E,K) be a cone space. If u ⩽ v ≪ z then u ≪ z.

Definition 2.9 [2] Suppose that E is a real Banach space, K is a cone in E with
intK ̸= ∅ and ≾ is partial ordering with respect to K. Let X be a nonempty set and a
function S : X ×X ×X → E satisfies the following conditions

(1) 0 ≾ S(u, v, z),
(2) S(u, v, z) = 0 if and only if u = v = z,
(3) S(u, v, z) ≾ S(u, u, a) + S(v, v, a) + S(z, z, a).

Then the function S is called a cone S-metric on X and the pair (X,S) is called a cone
S-metric space.

We note that the notion of a cone S-metric is also called as an N -cone metric in [16].

Lemma 2.10 [2] Let (X,S) be a cone S-metric space. Then we get

S(u, u, v) = S(v, v, u).

Definition 2.11 [6] Let (X,S) be a cone S-metric space, each cone S-metric S on X
generates a topology τS on X whose base is the family of the open balls BS(u, c) defined
as BS(u, c) = {v ∈ X : S(v, v, u) ≪ c} for c ∈ E with 0 ≪ c and for all u ∈ X.

3. TV S-cone S-metric spaces

Let E be a Hausdorff topological vector space (briefly TV S) with its zero vector θE .
A nonempty and closed subset K of E is called a (convex) cone if K +K ⊆ K, λK ⊆ K
for λ ⩾ 0 and K ∩ (−K) = {θE}. Also assume that the cone K has a nonempty interior
intK. For a given cone K ⊆ E, a partial ordering ≾K with respect to K is defined by

u ≾K v ⇐⇒ v − u ∈ K.

u ≺K v stands for u ≾K v and u ̸= v. Also u ≪ v stands for v − u ∈ intK where intK
denotes the interior of K [4, 13].

Let Y be a locally convex Hausdorff TV S with its zero vector θ, K be a proper, closed
and convex cone in Y with intK ̸= ∅, e ∈ intK and ≾K be a partial ordering with
respect to K. The nonlinear scalarization function ξe : Y → R is defined by

ξe(v) = inf {r ∈ R : v ∈ re−K} ,

for all v ∈ Y (see [1, 3, 7–9] for more details).
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We recall the following lemma given in [1, 3, 7–9].

Lemma 3.1 For each r ∈ R and v ∈ Y , the following statements are satisfied:

(1) ξe(v) ⩽ r if and only if v ∈ re−K,
(2) ξe(v) > r if and only if v /∈ re−K,
(3) ξe(v) ⩾ r if and only if v /∈ re− intK,
(4) ξe(v) < r if and only if v ∈ re− intK,
(5) ξe(.) is positively homogeneous and continuous on Y ,
(6) If v1 ∈ v2 +K then ξe(v2) ⩽ ξe(v1),
(7) ξe(v1 + v2) ⩽ ξe(v1) + ξe(v2) for all v1, v2 ∈ Y .

Now we introduce the notion of a TV S-cone S-metric space.

Definition 3.2 Let X be a nonempty set, Y be a Hausdorff TV S ordered by a cone K
and S : X ×X ×X → Y be a vector-valued function. If the following conditions hold

(1) θ ≾K S(u, v, z),
(2) S(u, v, z) = θ if and only if u = v = z,
(3) S(u, v, z) ≾K S(u, u, a) + S(v, v, a) + S(z, z, a)

for all u, v, z, a ∈ X, then the function S is called a TV S-cone S-metric and the pair
(X,S) is called a TV S-cone S-metric space.

Remark 1 A cone S-metric space is a special case of a TV S-cone S-metric space.

Theorem 3.3 Let (X,S) be a TV S-cone S-metric space such that the cone K has
nonempty interior and e ∈ intK. Then the function SS : X ×X ×X → [0,∞) defined
by SS = ξe ◦ S is an S-metric.

Proof. Using the condition (1) given in Definition 3.2 and Lemma 3.1, we get
SS(u, v, z) ⩾ 0 for all u, v, z ∈ X. From the condition (2) given in Definition 3.2 and
Lemma 3.1, we obtain the following cases:

Case 1: If u = v = z, then we have SS(u, v, z) = ξe ◦ S(u, v, z) = ξe(θ) = 0.
Case 2: If SS(u, v, z) = 0, then we have

ξe ◦ S(u, v, z) = 0 ⇒ S(u, v, z) ∈ K ∩ (−K) = {θ} ⇒ u = v = z.

