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Abstract. We introduce and study a new class of spaces, namely S—topological vector spaces
via S—open sets. The relationships among these spaces with some existing spaces are inves-
tigated. In addition, some important and useful characterizations of f—topological vector
spaces are provided.
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1. Introduction

It is well-known that the advent of topological vector spaces brought a revolution in the
study of various branches of functional analysis. Because of nice properties and usefulness,
these spaces remain a fundamental notion in fixed point theory, operator theory and
various other advanced branches of mathematics. In 2015, Khan et al. [4] introduced and
studied the s-topological vector spaces which are a generalization of topological vector
spaces. In 2016, Khan and Igbal [5] introduced the irresolute topological vector spaces
which are a particular brand of s-topological vector spaces but they are independent of
topological vector spaces. Ibrahim [3] initiated the study of a—topological vector spaces
which are contained in the class of s-topological vector spaces. In this paper, we introduce
a new class of spaces, namely, S—topological vector spaces. Some general properties
of S—topological vector spaces along with their relationships with certain other types
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of spaces are investigated. Furthermore, a broad characterizations of these spaces are
presented.

2. Preliminaries

Let X be a topological space. For a subset A of X, the closure of A and the interior of
A are denoted by CI(A) and Int(A) respectively. We represent the set of real numbers
by R and the set of complex numbers by C. The notations € and § denote negligibly
small positive real numbers.

Definition 2.1 [1, 6, 7] A subset A of a topological space X is called
(a) semi-open if A C Cl(Int(A)),
(b) a—open if A C Int(Cl(Int(A))),
(c) B—open if A C Cl(Int(CI(A))).

Clearly, every open set is a—open and every a—open set is semi-open and every semi-
M
open set is f—open but, in general, the converse need not be true.

Exzample 2.2 Let X = R with the usual topology. Consider A = [1,2], B = (1,2) N Q,
where Q denotes the set of rational numbers. Then A is semi-open but it is neither open
nor c—open. Also, notice that B is S—open which is not semi-open.

The complement of a S—open set is said to be S—closed set. The intersection of all
B—closed sets containing a subset A C X is called the S—closure of A and is denoted
by BCI(A). It is known that a subset A of X is S—closed if and only if A = SCI(A). A
point x € BCI(A) if and only if ANU # () for each S—open set U in X containing z. The
B—interior of a subset A C X is the union of all S—open sets in X contained in A and
is denoted by BInt(A). A point z of X is called S—interior point of a subset A if there
exists a S—open set U in X containing x such that x € U C A. The set of all f—interior
points of A is equal to fInt(A). The family of all S—open (resp. S—closed) sets in X
will be denoted by SO(X) (resp. BC(X)).

Also we recall some definitions that will be used in the sequel.

Definition 2.3 Let L be a vector space over the field F' (R or C). Let T be a topology
on L such that

(1) For each x,y € L and each open neighborhood W of = 4+ y in L, there exist open
neighborhoods U and V of z and y respectively, in L such that U +V C W,

(2) For each A € F, x € L and each open neighborhood W of Az in L, there exist open
neighborhoods U of A in F' and V of x in L such that UV C W.
Then the pair (L( F)» T)) is called topological vector space.

Definition 2.4 [4] Let L be a vector space over the field F' (R or C) and let T be a
topology on L such that

(1) For each x,y € L and each open set W in L containing z +y, there exist semi-open
sets U and V in L containing x and y respectively such that U + V C W,

(2) For each A € F, x € L and each open set W in L containing Az, there exist
semi-open sets U in F' containing A and V in L containing x such that U.V C W.
Then the pair (L( F)» T) is called s-topological vector space.

Definition 2.5 [5] Let L be a vector space over the field F' (R or C) and T be a topology
on L such that

(1) For each x,y € L and each semi-open set W in L containing = + y, there exist
semi-open sets U and V in L containing = and y respectively such that U +V C W,
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(2) For each A € F, x € L and each semi-open set W in L containing Az, there exist
semi-open sets U in F' containing A and V in L containing = such that U.V C W.
Then the pair (L( F),T) is called irresolute topological vector space.

