Journal of Linear and Topological Algebra Vol. 09, No. 01, 2020, 1-15

Approximate solutions of homomorphisms and derivations of the generalized Cauchy-Jensen functional equation in C^* -ternary algebras

P. Kaskasem^{a,*}, C. Klin-eam^{a,b}

^aDepartment of Mathematics, Faculty of Science Naresuan University, Phitsanulok, 65000, Thailand. ^bResearch center for Academic Excellence in Mathematics, Naresuan University, Phitsanulok, Thailand.

Received 22 May 2019; Revised 27 October 2019; Accepted 29 October 2019.

Communicated by Themistocles M. Rassias

Abstract. In this paper, we prove Hyers-Ulam-Rassias stability of C^* -ternary algebra homomorphism for the following generalized Cauchy-Jensen equation

$$\eta \mu f\left(\frac{x+y}{\eta}+z\right) = f(\mu x) + f(\mu y) + \eta f(\mu z)$$

for all $\mu \in \mathbb{S} := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and for any fixed positive integer $\eta \ge 2$ on C^* -ternary algebras by using fixed poind alternative theorem. Moreover, we investigate Hyers-Ulam-Rassias stability of generalized C^* -ternary derivation for such function on C^* -algebras by the same method.

© 2020 IAUCTB. All rights reserved.

Keywords: Cauchy-Jensen functional equations, Hyers-Ulam-Rassias stability, C^* -ternary algebras, alternative fixed point theorem.

2010 AMS Subject Classification: 39B82, 39B52, 47H10.

1. Introduction and Preliminaries

The initial concept of the stability theory of functional equations was introduced by Pólya and Szegő [24] which is stated as follows: For every real sequence $\{x_n\}_{n\in\mathbb{N}}$ with

 $\sup_{m,n\in\mathbb{N}}|x_{m+n}-x_m-x_n|\leqslant 1$

 * Corresponding author.

Print ISSN: 2252-0201 Online ISSN: 2345-5934 © 2020 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: prondanaik@nu.ac.th (P. Kaskasem); chakkridk@nu.ac.th (C. Klin-eam).

there is a real number x such that $\sup_{n \in \mathbb{N}} |x_n - nx| \leq 1$, where $x = \lim_{n \to \infty} \frac{x_n}{n}$. The motivation for studying of stability theory of functional equations was initiated by Ulam. In 1940, Ulam [27] proposed some unsolved problems that one of them is stability problem of functional equation concerning the stability of group homomorphisms as follows

"Let (G_1, \cdot) be a group and (G_2, \star, d) be a metric group with the metric $d(\cdot, \cdot)$. Given a real number $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a mapping $h : G_1 \to G_2$ satisfies the inequality $d(h(x \cdot y), h(x) \star h(y)) < \delta$ for all $x, y, \in G_1$, then there exists a homomorphism $g : G_1 \to G_2$ with $d(h(x), g(x)) < \varepsilon$ for all $x \in G_1$?"

These questions form is the object of the stability theory. If the answers is affirmative, we say that the functional equation for homomorphism is stable. In 1941, Hyers [11] provided a first affirmative partial answer to Ulam's problem for the case of approximately additive mapping in which X and Y are Banach spaces. This result is stated as follows:

Theorem 1.1 [11] Let X and Y be Banach spaces and let $f: X \to Y$ satisfy

$$||f(x+y) - f(x) - f(y)||_Y \le \varepsilon$$

for all $x, y \in X$ and for some $\varepsilon > 0$. Then, there exists a unique additive mapping $g: X \to Y$ such that $||f(x) - g(x)||_Y \leq \varepsilon$ for all $x \in X$ where $g(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$.

The method, which generates the additive mapping g is called a direct method. This method is the most important for studying the stability of various functional equations.

In 1978, Rassias [26] provided a generalization of Hyers' theorem for linear mapping by considering an unbounded Cauchy difference f(x + y) - f(x) - f(y) as follows:

Theorem 1.2 [26] Let X and Y be Banach spaces. Let $f: X \to Y$ satisfy the inequality

$$|f(x+y) - f(x) - f(y)||_Y \leq \varepsilon (||x||_X^p + ||y||_X^p)$$

for all $x, y \in X$ where $\varepsilon > 0$ and $0 \leq p < 1$. Then there exists a unique additive mapping $g: X \to Y$ defined by $g(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}$ such that $\|f(x) - g(x)\|_Y \leq \frac{2\varepsilon}{2-2^p} \|x\|_X^p$ for all $x \in X$. Moreover, if f(tx) is continuous in t for each fixed $x \in X$, then g is linear.

Next, a generalization of Rassias' results was developed by Găvruţa [23] in 1994 by replacing the unbounded Cauchy difference by a general control function.

Theorem 1.3 [23] Let G be commutative group and X be Banach space. Let $\phi: G^2 \to [0,\infty)$ be a function satisfying $\Phi(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^{k+1}} \phi(2^k x, 2^k y) < \infty$ for all $x, y \in G$. If a mapping $f: G \to X$ satisfies the inequality $||f(x+y) - f(x) - f(y)|| \leq \phi(x,y)$ for all $x, y \in G$, then there exists a unique additive function such that $||f(x) - g(x)|| \leq \Phi(x,x)$ for all $x \in G$.

For more information on that subject and further references we refer to a survey paper [5] and to a recent monograph on Ulam stability [6].

In 2006, Baak [3] investigated the Cauchy-Rassis stability of the following Cauchy-Jensen functional equations:

$$f\left(\frac{x+y}{2}+z\right) + f\left(\frac{x-y}{2}+z\right) = f(x) + 2f(z),\tag{1}$$

$$f\left(\frac{x+y}{2}+z\right) - f\left(\frac{x-y}{2}+z\right) = f(y),\tag{2}$$

$$2f\left(\frac{x+y}{2}+z\right) = f(x) + f(y) + 2f(z) \tag{3}$$

3

for all $x, y, z \in X$, in Banach spaces by using direct method. Later in the same year, Park [21] proved the Hyers-Ulam-Rassias stability of homomorphisms and derivation in C^* -ternary algebras for functional equations (1), (2) and (3) via direct method.