If we apply the condition (3) given in Definition 3.2 together with the conditions (6) and
(7) given in Lemma 3.1, then we obtain

SS(u, v, z) = ξe ◦ S(u, v, z)

⩽ ξe (S(u, u, a) + S(v, v, a) + S(z, z, a))

⩽ ξe (S(u, u, a) + S(v, v, a)) + ξe (S(z, z, a))

⩽ ξe (S(u, u, a)) + ξe (S(v, v, a)) + ξe (S(z, z, a))

= SS(u, u, a) + SS(v, v, a) + SS(z, z, a)

for all u, v, z, a ∈ X. Therefore, SS is an S-metric. ■

Remark 2 Let (X,S) be a cone S-metric space. Then the function SS : X ×X ×X →
[0,∞) defined by SS = ξe ◦ S is an S-metric.

Using the ideas of [2, 16], we give the following definition.
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Definition 3.4 Let (X,S) be a TV S-cone S-metric space, Y be a Hausdorff TV S
ordered by a cone K, u ∈ X and {un} be a sequence in X.

(1) {un} converges to u if and only if S(un, un, u) → θ as n → ∞, that is, for every
θ << c, c ∈ Y there exists n0 ∈ N such that S(un, un, u) ≪ c for all n ⩾ n0. It is
denoted by lim

n→∞
un = u.

(2) {un} is a Cauchy sequence if S(un, un, um) → θ as n,m → ∞, that is, for every
θ << c, c ∈ Y there exists n0 ∈ N such that S(un, un, um) ≪ c for all n,m ⩾ n0.

(3) (X,S) is complete if every Cauchy sequence in X is convergent.

Theorem 3.5 Let (X,S) be a TV S-cone S-metric space, u ∈ X, {un} be a sequence in
X and SS be defined as in Theorem 3.3. Then the following statements hold:

(1) If {un} converges to u in (X,S), then {un} converges to u in (X,SS).
(2) If {un} is a Cauchy sequence in (X,S), then {un} is a Cauchy sequence in (X,SS).
(3) If (X,S) is complete, then (X,SS) is complete.

Proof. (1) Let ε > 0 be given. Using Lemma 3.1 and Theorem 3.3, if {un} converges to
u in (X,S), then there exists n0 ∈ N such that

S(un, un, u) ≪ εe ⇐⇒ SS(un, un, u) = ξe ◦ S(un, un, u) < ε,

for all n ⩾ n0 since e ∈ intK. Therefore, the condition (1) holds.
(2) Let {un} be a Cauchy sequence in (X,S). Then there exists n0 ∈ N such that

S(un, un, um) ≪ εe ⇐⇒ SS(un, un, um) < ε,

for all n,m ⩾ n0. Hence, {un} is a Cauchy sequence in (X,SS).
(3) From the conditions (1) and (2), the condition (3) holds. ■

Theorem 3.6 Let (X,S) be a complete TV S-cone S-metric space and the self-mapping
T : X → X satisfies the condition S(Tu, Tu, Tv) ≾K hS(u, u, v) for all u, v ∈ X and
some h ∈ [0, 1). Then T has a unique fixed point in X.

Proof. Using Theorem 3.3 and Theorem 3.5, we obtain that (X,SS) is a complete S-
metric space. From Lemma 3.1, we get

S(Tu, Tu, Tv) ≾K hS(u, u, v) =⇒ SS(Tu, Tu, Tv) ⩽ hSS(u, u, v)

for all u, v ∈ X. Then the proof is easily seen from Theorem 3.1 on page 263 in [25]. ■

Remark 3 (1) Theorem 3.6, Theorem 3.1 (on page 263 in [25]) and Theorem 2.1 (on
page 239 in [2]) are equivalent.

(2) By the similar arguments used in the proof of Theorem 3.6, we obtain the following
relations:

(i) Theorem 2.5 (on page 242 in [2]) and Theorem 4 (on page 244 in [19]) are equiva-
lent.

(ii) Theorem 2.3 (on page 240 in [2]) and Theorem 3 (on page 240 in [19]) are equiv-
alent.

(iii) Theorem 2.1 (on page 7 in [16]) and Corollary 2.19 (on page 122 in [24]) are
equivalent.

(iv) Theorem 2.1 (on page 35 in [6]) and Theorem 3.1 (on page 263 in [25]) are
equivalent.
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(v) Theorem 2.2 (on page 35 in [6]) and Corollary 2.8 (on page 118 in [24]) are
equivalent.

(vi) Theorem 2.3 (on page 36 in [6]) and Corollary 2.15 (on page 121 in [24]) are
equivalent.