Definition 2.6 [3] Let L be a vector space over the field F' (R or C) and T be a topology
on L such that

(1) For each x,y € L and each a—open set W in L containing z+y, there exist a«—open
sets U and V in L containing x and y respectively such that U +V C W,

(2) For each A\ € F, x € L and each a—open set W in L containing Ax, there exist
a—open sets U in F' containing A and V in L containing x such that U.V C W.
Then the pair (L), T) is called a—topological vector space.

3. [B—topological vector spaces

The purpose of this section is to define and investigate some basic properties of
B—topological vector spaces.

Definition 3.1 Let E be a vector space over the field K, where K = R or C with
standard topology. Let 7 be a topology on E such that the following conditions are
satisfied:

(1) For each z,y € E and each open set W C E containing = + y, there exist f—open
sets U and V in E containing x and y respectively, such that U +V C W,

(2) For each A € K, © € E and each open set W C E containing Az, there exist
B—open sets U in K containing A and V in F containing = such that U.V C W.
Then the pair (Ef,7) is called S—topological vector space (written in short, STVS).

First of all we present some examples of S—topological vector spaces and then these
examples will be used in the sequel for investigating the relationships of S—topological
vector spaces with certain other types of spaces.

Example 3.2 Consider the field K = R with the standard topology. Let £ = R be
the real vector space, is also endowed with the standard topology. Then (Ef,T) is
B—topological vector space.

After tasting this example, an immediate question that comes into mind is that is there
any other topology on R which turn it out a S—topological vector space. The answer is
in affirmative. In fact, there are topologies on R other than the standard topology which
turn it out a S—topological vector space. Let us present some examples of them.

Example 3.3 Consider F' = R with the standard topology. Let £ = R be the vector
space of real numbers over the field F, is endowed with the topology 7 = {0, D, R}, where
D denotes the set of irrational numbers. Then

(1) For each z,y € E, we have two cases:

Case (I) If x 4+ y is rational, then the only open neighborhood of x 4+ y in F is R. So,
there is nothing to prove.

Case (IT) If = + y is irrational, then for open neighborhood W = D of z +y in E. We
have following sub-cases:

Sub-case (i) If both = and y are irrational, we can choose f—open sets U = {z} and
V ={y} in E such that U+ V C W.

Sub-case (ii) If one of x or y is rational, say y. Then, for the selection of f—open sets
U={z}and V ={p,y} in E, where p € D such that p+z € D, we have U + V C W.

This verifies the first condition of S—topological vector spaces.
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(2) Let A € R and x € E. If Az is rational, then it is straightforward to prove. Suppose
Az is irrational. Let W = D be an open neighborhood of Axz. The following cases arise:

Case (I) If both A and z are irrational, then, choose S—open sets U = [(A — €, A+ ¢€) N
QJU{A} in R containing A and V = {z} in E containing x, we see that U.V C W.

Case (IT) If A is rational and x is irrational, then for the selection of S—open sets
U= AN—¢AX+¢€¢)NQ in R containing A and V = {z} in E containing x, we have
UV CWw.

Case (IIT) Finally, suppose A is irrational and z is rational. Choose S—open sets U =
A—e,A+e)ND of R and V = {z,p} of E such that p € D with pgq is irrational for each
q € U, we find that U.V C W.

This proves that (Eg),7) is f—topological vector space.

Example 3.4 Let E = R be the vector space of real numbers over the field K, where
K = R with standard topology and the topology 7 on F be generated by the base
B = {(a,b),c,d) : a,b,c and d are real numbers with 0 < ¢ < d}. We show that (E(x,T)
is B-topological vector space. For which we have to verify the following two conditions:

(1) Let x,y € L. Then, for open neighborhood W = [z +y,z +y + €) (resp. (z +y —
e, x+y+e)) of x4y in E, we can opt for f—open sets U = [x,x+0) (resp. (z —J,z+9))
and V = [y,y + ) (resp. (y — 4,y + d)) of E containing = and y respectively, such that
U+V CW for each § < 5.

(2) Let x € F and A\ € K. Consider open neighborhood W = [Az, \x + €) (resp.
(Ax — €, Az + €)) of Az in E. We have following cases:

Case (1). If A > 0 and = > 0, then clearly Ax > 0. We can choose S—open sets
U = [X\, A+0) (resp. (A—d,A\+0)) in K containing A and V' = [z, z+0) (resp. (x—3, z+0))
in E containing z such that U.V C W for each § < 55-5.