The fixed point method was applied to studying the stability of functional equations by Baker in 1991 [4] by using the Banach contraction principle. Next, Radu [25] proved a stability of functional equation by the alternative of fixed point, which was introduced by Diaz and Margolis [8]. The fixed point method has provided a lot of influence in the development of stability.

In 2008, Park and An [22] proved the Hyers-Ulam-Rassias stability of C^* -algebra homomorphisms and generalized derivations on C^* -algebras by using alternative of fixed point theorem for the Cauchy-Jensen functional equation $2f\left(\frac{x+y}{2}+z\right) = f(x) + f(y) + 2f(z)$, which was introduced and investigated by Baak [3]. After that Gao et al. [10] introduced generalized Cauchy-Jensen equation. Let G be an n-divisible abelian group where $n \in \mathbb{N}$ and X be a normed space with norm $\|\cdot\|_X$. For a mapping $f: G \to X$, the equation

$$nf\left(\frac{x+y}{n}+z\right) = f(x) + f(y) + nf(z) \tag{4}$$

for all $x, y, z \in G$ and $n \in \mathbb{N} \setminus \{0\}$ is said to be a generalized Cauchy-Jensen equation, shortly GCJE. In particular, when n = 2, it is called a Cauchy-Jensen equation. Moreover, they gave the following useful properties as follow:

Proposition 1.4 [10] Let G be an n-divisible abelian group for some positive integer nand X be a normed space with norm $\|\cdot\|_X$. Then a mapping $f: G \to X$ is additive if and only if it satisfies $||f(x) + f(y) + nf(z)||_X \leq ||nf(\frac{x+y}{n}+z)||_X$ for all $x, y, z \in G$.

The following corollary is an immediate consequence of Proposition 1.4.

Corollary 1.5 [10] For a mapping $f: G \to X$, the following statements are equivalent.

- (a) f is additive.
- (b) $f(x) + f(y) + nf(z) = nf(\frac{x+y}{n} + z)$, for all $x, y, z \in G$. (c) $||f(x) + f(y) + nf(z)||_X \leq ||nf(\frac{x+y}{n} + z)||_X$, for all $x, y, z \in G$.

Clearly, a vector space is n-divisible abelian group, so Corollary 1.5 is right when Gis a vector space. We refer stability results of the functional equation (4) to [9, 13-16]. Next, we recall the concept of C^* -ternary algebras.

A C^* -ternary algebras is a complex Banach space \mathcal{A} , equipped with a ternary product $(x, y, z) \mapsto [x, y, z]$ of \mathcal{A}^3 into \mathcal{A} , which is \mathbb{C} -linear in the outer variables and conjugate \mathbb{C} -linear in the middle variable:

- (i) $[\lambda x + y, v, w] = \lambda [x, v, w] + [y, v, w],$
- (ii) $[v, w, \lambda x + y] = \lambda [v, w, x] + [v, w, y],$ (iii) $[v, \lambda x + y, w] = \overline{\lambda} [v, x, w] + [v, y, w]$

and associative in the sense that [[v, w, x], y, z] = [v, [y, x, w], z] = [v, w, [x, y, z]] and, satisfies $||[x, y, z]|| \leq ||x|| ||y|| ||z||$ and $||[x, x, x]|| = ||x||^3$ for all $v, w, x, y, z \in A$.

If a C^{*}-ternary algebras $(\mathcal{A}, [\cdot, \cdot, \cdot])$ has an identity, i.e. an element $e \in \mathcal{A}$ such that x = [x, e, e] = [e, e, x] for all $x \in \mathcal{A}$, then it is routine to verify that \mathcal{A} , endowed with $x \circ y := [x, e, y]$ and $x^* := [e, x, e]$, is unital C^{*}-algebra. Conversely, if (\mathcal{A}, \circ) is a unital C^* -algebra, then $[x, y, z] := x \circ y^* \circ z$ makes \mathcal{A} into C^* -ternary algebra.

A C-linear mapping $H : \mathcal{A} \to \mathcal{B}$ is called a C^{*}-ternary algebra homomorphism if H([x, y, z]) = [H(x), H(y), H(z)] for all $x, y, z \in \mathcal{A}$. A \mathbb{C} -linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is

called a C*-ternary derivation if $\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]$ for all $x, y, z \in \mathcal{A}$.

A C^* -ternary algebras have many applications in fractional quantum Hall effect, the nonstandard statistics, hypothetical, supersymmetric theory, and Yang-Baxter equation (see [1, 17, 28]).

Throughout this paper, assume that \mathcal{A} is a unital C^* -ternary algebra with norm $\|\cdot\|_{\mathcal{A}}$ and unit e, and that \mathcal{B} is a C^* -ternary algebra with norm $\|\cdot\|_{\mathcal{B}}$ and unit e'. The purpose of the present paper is to investigate the stability of homomorphisms and derivations of the functional equation (4) in C^* -ternary algebras by using the alternative fixed point theorem. Next, we recall a fundamental results in fixed point theory. The following is the definition of generalized metric space which was introduced by Luxemburg in 1958 [19].

Definition 1.6 [19] Let X be a set. A function $d : X \times X \to [0, \infty]$ is called a generalized metric on X if d satisfies the following conditions

- (1) d(x, y) = 0 if and only if x = y,
- (2) d(x,y) = d(y,x), for all $x, y \in X$,
- (3) $d(x,z) \leq d(x,y) + d(y,z)$, for all $x, y, z \in X$.

The following fixed point theorems will play important roles in proving our main results.

