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Abstract. In this paper, a new method for solving coupled complex matrix equations is
applied. In this method, we change the problem into a real equation system by using the
multiplication properties of complex numbers. This new problem can be solved easily. Nu-
merical examples are given to show the efficiency of the new method.
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1. Introduction

Matrix linear equations like AXB = M , AXB+CXD = M1 and AXB+CXTD = M2

are very important in linear systems and the methods of solving such equations have been
studied in various articles [1, 2, 4]. A method for solving equation systems of{

A1XB1 = C1

A2XB2 = C2

is proposed in [11]. Also, two iterative algorithms are proposed for solving the following
coupled matrix equations in [3]:{

A1XB1 + C1X
TD1 = M1

A2XB2 + C2X
TD2 = M2
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Ding and Chen [5] introduced a hierarchical gradient iterative as well as a hierarchi-
cal stochastic gradient algorithm proving that the parameter estimation errors given by
these algorithms converge to zero for all initial values under persistent excitation. In [7],
the researchers presented a family of iterative methods for linear systems and studied
a least-squares iterative solution to coupled matrix equations by using the hierarchical
identication principle and the star product. In [6], a hierarchical identication principle
was used to solve the Sylvester and Lyapunov matrix equations. In [8], using the gra-
dient search principle, the researchers studied gradient iterative algorithms for solving
Sylvester coupled matrix and general coupled matrix equations. In [10], the scholars ob-
tained Cramers rules for some quaternion matrix equations within the framework of the
column and row determinants theory. In [12], the necessary and sufficient condition for
the existence of the solution to the matrix equation AX+XtC = B was examined using
the generalized inverse matrix. The above-mentioned studies were briefly reviewed in [3]
and we also emphasize [1–3]. In all the mentioned researches, the real coefficient matrix
and real unknowns have been considered. In practical cases, such as optimal control and
numerical analysis, the coefficient matrix might be complex.

In this article, a new and practical method is proposed for solving the four types of
the following complex equations:

AXB + CX∗D = M (1)

{
A1XB1 + C1X

∗D1 = M1

A2XB2 + C2X
∗D2 = M2

(2)

AX1B + CX2D = M (3)

{
A1X1B1 + C1X2D1 = M1

A2X1B2 + C2X2D2 = M2

(4)

We denote the set of all m × n complex matrices by Cm×n. Therefore, the coefficient
matrix Ai, Bi, Ci, Di, the amounts to the right hand side, Mi, and the unknown matrix,
X (or Xi), are complex. We use the following notation.
X∗ is the conjugate transpose of matrix X, R(A) is a matrix with the same dimension
as matrix A, which only includes the real part of elements in matrix A. I(A) is a matrix
with the same dimension as matrix A, which only includes the imaginary part of elements
in matrix A. For example, if

A =

[
a1 + b1i a2 + b2i
a3 + b3i a4 + b4i

]
,

then

R(A) =

[
a1 a2
a3 a4

]
and I(A) =

[
b1 b2
b3 b4

]
.
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Also, for the arbitrary matrix, V ec(X) is a vector with mn elements obtained by stack-
ing the columns of matrix X. For the two given matrices X ∈ Cm×n and Y ∈ Cl×k,
Kronecker product X ⊗ Y is the ml × nk matrix that is calculated by X ⊗ Y = [xijY ].
Therefore, V ec(AXB) = (BT ⊗ A)V ec(X), where A, B and X are matrices with the
proper dimensions [9].

2. Presenting the problem and the solution method

In this part, a method is proposed for solving the complex equation systems. By using
the multiplication properties of complex numbers, we will turn the equation system
AXB+CX∗D = M into a linear and real equation system like KX = D which is easily
solvable with several methods. Then, we will also turn the complex equation systems (2),
(3) and (4) into real systems K1X1 +K2X2 = D2, based on the proposed method.

Theorem 2.1 The coupled complex equation system AXB+CX∗D = M can be turned
into a real equation system KX = D.