Case (IT). If A < 0 and x < 0, then Az > 0. We can choose S—open sets U = (A — 6, \]
(resp. (A=, A+9)) in K and V = (x — 0, z] (resp. (x—d,x+0)) in E such that U.V C W
for sufficiently appropriate 6 < 177 =-

Case (IIT). If A =0 and = > 0 (resp. A > 0 and & = 0). Then Az = 0. Consider any
open neighborhood W = (—¢,¢) of 0 in E. We can opt for S—open sets U = (=9, 9)
(resp. U = (A — 9, A+ 0)) of R containing A and V = (z — d,x + 0) (resp. V = (=4,9)) of
E containing z such that U.V C W for each § < %5 (resp. 0 < y47).

Case (IV). If A = 0 and = < 0 (resp. A < 0 and = = 0). Consider any open neighborhood
W = (—¢,€) of 0 in E. Then, for the selection of f—open sets U = (—4,0) (resp. U = (A—
J,A\+0))inRand V = (x—3d,z+9) (resp. V = (—6,0)) in E, we have UV C W = (—¢,¢€)
for each 6 < %= (resp. (0 < 155)).

Case (V). If A = 0 and = = 0. Consider any open neighborhood W = (—¢,¢€) of 0 in
E, we can find f—open sets U = (—6,0) of R and V = (-4, ) of E, such that U.V C W
for each ¢ < /€.

Case (VI). If A <0, z > 0 (resp. A > 0, < 0). In this case, there is only one type of
open neighborhood W = (Ax—e, Az+¢) of Az in E. Choose f—open sets U = (A—0J, A\+9)
inRand V = (z—4,2+6) in E, we have U.V C W for each § < =577 (resp. § < 5—517)-
Hence, (E(g), T) is f—topological vector space.

The definitions clarify that every s-topological vector space is S—topological vector
space but the converse is not true because, in general, Example 3.3 is not s-topological
vector space.

From here on, E denotes a f—topological vector space (E( K)> 7) unless stated explicitly
and by a scalar we mean an element of the associated field K of a f—topological vector
space (E( i), 7). Now, we discuss some basic properties of S—topological vector spaces.
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Theorem 3.5 Let A be any open subset of a S—topological vector space E. Then the
following are true:

(i) x + A € BO(FE) for each x € E,
(ii) AMA € BO(E) for each non-zero scalar \.

Proof. (i) Let y € z + A. Then there exist S—open sets U,V € SO(F) containing —z
and y, respectively, such that

U+VCA= -2+ VCU+VCA=V Cax+A=yc Intg(x+ A).

Hence, © + A = Intg(x + A). This proves that x + A is f—open set in E.
(ii) Let € AA. By the definition of S—topological vector spaces, there exist f—open
sets U in K containing % and V in E containing x such that

UVCA =>zeV CA =zeIntz(AA) = A = Intg(\A).
Thus, A € BO(E). m

Corollary 3.6 For any open subset A of a f—topological vector space F, the following
are true:

(i) x + A C Cl(Int(Cl(z + A))) for each x € E,

(ii) AA C Cl(Int(CIl(AA))) for each non-zero scalar A.

Theorem 3.7 Let F' be any closed subset of a S—topological vector space E. Then the
following are true:

(i) x + F € BC(FE) for each x € E,

(ii) \F € BC(E) for each non-zero scalar A.

Proof. (i) Suppose that y € SCl(x+ F). Consider z = —z+y and let W be any open set
in E containing z. Then there exist f—open sets U and V in F such that —x € U, y € V
and U4V CW. Since y € BCl(x + F), (x+ F)NV # . So, there isa € (x+ F)NV.
Now,

—x+ac€ FNU+V)CFNW =FNW#0) =2e€Cl(F)=F =yecx+F.
Hence, z + F = pCI(z + F). This proves that x + F' is f—closed set in E.

(i) Assume that € BCI(AF) and let W be any open neighborhood of y = 1z in E.

Since E is STVS, there exist f—open sets U in K containing % and V in F containing
x such that U.V C W. By hypothesis, (A\F) NV # (. Therefore, there is a € (AF)NV.
Now,

$a € FNUV)CFNW =FNW #0 =yeCl(F)=F =z €\F
and thereby, A\F' = BCI(A\F). Hence, \F' € fC(E). [ |

Corollary 3.8 For any closed subset F' of a S—topological vector space E, the following
are true:

(i) Int(Cl(Int(x + F))) C x + F for each x € E,

(ii) Int(Cl(Int(AF))) C AF for each non-zero scalar .