Theorem 1.7 ([7] alternative of fixed point) Let (X, d) be a complete metric space and let $\Lambda : X \to X$ be strictly contractive, that is, $d(\Lambda x, \Lambda y) \leq \gamma d(x, y)$ for all $x, y \in X$ and for some Lipshitz $\gamma < 1$. Then, the following conditions hold.

- (1) The mapping Λ has a unique fixed point $x^* = \Lambda x^*$.
- (2) The fixed point x^* is globally attractive, that is,

$$\lim_{n \to \infty} \Lambda^n x = x^* \tag{5}$$

for any starting point $x \in X$.

(3) One has the following estimation inequalities:

$$d(\Lambda^n x, x^*) \leqslant \gamma^n d(x, x^*), \ d(\Lambda^n x, x^*) \leqslant \frac{1}{1 - \gamma} d(\Lambda^n x, \Lambda^{n+1} x), \ d(x, x^*) \leqslant \frac{1}{1 - \gamma} d(x, \Lambda x)$$

for all nonnegative integers n and all $x \in X$.

Theorem 1.8 [8] Let (X, d) be a complete generalized metric space and $\Lambda : X \to X$ be a strictly contractive mapping with Lipschitz constant $\gamma < 1$. Then for each given element $x \in X$, either

$$d(\Lambda^n x, \Lambda^{n+1} x) = \infty \tag{6}$$

for all nonnegative integers n or there exists a positive integer n_0 such that

- (1) $d(\Lambda^n x, \Lambda^{n+1} x) < \infty$ for all $n \ge n_0$,
- (2) the sequence $\{\Lambda^n x\}$ converges to a fixed point y^* of Λ ,
- (3) y^* is the unique fixed point of Λ in the set $Y = \{y \in X : d(\Lambda^{n_0}x, y) < \infty\},\$
- (4) $d(y, y^*) \leq \left(\frac{1}{1-\gamma}\right) d(y, \Lambda y)$, for all $y \in Y$.

The following theorem shows that each element S of $\{x \in \mathcal{A} : ||x|| = 1\}$ is mean of a finite number of unitary elements of \mathcal{A} .

Theorem 1.9 [12] If the element S of a C^* -algebra \mathcal{A} has the property that $||S||_{\mathcal{A}} < 1 - \frac{2}{n}$ for some integer n greater than 2, then there are n elements S_1, S_2, \ldots, S_n in \mathcal{A} with $||S_i|| = 1$ for all $i = 1, 2, \ldots, n$ such that $S = \frac{1}{n} (S_1 + S_2 + \cdots + S_n)$.

The following lemmas is useful results for proving our main results.

Lemma 1.10 [20] Let $f : \mathcal{A} \to \mathcal{B}$ be an additive mapping such that $f(\mu x) = \mu f(x)$ for all $x \in \mathcal{A}$ and all $\mu \in \mathbb{S} := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$. Then the mapping f is \mathbb{C} -linear.

The following lemma shows that $[\cdot, \cdot, \cdot] : \mathcal{A}^3 \to \mathcal{A}$ is continuous.

Lemma 1.11 [18] Let $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ and $\{z_n\}_{n=1}^{\infty}$ be convergent sequence in \mathcal{A} . Then the sequence $\{[x_n, y_n, z_n]\}$ is convergent in \mathcal{A} .

2. Stability of homomorphisms in C^* -ternary algebras

For a given mapping $f : \mathcal{A} \to \mathcal{B}$, we define

$$E_{\mu}f(x,y,z) := \eta\mu f\left(\frac{x+y}{\eta} + z\right) - f(\mu x) - f(\mu y) - \eta f(\mu z),\tag{7}$$

for all $\mu \in \mathbb{S} := \{\lambda \in \mathbb{C} : |\lambda| = 1\}$ and $x, y, z \in \mathcal{A}$.

We prove the Hyers-Ulam-Rassias stability of C^* -ternary algebra homomorphism for the functional equation $E_{\mu}f(x, y, z) = 0$.

Theorem 2.1 Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping for which there exists a function $\psi : \mathcal{A}^3 \to [0, \infty)$ such that

$$\lim_{j \to \infty} \left(\frac{\eta}{2+\eta}\right)^j \cdot \psi\left(\left(\frac{2+\eta}{\eta}\right)^j x, \left(\frac{2+\eta}{\eta}\right)^j y, \left(\frac{2+\eta}{\eta}\right)^j z\right) = 0, \tag{8}$$

$$||E_{\mu}f(x,y,z)||_{\mathcal{B}} \leqslant \psi(x,y,z), \tag{9}$$

$$\|f[x, y, z] - [f(x), f(y), f(z)]\|_{\mathcal{B}} \leq \psi(x, y, z)$$
(10)

for all $\mu \in \mathbb{S}$ and all $x, y, z \in \mathcal{A}$. If there exists a $\gamma < 1$ such that

$$\psi(x,x,x) \leqslant \frac{2+\eta}{\eta} \gamma \psi\left(\frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x\right)$$
(11)

for all $x \in \mathcal{A}$, then there exists a unique C^* -ternary algebra homomorphism $\Gamma : \mathcal{A} \to \mathcal{B}$ such that

$$\|f(x) - \Gamma(x)\|_{\mathcal{B}} \leq \frac{1}{(1 - \gamma)(2 + \eta)}\psi(x, x, x)$$
(12)

for all $x \in A$.