Proof. If z1 = a1 + b1i and z2 = a2 + b2i are two complex numbers, then R(z1) = a1,
R(z2) = a2, I(z1) = b1 and I(z2) = b2. According to the multiplication properties of
complex numbers, we have

R(z1z2) = R(z1)R(z2)− I(z1)I(z2) (5)

and

I(z1z2) = R(z1)I(z2) + I(z1)R(z2). (6)

According to relations (5) and (6) in equation system AXB + CX∗D = M , we can
calculate matrix R(X) and I(X) separately and define the unknown matrix X ∈ Cm×n

as X = R(X) + iI(X). Therefore, we have{
R(AX) = R(A)R(X)− I(A)I(X)

I(AX) = R(A)I(X) + I(A)R(X)

and

R(AXB) = R(AX)R(B)− I(AX)I(B)

= R(A)R(X)R(B)− I(A)I(X)R(B)−R(A)I(X)I(B)− I(A)R(X)I(B)

and in a similar manner

I(AXB) = R(A)R(X)I(B)− I(A)I(X)I(B) +R(A)I(X)R(B) + I(A)R(X)R(B)

By defining the Kronecker product of matrix, we can write the equation AXB as follows:

((I(B)T ⊗R(A)) + (R(B)T ⊗ I(A)))V ec(R(X))

−((I(B)T ⊗ I(A)) + (R(B)T ⊗R(A)))V ec(I(X)).
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According to Lemma 2.2 from [3], for C1, X
T , D1 ∈ Rm×n, we have

V ec(C1X
TD1) = (DT

1 ⊗ C1)P (n, n)V ec(X),

in which P (n, n) is a permutation matrix that causes some columns in DT
1 ⊗ C1 to

be relocated. Therefore, the equation C1X
∗D1 can be rewritten as the following real

equation:

((I(D)T ⊗R(C)) + (R(D)T ⊗ I(C)))P (n, n)V ec(R(X))

−((I(D)T ⊗ I(C)) + (R(D)T ⊗R(C)))P (n, n)V ec(I(X))
.

With the new denomination, we have

(R(B)T ⊗R(A)) + (I(B)T ⊗ I(A)) = K1

(R(B)T ⊗ I(A)) + (I(B)T ⊗R(A)) = K2

((R(D)T ⊗R(C)) + (I(D)T ⊗ I(C)))P (n, n) = K3

((R(D)T ⊗ I(C)) + (I(D)T ⊗R(C)))P (n, n) = K4

V ec(R(M)) = M1 and V ec(I(M)) = M2

.

So, [
K1 K2

K3 K4

] [
V ec(R(X))
V ec(I(X))

]
=

[
M1

M2

]
,

which is a real matrix equation which can easily be solved. If the equation system is like

A1XB1 + C1X
∗D1 = M1

A2XB2 + C2X
∗D2 = M2

,

then we have 

(R(Bi)
T ⊗R(Ai)) + (I(Bi)

T ⊗ I(Ai)) = K1i

(R(Bi)
T ⊗ I(Ai)) + (I(Bi)

T ⊗R(Ai)) = K2i

((R(Di)
T ⊗R(Ci)) + (I(Di)

T ⊗ I(Ci)))P (n, n) = K3i

((R(Di)
T ⊗ I(Ci)) + (I(Di)

T ⊗R(Ci)))P (n, n) = K4i

V ec(R(Mi)) = M1i, V ec(I(Mi)) = M2i

So, 
K11 K21

K12 K22

K31 K41

K32 K42

[
V ec(R(X))
V ec(I(X))

]
=


M11

M12

M21

M22

 .

Considering the mentioned process, we can rewrite the equation AX1B + CX2D = M
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as follows: {
R(AX1) = R(A)R(X1)− I(A)I(X1)

I(AX1) = R(A)I(X1) + I(A)R(X1)
,

R(AX1B) = R(AX1)R(B)− I(AX1)I(B)

= R(A)R(X1)R(B)− I(A)I(X1)R(B)−R(A)I(X1)I(B)− I(A)R(X1)I(B),

I(AX1B) = R(A)R(X1)I(B)− I(A)I(X1)I(B) +R(A)I(X1)R(B) + I(A)R(X1)R(B),

and similarly,

R(CX2D) = R(C)R(X2)R(D)− I(C)I(X2)R(D)−R(C)I(X2)I(D)− I(C)R(X2)I(D),

I(CX2D) = R(C)R(X2)I(D)− I(C)I(X2)I(D) +R(C)I(X2)R(D) + I(C)R(X2)R(D).