4. Topological equivalence of S-metric and cone S-metric spaces

In the following theorem, we give the topological equivalence of an S-metric and a
cone S-metric space.

Theorem 4.1 Let E be a Banach space ordered by a cone K with nonempty interior,
X be a nonempty set and S : X × X × X → K be a cone S-metric on X. Then there
exists an S-metric S∗ on X generating the same topology as S.

Proof. Let a ∈ (0, 1) and e ∈ intK. Put h = 1
a and define the function Θ : X×X×X →

[0,∞) as

Θ(u, v, z) =

{
hmin{α:S(u,v,z)≪hαe} if S(u, v, z) ̸= 0

0 if S(u, v, z) = 0
, (1)

where α ∈ Z. It can be easily checked that Θ(u, u, v) = Θ(v, v, u) and

Θ(u, v, z) = 0 ⇐⇒ u = v = z.

Now we define the function S∗ : X ×X ×X → [0,∞) by

S∗(u, v, z) = inf

{
n−2∑
i=1

Θ(ui, ui+1, ui+2) : u1 = u, . . . , un−2 = u, un−1 = v, un = z

}
. (2)

From the definitions (1) and (2), we have S∗(u, v, z) ⩾ 0 and

S∗(u, v, z) = 0 ⇐⇒ u = v = z.

We show that the triangle inequality is satisfied by the function S∗. For ε > 0, we prove

S∗(u, v, z) ⩽ S∗(u, u, a) + S∗(v, v, a) + S∗(z, z, a) + ε.

By the definition (2), there exists u1 = u, . . . , un−1 = u, un = a with∑
Θ(ui, ui, ui+1) ⩽ S∗(u, u, a) +

ε

3
,

v1 = v, . . . , vn−1 = v, vn = a with∑
Θ(vi, vi, vi+1) ⩽ S∗(v, v, a) +

ε

3

and z1 = z, . . . , zn−1 = z, zn = a with∑
Θ(zi, zi, zi+1) ⩽ S∗(z, z, a) +

ε

3
.
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Therefore, we get

S∗(u, v, z) ⩽
∑

Θ(ui, ui, ui+1) +
∑

Θ(vi, vi, vi+1) +
∑

Θ(zi, zi, zi+1)

⩽ S∗(u, u, a) + S∗(v, v, a) + S∗(z, z, a) + ε,

that is, S∗ is an S-metric.
Now we show that each BS(u, c) contains some BS∗(u, r). Let us consider the open

ball BS∗(u, r) for u ∈ X and r ∈ [0,∞). It can be found α ∈ Z such that hα < r. We put
c ≪ hαe. If S(u, u, v) ≪ c then Θ(u, u, v) ⩽ hα < r and S∗(u, u, v) ⩽ Θ(u, u, v) < r, for
each v ∈ X. Then we get

BS(u, c) ⊆ BS∗(u, r). (3)

Conversely, let us consider the open ball BS(u, c) for u ∈ X and c ∈ E. For each u, v ∈ X
and r ∈ [0,∞) if S∗(u, u, v) < r then we can find u1 = u, . . . , un−1 = u, un = v with∑

Θ(ui, ui, ui+1) < r.

However for each i < n, we have S(ui, ui, ui+1) ≪ Θ(ui, ui, ui+1)e and so

S(u, u, v) ⩽
n−1∑
i=1

Θ(ui, ui, ui+1)e ⩽ re.

If we choose r satisfying re ≪ c, then we have S(u, u, v) ≪ c and

BS∗(u, r) ⊆ BS(u, c). (4)

Therefore, from the inequalities (3) and (4), S∗ induces the same topology as the cone
S-metric topology of S. ■

5. Conclusion

We have defined the concept of a TV S-cone S-metric space as a generalization of a
cone S-metric space. We have established the equivalence between the notions of an S-
metric space and a TV S-cone S-metric space (resp. cone S-metric space) and presented
some related results. Also it is shown the topological equivalence of these spaces. On the
other hand, complex valued S-metric spaces are a special class of cone S-metric spaces.
But it is important to study some fixed-point results in complex valued S-metric spaces
since some contractions have a product and quotient (see [17, 28] for more details).

From the known (see [2, 4, 5, 10–14, 16, 21] for more details) and obtained results, we
get the following diagram:

metric spaces ⇐⇒ cone metric spaces
⇓ ⇓

S-metric spaces ⇐⇒ cone S-metric spaces = N -cone metric spaces
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[22] N. Y. Özgür, N. Taş, The Picard theorem on S-metric spaces, Acta Math. Sci. 38 (4) (2018), 1245-1258.
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