Proof. Consider the set $X := \{g : A \to B\}$ and introduce the generalized metric on X as follows:

$$d(g,h) = \inf\{M \in (0,\infty) : \|g(x) - h(x)\|_{\mathcal{B}} \leq M\psi(x,x,x), \forall x \in \mathcal{A}\}.$$
(13)

It is easy to show that (X, d) is complete. Now, we consider the linear mapping Λ : $X \to X$ such that $\Lambda g(x) := \frac{\eta}{2+\eta}g\left(\frac{2+\eta}{\eta}x\right)$ for all $x \in \mathcal{A}$. Next, we will show that Λ is a strictly contractive self-mapping of X with the Lipschitz constant γ . For any $g, h \in X$, let d(g, h) = K for some $K \in \mathcal{R}_+$. Then, we have $\|g(x) - h(x)\|_{\mathcal{B}} \leq K\psi(x, x, x)$ for all $x \in \mathcal{A}$, which implies that

$$\left\|g\left(\frac{2+\eta}{\eta}x\right) - h\left(\frac{2+\eta}{\eta}x\right)\right\|_{\mathcal{B}} \leq K\psi\left(\frac{2+\eta}{\eta}x, \frac{2+\eta}{\eta}x, \frac{2+\eta}{\eta}x\right).$$

Thus,

$$\left\|\frac{\eta}{2+\eta}g\left(\frac{2+\eta}{\eta}x\right) - \frac{\eta}{2+\eta}h\left(\frac{2+\eta}{\eta}x\right)\right\|_{\mathcal{B}} \leqslant \frac{\eta}{2+\eta}K\psi\left(\frac{2+\eta}{\eta}x,\frac{2+\eta}{\eta}x,\frac{2+\eta}{\eta}x\right).$$

By (11), we obtain that

$$\|\Lambda g(x) - \Lambda h(x)\|_{\mathcal{B}} \leqslant \frac{\eta}{2+\eta} K \frac{2+\eta}{\eta} \gamma \psi \left(\frac{\eta}{2+\eta} \cdot \frac{2+\eta}{\eta} x, \frac{\eta}{2+\eta} \cdot \frac{2+\eta}{\eta} x, \frac{\eta}{2+\eta} \cdot \frac{2+\eta}{\eta} x\right)$$

which implies that $\|\Lambda g(x) - \Lambda h(x)\|_{\mathcal{B}} \leq K\gamma\psi(x, x, x)$ for all $x \in \mathcal{A}$. Thus, $d(\Lambda g, \Lambda h) \leq K\gamma$. Hence, we obtain $d(\Lambda g, \Lambda h) \leq \gamma d(g, h)$. Letting $\mu = 1$ and x = y = z in (7), we get

$$E_{\mu}f(x,x,x) = \eta f\left(\frac{x+x}{\eta}+x\right) - f(x) - f(x) - \eta f(x)$$
$$= \eta f\left(\frac{2+\eta}{\eta}x\right) - (2+\eta)f(x)$$

for all $x \in \mathcal{A}$. By (9), we have

$$\|E_{\mu}f(x,x,x)\|_{\mathcal{B}} = \left\|\eta f\left(\frac{2+\eta}{\eta}x\right) - (2+\eta)f(x)\right\|_{\mathcal{B}} \leqslant \psi(x,x,x)$$

which implies that

$$\left\|f(x) - \frac{\eta}{(2+\eta)}f\left(\frac{(2+\eta)}{\eta}x\right)\right\|_{\mathcal{B}} \leq \frac{1}{(2+\eta)} \cdot \psi(x, x, x)$$

for all $x \in \mathcal{A}$, that is, $||f(x) - \Lambda f(x)||_{\mathcal{B}} \leq \frac{1}{2+\eta} \cdot \psi(x, x, x)$ for all $x \in \mathcal{A}$. It follows from (13) that we have $d(f, \Lambda f) \leq \frac{1}{2+\eta}$. By Theorem 1.8, there exists a mapping $\Gamma : \mathcal{A} \to \mathcal{B}$ such that the following conditions hold.

(1) Γ is a fixed point of Λ , that is, $\Lambda\Gamma(x) = \Gamma(x)$ for all $x \in \mathcal{A}$. Then we have

$$\Gamma(x) = \Lambda \Gamma(x) = \frac{\eta}{2+\eta} \Gamma\left(\frac{2+\eta}{\eta}x\right) \Rightarrow \Gamma\left(\frac{2+\eta}{\eta}x\right) = \frac{2+\eta}{\eta} \Gamma(x)$$

for all $x \in \mathcal{A}$. The mapping Γ is a unique fixed point of Λ in the set $Y = \{g \in X : d(f,g) < \infty\}$, that is, $d(f,\Gamma) < \infty$. From (13), there exists $C \in (0,\infty)$ satisfying $||f(x) - \Gamma(x)||_{\mathcal{B}} \leq C\psi(x,x,x)$ for all $x \in \mathcal{A}$.

(2) The sequence $\{\Lambda^n f\}$ converges to Γ . This implies that the equality

$$\Gamma(x) = \lim_{n \to \infty} \left(\frac{\eta}{2+\eta}\right)^n f\left(\left(\frac{2+\eta}{\eta}\right)^n x\right)$$
(14)

for all $x \in \mathcal{A}$.

(3) We obtain that $d(f,\Gamma) \leqslant \left(\frac{1}{1-\gamma}\right) d(f,\Lambda f)$, which implies that

P. Kaskasem and C. Klin-eam J. Linear. Topological. Algebra. 09(01) (2020) 1-15.

$$d(f,\Gamma) \leqslant \left(\frac{1}{1-\gamma}\right) d(f,\Lambda f) \leqslant \frac{1}{(1-\gamma)(2+\eta)}.$$