Therefore, we have[
(R(B)T ⊗R(A))− (I(B)T ⊗ I(A)) −(R(B)T ⊗ I(A))− (I(B)T ⊗R(A))
(I(B)T ⊗R(A)) + (R(B)T ⊗ I(A)) −(I(B)T ⊗ I(A)) + (R(B)T ⊗R(A))

] [
V ec(R(X1))
V ec(I(X1))

]
+[

(R(D)T ⊗R(C))− (I(D)T ⊗ I(C)) −(R(D)T ⊗ I(C))− (I(D)T ⊗R(C))
(I(D)T ⊗R(C)) + (R(D)T ⊗ I(C)) −(I(D)T ⊗ I(C)) + (R(D)T ⊗R(C))

] [
V ec(R(X2))
V ec(I(X2))

]
=

[
V ec(R(M))
V ec(I(M))

]
.

So, we can also rewrite the coupled complex equation system{
A1X1B1 + C1X2D1 = F1

A2X1B2 + C2X2D2 = F2

as a real equation system. ■

3. Numerical examples

In the previous part, we turned the coupled equation systems with complex coefficients
matrix and unknowns into real equation systems, based on the multiplication properties
of complex numbers. In this part, we will solve some numerical examples to check the
efficiency of this method.

Example 3.1 Solve system AXB + CX∗D = M , if

A =

[
1 + i 2− i
3 + 2i 4 + 5i

]
, B =

[
5 + 6i 1− 2i
4 + 3i 5− 2i

]
, C =

[
−1− i 2− 3i
4− 3i 5 + 2i

]
,
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D =

[
−5 + 2i −1− i
7− 8i 1 + 9i

]
and M =

[
−309 + 225i 298− 174i
−628− 176i 474 + 430i

]
.

The solution to this system using the mentioned method is

X =

[
4 + 2i 2− 2i
1 + 3i 3 + 7i

]
and X∗ =

[
4− 2i 1− 3i
2 + 2i 3− 7i

]
.

Example 3.2 Solve the system{
A1XB1 + C1X

∗D1 = M1,

A2XB2 + C2X
∗D2 = M2,

if A1, B1, C1, D1 are respectively A,B,C,D in the previous example and

A2 =

[
2 + i 4− i
5 6− 4i

]
, B2 =

[
7 + 3i 2− 5i
−9 i

]
, C2 =

[
2− i 1 + 3i
10 + i −2− i

]
,

D2 =

[
2− i 2 + 5i
−7i 1 + i

]
, M1 =

[
−25i 279 + 102i

472 + 596i 59 + 602i

]
, M2 =

[
60− 445i 49 + 198i
65− 466i 253 + 139i

]
.

The solution to this system is

X =

[
5 + 3i 8 + 4i
2− 7i 4 + 2i

]
and X∗ =

[
5− 3i 2 + 7i
8− 4i 4− 2i

]
.

Example 3.3 Solve the system{
A1X1B1 + C1X2D1 = M1,

A2X1B2 + C2X2D2 = M2,

in which A1, B1, C1, D1, A2, B2, C2, D2 are defined matrices in the previous example and

M1 =

[
−301 + 160i 440− 15i
−401− 612i 519 + 183i

]
and M2 =

[
−166− 239i −138 + 135i
−589− 764i 820 + 205i

]
.

The solution to this system is

X1 =

[
−2i 1 + 5i

−3− 2i 2− i

]
and X2 =

[
3 7− 6i

8 + 2i 2− 3i

]
.

Example 3.4 Solve the system AX1B + CX2D = M , if

A =

−2− 2i 2 + 2i 1− i
−2− i 0 1 + 3i
5− 10i 5 + 3i 2− i

 , B =

4− 2i 1 + 2i 0
2− 5i 4i 2− 3i
3 + 5i 6i 1 + 3i

 ,
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C =

−1 + i −1 + 4i 5i
i 3 + 4i 2 + i

2 + 3i 3i 5

 , D =

 10i 3 + 2i −1− 5i
11− 6i 10 + i 12− 3i
2− 2i 2− i 3i



and M =

292 + 232i 287 + 471i 359− 86i
542 + 291i 274 + 288i 146 + 74i
405− 218i 121 + 305i −50− 352i

 .

The solution to this system is

X =

 2 + i 3i 2 + 2i
0 5− i 1 + 7i

4− 2i 3 + i 5− 4i

 .

4. Conclusion

This paper proposed a practical new method for obtaining the solution to general
coupled matrix equations. This method is practical since the results are obtained by
solving a real equation system. Furthermore, the new problem can be solved easily with
the help of several algorithms.
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