Theorem 3.9 Let A and B be any subsets of a S—topological vector space E. Then
BCI(A) + BCl(B) C Cl(A+ B).

Proof. Let z € BCI(A), y € BCI(B) and let W be any open neighborhood of 4y in E.
Then, by the definition of S—topological vector spaces, there exist f—open sets U,V €
BO(FE) such that x € U, y € V and U+ V C W. By assumption, there are a € ANU and
be BNV. Consequently, a+b € (A+B)N({U+V)C(A+B)NW = (A+B)NW #0
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and as a result, x + y € Cl(A + B). Therefore, SCI(A) + BCI(B) C Cl(A+ B). [ |

4. Characterizations

In this section, we obtain some useful characterizations of 5—topological vector spaces.

Theorem 4.1 For a subset A of a S—topological vector space E, the following are valid:
(a) BCl(x + A) Cz+ CI(A) for each = € E,
(b) 2+ BCI(A) C Cl(x + A) for each x € E,
(¢) x + Int(A) C BInt(x + A) for each z € E,
(d) Int(z + A) C z + BInt(A) for each x € E.

Proof. (a) Let y € BCIl(x + A) and consider z = —z + y in E. Let W be any open
neighborhood of z. Then we get S—open sets U containing —x and V' containing y in E
such that U + V C W. Whence we find that (z + A) NV # () = there is a € E such
thata € (x+A)NV.Now, —2+a € AN(U+V)CANW = ANW # ) and hence,
z € Cl(A); that is, y €  + Cl(A). Therefore, SCl(x + A) C z + CI(A).

(b) Let z € 2+ CI(A). Then z = x+y for some y € SCI(A). Notice that for any open
neighborhood W of z, there exist f—open sets U,V € BO(FE) such that x € U, y € V
and U+ V CW. Since y € SCI(A), ANV #( = thereisa € ANV. Now,

ztac(z+ANU+V)C(z+ANW = @+A)NW#D =z Cllz+ A).

Hence, the assertion follows.

(c) Let y € x + Int(A). Then U+ V C Int(A) where U,V € BO(E) such that —x € U
and y € V. Whence we have —x +V CU+V CA =V Cxz+ A. Since V is f—open,
y € BInt(x + A) and consequently, x + Int(A) C SInt(x + A).

(d) Let y € Int(x + A). Then y = x + a for some a € A. Since E is STVS, there exist
UV e BO(FE)such that t €U, a € Vand U+ V C Int(x+ A). Nowax+V CU+V C
Int(x + A) C x + A implies that y € x + SInt(A). Therefore, the assertion follows. R

The following is the analog of Theorem 4.1.

Theorem 4.2 For a subset A of a f—topological vector space E, the following are valid:
(a) BCU(A.A) C A.CI(A) for each non-zero scalar A,
(b) A\.BCI(A) C CI(A.A) for each non-zero scalar A,
(¢) A\Int(A) C BInt(\.A) for each non-zero scalar A\,
(d) Int(X.A) C A\.BInt(A) for each non-zero scalar .

Theorem 4.3 Let A be any subset of a S—topological vector space E. Then
(a) Int(Cl(Int(x + A))) C x4 CI(A) for each z € E,
(b) z + Int(Cl(Int(A))) C Cl(x + A) for each x € E,
(c) x4+ Int(A) C Cl(Int(Cl(z + A))) for each x € E,
(d) Int(x + A) C x4+ Cl(Int(CI(A))) for each x € E.

Proof. (a) Since CI(A) is closed, by Theorem 3.7, z + CI(A) is f—closed. Consequently,
Int(Cl(Int(x + A))) Cxz+ CI(A).

(b) In view of Theorem 3.7, —z + Cl(z + A) is f—closed and hence Int(Cl(Int(A))) C
—x + Cl(x + A). Thereby the assertion follows.

(¢) In consequence of Theorem 3.5, x + Int(A) is f—open. Therefore, x + Int(A) C
Cl(Int(Cl(x + Int(A)))) C Cl(Int(Cl(x + A))). Hence the assertion follows.