Therefore, the inequality (12) holds. It follow from (8), (9) and (14) that

$$\begin{split} \left\| \eta \Gamma \left(\frac{x+y}{\eta} + z \right) - \Gamma(x) - \Gamma(y) - \eta \Gamma(z) \right\|_{\mathcal{B}} \\ &= \left\| \eta \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n f \left(\left(\frac{2+\eta}{\eta} \right)^n \left(\frac{x+y}{\eta} + z \right) \right) - \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n f \left(\left(\frac{2+\eta}{\eta} \right)^n x \right) \\ &- \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n f \left(\left(\frac{2+\eta}{\eta} \right)^n y \right) - \eta \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n f \left(\left(\frac{2+\eta}{\eta} \right)^n z \right) \right\|_{\mathcal{B}} \\ &\lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n \left\| \eta f \left(\frac{\left(\frac{2+\eta}{\eta} \right)^n x + \left(\frac{2+\eta}{\eta} \right)^n y}{\eta} + \left(\frac{2+\eta}{\eta} \right)^n z \right) - f \left(\left(\frac{2+\eta}{\eta} \right)^n x \right) \\ &- f \left(\left(\frac{2+\eta}{\eta} \right)^n y \right) - \eta f \left(\left(\frac{2+\eta}{\eta} \right)^n z \right) \right\|_{\mathcal{B}} \\ &\leqslant \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n \psi \left(\left(\frac{2+\eta}{\eta} \right)^n x, \left(\frac{2+\eta}{\eta} \right)^n y, \left(\frac{2+\eta}{\eta} \right)^n z \right) \\ &= 0 \end{split}$$

for all $x, y, z \in \mathcal{A}$. Hence, we have

$$\eta\Gamma\left(\frac{x+y}{\eta}+z\right) = \Gamma(x) + \Gamma(y) + \eta\Gamma(z)$$
(15)

for all $x, y, z \in \mathcal{A}$. From Corollary 1.5, we get that H is additive, that is,

$$\Gamma(x+y) = \Gamma(x) + \Gamma(y) \tag{16}$$

for all $x, y \in \mathcal{A}$. Next, we can show that $\Gamma : \mathcal{A} \to \mathcal{B}$ is \mathbb{C} -linear. Firstly, we will show that for any $x \in \mathcal{A}$, $\Gamma(\mu x) = \mu \Gamma(x)$ for all $\mu \in \mathbb{S}$. For each $\mu \in \mathbb{S}$, substituting x, y, z in (7) by $\left(\frac{2+\eta}{\eta}\right)^n x$, we obtain that

$$E_{\mu}f\left(\left(\frac{2+\eta}{\eta}\right)^{n}x, \left(\frac{2+\eta}{\eta}\right)^{n}x, \left(\frac{2+\eta}{\eta}\right)^{n}x\right)$$

$$= \eta\mu f\left(\frac{\left(\frac{2+\eta}{\eta}\right)^{n}x + \left(\frac{2+\eta}{\eta}\right)^{n}x}{\eta} + \left(\frac{2+\eta}{\eta}\right)^{n}x\right) - f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right)$$

$$- f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - \eta f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right)$$

$$= \eta\mu f\left(\frac{\left(2+\eta\right)}{\eta} \cdot \left(\frac{2+\eta}{\eta}\right)^{n}x\right) - \left(2+\eta\right)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right)$$

for all $x \in \mathcal{A}$. By (9), we have

$$\left\| E_{\mu} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} x \right) \right\|_{\mathcal{B}}$$

$$= \left\| \eta \mu f\left(\frac{2+\eta}{\eta} \cdot \left(\frac{2+\eta}{\eta} \right)^{n} x \right) - (2+\eta) f\left(\mu \left(\frac{2+\eta}{\eta} \right)^{n} x \right) \right\|_{\mathcal{B}}$$

$$\leq \psi \left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} x \right)$$
(17)

for all $x \in \mathcal{A}$. From (17), we have

$$\left\| \eta f\left(\frac{(2+\eta)}{\eta} \cdot \left(\frac{2+\eta}{\eta}\right)^n x\right) - (2+\eta) f\left(\left(\frac{2+\eta}{\eta}\right)^n x\right) \right\|_{\mathcal{B}}$$

$$\leq \psi \left(\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x \right)$$
(18)

for all $x \in \mathcal{A}$. It follow from (17), (18) and (9) that

$$\begin{split} \left\| (2+\eta)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - (2+\eta)\mu f\left(\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &= \left\| (2+\eta)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - \eta\mu f\left(\frac{2+\eta}{\eta}\cdot\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &+ \eta\mu f\left(\frac{2+\eta}{\eta}\cdot\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - (2+\eta)\mu f\left(\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &\leq \left\| (2+\eta)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - \eta\mu f\left(\frac{2+\eta}{\eta}\cdot\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &+ \left\| \mu f\left(\frac{2+\eta}{\eta}\cdot\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - (2+\eta)\mu f\left(\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &\leq \left\| (2+\eta)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - \eta\mu f\left(\frac{2+\eta}{\eta}\cdot\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &\leq \left\| (2+\eta)f\left(\mu\left(\frac{2+\eta}{\eta}\right)^{n}x\right) - (2+\eta)\mu f\left(\left(\frac{2+\eta}{\eta}\right)^{n}x\right) \right\|_{\mathcal{B}} \\ &\leq 2\psi\left(\left(\frac{2+\eta}{\eta}\right)^{n}x, \left(\frac{2+\eta}{\eta}\right)^{n}x, \left(\frac{2+\eta}{\eta}\right)^{n}x\right) \end{split}$$

for all $x \in \mathcal{A}$. This implies that

$$\left\| \left(\frac{\eta}{2+\eta}\right)^n f\left(\mu\left(\frac{2+\eta}{\eta}\right)^n x\right) - \left(\frac{\eta}{2+\eta}\right)^n \mu f\left(\left(\frac{2+\eta}{\eta}\right)^n x\right) \right\|_{\mathcal{B}}$$

$$\leq \frac{2}{2+\eta} \left(\frac{\eta}{2+\eta}\right)^n \psi\left(\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x\right)$$

$$\leq \left(\frac{\eta}{2+\eta}\right)^n \psi\left(\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n x\right)$$

for all $x \in \mathcal{A}$. By (8), we have

$$\lim_{n \to \infty} \left\| \left(\frac{\eta}{2+\eta} \right)^n f\left(\mu\left(\frac{2+\eta}{\eta} \right)^n x \right) - \left(\frac{\eta}{2+\eta} \right)^n \mu f\left(\left(\frac{2+\eta}{\eta} \right)^n x \right) \right\|_{\mathcal{B}} \to 0$$

which implies that

$$\Gamma(\mu x) = \mu \Gamma(x) \tag{19}$$

for all $x \in \mathcal{A}$. Next, we show that for any $x \in \mathcal{A}$, $\Gamma(\lambda x) = \lambda \Gamma(x)$ for all $\lambda \in \mathbb{C}$.

Let $\lambda \in \mathbb{C}$ and M be an integer greater than $4|\lambda|$, $(M > 4|\lambda|)$. Then, we have $\frac{|\lambda|}{M} < \frac{1}{4} < \frac{1}{3} = 1 - \frac{2}{3}$. By Theorem 1.9, there exist $\lambda_1, \lambda_2, \lambda_3$ with $|\lambda_i| = 1$ for all i = 1, 2, 3 such that $\frac{\lambda}{M} = \frac{1}{3}(\lambda_1 + \lambda_2 + \lambda_3)$, that is, $3\frac{\lambda}{M} = (\lambda_1 + \lambda_2 + \lambda_3)$. Hence, we have $\Gamma(x) = \Gamma(\frac{1}{3}x + \frac{1}{3}x + \frac{1}{3}x) = \Gamma(\frac{1}{3}x) + \Gamma(\frac{1}{3}x) + \Gamma(\frac{1}{3}x) = 3\Gamma(\frac{1}{3}x)$, that is,

$$\frac{1}{3}\Gamma(x) = \Gamma(\frac{1}{3}x). \tag{20}$$

From (16), (19) and (20), we obtain that

$$\Gamma(\lambda x) = \Gamma\left(M \cdot \frac{\lambda}{M}x\right) = \Gamma\left(\underbrace{\frac{\lambda}{M}x + \frac{\lambda}{M}x + \dots + \frac{\lambda}{M}x}_{M-\text{terms}}\right)$$

$$= \underbrace{\prod_{n=1}^{M-\text{terms}} \left(\frac{\lambda}{M}x\right) + \Gamma\left(\frac{\lambda}{M}x\right) + \dots + \Gamma\left(\frac{\lambda}{M}x\right)}_{M-\text{terms}}$$

$$= M \cdot \Gamma\left(\frac{\lambda}{M}x\right) = M \cdot \Gamma\left(\frac{1}{3} \cdot 3\frac{\lambda}{M}x\right)$$

$$= \frac{M}{3}\Gamma\left(3\frac{\lambda}{M}x\right)$$

$$= \frac{M}{3}\Gamma\left((\lambda_1 + \lambda_2 + \lambda_3)x\right)$$

$$= \frac{M}{3}\Gamma((\lambda_1 x + \lambda_2 x + \lambda_3 x))$$

$$= \frac{M}{3}\left(\Gamma(\lambda_1 x) + \Gamma(\lambda_2 x) + \Gamma(\lambda_3 x)\right)$$

$$= \frac{M}{3}\left(\lambda_1\Gamma(x) + \lambda_2\Gamma(x) + \lambda_3\Gamma(x)\right)$$

$$= \frac{M}{3}\left(\lambda_1 + \lambda_2 + \lambda_3\right)\Gamma(x)$$

$$= \frac{M}{3}\left(3 \cdot \frac{\lambda}{M}\right)\Gamma(x)$$

$$= \lambda\Gamma(x)$$

for all $x \in \mathcal{A}$. This implies that $\Gamma(\zeta x + \eta y) = \Gamma(\zeta x) + \Gamma(\eta y) = \zeta \Gamma(x) + \eta \Gamma(y)$ for all $\zeta, \eta \in \mathbb{C} \setminus \{0\}$ and for all $x, y \in \mathcal{A}$ and so $\Gamma(0) = \Gamma(0 \cdot x) = 0 \cdot \Gamma(x) = 0$ for all $x \in \mathcal{A}$. Next, we will show that Γ is a C^* -ternary algebra homomorphism. It follows from (10) and Lemma 1.11 that we have

$$\begin{split} \|\Gamma([x,y,z]) - [\Gamma(x),\Gamma(y),\Gamma(z)]\|_{\mathcal{B}} \\ &= \left\| \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} f\left(\left[\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \left[\lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{n} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x \right), \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{n} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} y \right), \\ \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{n} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \lim_{n \to \infty} \left[\left(\frac{\eta}{2+\eta} \right)^{n} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} y \right), \\ \left(\frac{\eta}{2+\eta} \right)^{n} f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \lim_{n \to \infty} \left[\left(\frac{\eta}{2+\eta} \right)^{3n} f\left(\left[\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} f\left(\left[\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} \left[f\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \\ &- \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} \left\| f\left(\left[\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right] \right) \right\|_{\mathcal{B}} \\ &= \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} \psi\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right) \right] \right\|_{\mathcal{B}} \\ &\leq \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} \psi\left(\left(\frac{2+\eta}{\eta} \right)^{n} x, \left(\frac{2+\eta}{\eta} \right)^{n} y, \left(\frac{2+\eta}{\eta} \right)^{n} z \right) = 0 \end{split}$$

for all $x, y, z \in \mathcal{A}$. Thus $\Gamma([x, y, z]) = [\Gamma(x), \Gamma(y), \Gamma(z)]$ for all $x, y, z \in \mathcal{A}$. Therefore, the mapping Γ is a C^* -ternary algebra homomorphism.