(d) Obvious. [ |

The analog of Theorem 4.3 is the following:
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Theorem 4.4 Let A be any subset of a S—topological vector space E. Then
(a) Int(Cl(Int(AA))) C ACI(A) for each non-zero scalar A,
(b) AMInt(Cl(Int(A))) C Cl(NA) for each non-zero scalar A,
(c) AInt(A) C Cl(Int(Cl(NA))) for each non-zero scalar A,
(d) Int(AA) C ACU(Int(Cl(A))) for each non-zero scalar \.

Theorem 4.5 For any open set U in a f—topological vector space E, x + Int(CIl(U)) C
Cl(z +U) for each z € E.

Proof. On account of Theorem 4.3(b), x + Int(Cl(Int(U))) C Cl(x + U). Since U is
open, we have z + Int(Cl(U)) C Cl(x + U). This completes the proof. [ |

Theorem 4.6 For any closed set F' in a S—topological vector space E, Int(z + F) C
x 4+ Cl(Int(F)) for each z € E.

Proof. In view of Theorem 4.3(d), Int(x+ F) C « + Cl(Int(Cl(F))) = z + Cl(Int(F))
because F' is closed. Hence the proof is finished. [ |

Definition 4.7 [1] A mapping f : X — Y from a topological space X to a topological
space Y is called S—continuous if for each € X and each open set V' in Y containing
f(z), there exists a f—open set U in X containing x such that f(U) C V.

Theorem 4.8 For a S—topological vector space F, the following are true:

(a) the translation mapping f, : F — E defined by f,.(y) = x +y for all y € E is
[B—continuous,

(b) the mapping f\ : E — E defined by f\(x) = Az for all z € E is f—continuous,
where A is a fixed scalar.

Proof. (a) Let y € E and V be an open set in E containing f,(y) = x +y. Then by the
definition of S—topological vector spaces, we get U, U’ € BO(FE) such that x € U, y € U’
and U + U’ C V and consequently, f,(U’) C V. This proves that f, is 8—continuous.
(b) Let € E be an arbitrary. Let W be any open set in E containing A\z. Then there
exist S—open sets U in K containing A and V in E containing x such that U.V C W.
Now A\V CU.V CW = fy\(x) C W and hence f) is f—continuous. [ ]

Theorem 4.9 Let E; be a f—topological vector space, E5 be a topological vector space
over the same field K. Let f : F4 — E3 be a linear map such that f is continuous at 0.
Then f is f—continuous everywhere.

Proof. Let z be any non-zero element of Fy and V be an open set in Fy containing
f(z). Since translation of an open set in topological vector spaces is open, V — f(z) is
open set in F» containing 0. Since f is continuous at 0, there exists an open set U in
E; containing 0 such that f(U) C V — f(z). Furthermore, linearity of f implies that
f(x+U) CV. By Theorem 3.5, x + U is f—open and hence f is f—continuous at x. By
hypothesis, f is f—continuous at 0. This reflects that f is f—continuous. [ |

Corollary 4.10 Let F be a f—topological vector space over the field K. Let f : £ — K
be a linear functional which is continuous at 0. Then the set F' = {z € E : f(z) = 0} is
B—closed.

Definition 4.11 [2] A topological space X is called f—compact if every cover of X by
[S—open sets of X has a finite subcover. A subset A of X is said to be f—compact relative
to X if every cover of A by S—open sets of X has a finite subcover.

Theorem 4.12 Let A be any S—compact set in a S—topological vector space E. Then
x + A is compact for each x € FE.
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Proof. Let U = {U, : a € A} be an open cover of 2 + A. Then A C Upep(—2x + Uy).
By hypothesis and Theorem 3.5, A C Uqep,(—x + U,) for some finite A9 C A. Whence
we find that x + A C Ugaep,Uy. This shows that = + A is compact. Hence, the proof is
complete. |

Theorem 4.13 Let A be any S—compact set in a S—topological vector space E. Then
AA is compact for each scalar \.

Proof. If A = 0 we are nothing to prove. Assume that A is non-zero. Let U = {U, :
a € A} be an open cover of AA. Then A C UaeA(%Ua)- In view of Theorem 3.1, %Ua
is B—open and consequently, by hypothesis, A C U,¢ AO(%UQ) for some finite Ay C A.
Whence we find that AA C Uyep, U, This proves that AA is compact. [ |
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