Corollary 2.2 Let $p \in [0,1)$, $\varepsilon \in [0,\infty)$ and let f be a mapping of \mathcal{A} into \mathcal{B} such that

$$\left\|E_{\mu}f(x,y,z)\right\|_{\mathcal{B}} \leqslant \varepsilon \left(\left\|x\right\|_{\mathcal{A}}^{p} + \left\|y\right\|_{\mathcal{A}}^{p} + \left\|z\right\|_{\mathcal{A}}^{p}\right),\tag{21}$$

$$\|f[x,y,z] - [f(x),f(y),f(z)]\|_{\mathcal{B}} \leq \varepsilon(\|x\|_{\mathcal{A}}^p + \|y\|_{\mathcal{A}}^p)$$

$$\tag{22}$$

for all $\mu \in S$ and for all $x, y, z \in A$. Then, there exists a unique C^{*}-ternary algebra homomorphism $\Gamma : A \to B$ such that

$$\|f(x) - \Gamma(x)\|_{\mathcal{B}} \leq \frac{3\varepsilon}{\left(1 - \left(\frac{2+\eta}{\eta}\right)^{p-1}\right)(2+\eta)} \|x\|_{\mathcal{A}}^{p}.$$

Proof. From Theorem 2.1, we take $\psi(x, y, z) = \varepsilon(\|x\|_{\mathcal{A}}^p + \|y\|_{\mathcal{A}}^p + \|z\|_{\mathcal{A}}^p)$ for all $x, y, z \in \mathcal{A}$. Then, $\gamma = \left(\frac{2+\eta}{\eta}\right)^{p-1}$ and we get the desired results.

Theorem 2.3 Let $f : \mathcal{A} \to \mathcal{B}$ be a mapping for which there exists a function $\psi : \mathcal{A}^3 \to [0, \infty)$ satisfying (9) and (10) such that

$$\lim_{j \to \infty} \left(\frac{2+\eta}{\eta}\right)^{2j} \cdot \psi\left(\left(\frac{\eta}{2+\eta}\right)^j x, \left(\frac{\eta}{2+\eta}\right)^j y, \left(\frac{\eta}{2+\eta}\right)^j z\right) = 0$$
(23)

for all $x, y, z \in \mathcal{A}$. If there exists an $\gamma < 1$ such that

$$\psi(x,x,x) \leqslant \frac{\eta}{2+\eta} \gamma \psi\left(\frac{2+\eta}{\eta}x, \frac{2+\eta}{\eta}x, \frac{2+\eta}{\eta}x\right), \tag{24}$$

then there exists a unique C^* -ternary algebra homomorphism $\Gamma: \mathcal{A} \to \mathcal{B}$ such that

$$\|f(x) - \Gamma(x)\|_{\mathcal{B}} \leqslant \frac{\gamma}{(1-\gamma)(2+\eta)}\psi(x, x, x)$$
(25)

for all $x \in \mathcal{A}$.

Proof. We consider the linear mapping $\Lambda : X \to X$ such that $\Lambda g(x) := \frac{2+\eta}{\eta} g\left(\frac{\eta}{2+\eta}x\right)$ for all $x \in \mathcal{A}$. By similar proof of Theorem 2.1, Λ is a strictly contractive self-mapping of X with the Lipschitz constant γ . Letting $\mu = 1$ and substituting x, y, z in (9) by $\frac{\eta}{2+\eta}x$, we have

$$\left\| E_{\mu} f\left(\frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x\right) \right\|_{\mathcal{B}} = \left\| \eta f\left(x\right) - (2+\eta) f\left(\frac{\eta}{2+\eta}x\right) \right\|_{\mathcal{B}}$$
$$\leq \psi \left(\frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x\right)$$
(26)

for all $x \in \mathcal{A}$. From this inequality we get

$$\begin{split} \left\| f\left(x\right) - \frac{2+\eta}{\eta} f\left(\frac{\eta}{2+\eta}x\right) \right\|_{\mathcal{B}} &\leq \frac{1}{\eta} \psi\left(\frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x, \frac{\eta}{2+\eta}x\right) \\ &\leq \frac{1}{\eta} \cdot \frac{\eta}{2+\eta} \gamma \psi\left(\frac{2+\eta}{\eta} \cdot \frac{\eta}{2+\eta}x, \frac{2+\eta}{\eta} \cdot \frac{\eta}{2+\eta}x, \frac{2+\eta}{\eta} \cdot \frac{\eta}{2+\eta}x\right) \\ &= \frac{\gamma}{2+\eta} \cdot \psi(x, x, x) \end{split}$$

for all $x \in \mathcal{A}$, that is, $\|\Lambda f(x) - f(x)\|_{\mathcal{B}} \leq \frac{\gamma}{2+\eta}\psi(x, x, x)$ for all $x \in \mathcal{A}$. Hence, we obtain that $d(f, \Lambda f) \leq \frac{\gamma}{2+\eta}$. By Theorem 1.8, there exists a mapping $\Gamma : \mathcal{A} \to \mathcal{B}$ such that the following conditions hold.

(1) Γ is a fixed point of Λ , that is, $\Lambda\Gamma(x) = \Gamma(x)$ for all $x \in \mathcal{A}$. Then we have

$$\Gamma(x) = \Lambda \Gamma(x) = \frac{2+\eta}{\eta} \Gamma\left(\frac{\eta}{2+\eta}x\right) \Rightarrow \Gamma\left(\frac{\eta}{2+\eta}x\right) = \frac{\eta}{2+\eta} \Gamma(x)$$

for all $x \in \mathcal{A}$. The mapping Γ is a unique fixed point of Λ in the set

$$Y = \{g \in X : d(f,g) < \infty\},\$$

that is, $d(f, \Gamma) < \infty$. From (13), there exists $C \in (0, \infty)$ satisfying

$$||f(x) - \Gamma(x)||_{\mathcal{B}} \leq C\psi(x, x, x)$$

for all $x \in \mathcal{A}$.

(2) The sequence $\{\Lambda^n f\}$ converges to Γ . This implies that the equality

$$\Gamma(x) = \lim_{n \to \infty} \left(\frac{2+\eta}{\eta}\right)^n f\left(\left(\frac{\eta}{2+\eta}\right)^n x\right)$$

for all $x \in \mathcal{A}$.

(3) We obtain that $d(f, \Gamma) \leq \left(\frac{1}{1-\gamma}\right) d(f, \Lambda f)$, which implies that

$$d(f,\Gamma) \leqslant \left(\frac{1}{1-\gamma}\right) d(f,\Lambda f) \leqslant \frac{\gamma}{(1-\gamma)(2+\eta)}$$

Therefore, the inequality (25) holds.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4 Let $p \in (2, \infty)$, $\varepsilon \in [0, \infty)$ and f be a mapping of \mathcal{A} into \mathcal{B} such that (21) and (22). Then, there exists a unique C^* -ternary algebra homomorphism $\Gamma : \mathcal{A} \to \mathcal{B}$ such that

$$\|f(x) - \Gamma(x)\|_{\mathcal{B}} \leq \frac{3\varepsilon}{\left(\left(\frac{2+\eta}{\eta}\right)^{p-1} - 1\right)(2+\eta)} \|x\|_{\mathcal{A}}^{p}.$$

Proof. The proof follow from Theorem 2.3 and Corollary 2.2, when we take

$$\psi(x, y, z) = \varepsilon(\|x\|_{\mathcal{A}}^p + \|y\|_{\mathcal{A}}^p + \|z\|_{\mathcal{A}}^p)$$

for all $x, y, z \in \mathcal{A}$. Then, $\gamma = \left(\frac{2+\eta}{\eta}\right)^{1-p}$ and we get the desired results.

3. Stability of derivations in C^* -ternary algebras

For a given mapping $f : \mathcal{A} \to \mathcal{A}$, we define

$$E_{\mu}f(x,y,z) := \eta \mu f\left(\frac{x+y}{\eta} + z\right) - f(\mu x) - f(\mu y) - \eta(f\mu z)$$

for all $\mu \in \mathbb{S}$ and all $x, y, z \in \mathcal{A}$.

We recall definition of C^* -ternary derivation.

Definition 3.1 [2] A C-linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ is called a C^* -ternary derivation if $\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]$ for all $x, y, z \in \mathcal{A}$.

Theorem 3.2 Let $f : \mathcal{A} \to \mathcal{A}$ be a mapping for which there exists a function $\psi : \mathcal{A}^3 \to [0, \infty)$ satisfying (8) and

$$\left\|E_{\mu}f(x,y,z)\right\|_{\mathcal{A}} \leqslant \psi(x,y,z) \tag{27}$$

and

$$\|f([x, y, z]) - [f(x), y, z] - [x, f(y), z] - [x, y, f(z)]\|_{\mathcal{A}} \le \psi(x, y, z)$$
(28)

for all $\mu \in \mathbb{S}$ and all $x, y, z \in \mathcal{A}$. If there exists a $\gamma < 1$ satisfying (11) for all $x \in \mathcal{A}$, then there exists a unique C^* -ternary derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that

$$\|f(x) - \delta(x)\|_{\mathcal{A}} \leq \frac{1}{(1 - \gamma)(2 + \eta)}\psi(x, x, x)$$
 (29)

for all $x \in \mathcal{A}$.

Proof. Similarly to the proof of Theorem 2.1, there exists a unique \mathbb{C} -linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ satisfying (29). The mapping $\delta : \mathcal{A} \to \mathcal{A}$ is given by

$$\delta(x) = \lim_{n \to \infty} \left(\frac{\eta}{2+\eta}\right)^n f\left(\left(\frac{2+\eta}{\eta}\right)^n x\right)$$

for all $x \in \mathcal{A}$. It follows that (8) and (28) that

$$\begin{split} \|\delta([x,y,z]) - [\delta(x),y,z] - [x,\delta(y),z] - [x,y,\delta(z)]\|_{\mathcal{A}} \\ &= \lim_{n \to \infty} \left(\frac{\eta}{2+\eta}\right)^{3n} \left\| f\left(\left[\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n y, \left(\frac{2+\eta}{\eta}\right)^n z \right] \right) \\ &- \left[f\left(\left(\frac{2+\eta}{\eta}\right)^n x \right), \left(\frac{2+\eta}{\eta}\right)^n y \right), \left(\frac{2+\eta}{\eta}\right)^n z \right] \\ &- \left[\left(\frac{2+\eta}{\eta}\right)^n x, f\left(\left(\frac{2+\eta}{\eta}\right)^n y \right), \left(\frac{2+\eta}{\eta}\right)^n z \right] \\ &- \left[\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n y, f\left(\left(\frac{2+\eta}{\eta}\right)^n z \right) \right] \right\|_{\mathcal{A}} \\ &\leqslant \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^{3n} \psi\left(\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n y, \left(\frac{2+\eta}{\eta}\right)^n z \right) \\ &\leqslant \lim_{n \to \infty} \left(\frac{\eta}{2+\eta} \right)^n \psi\left(\left(\frac{2+\eta}{\eta}\right)^n x, \left(\frac{2+\eta}{\eta}\right)^n y, \left(\frac{2+\eta}{\eta}\right)^n z \right) = 0 \end{split}$$

for all $x, y, z \in \mathcal{A}$. Therefore, $\delta([x, y, z]) = [\delta(x), y, z] + [x, \delta(y), z] + [x, y, \delta(z)]$ for all $x, y, z \in \mathcal{A}$. Hence $\delta : \mathcal{A} \to \mathcal{A}$ is a generalized derivation satisfying (29).

Corollary 3.3 Let r < 1 and ε be nonnegative real number, and let $f : \mathcal{A} \to \mathcal{A}$ be a mapping such that

$$\left\|E_{\mu}f(x,y,z)\right\|_{\mathcal{A}} \leqslant \varepsilon \cdot \left\|x\right\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \left\|y\right\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \left\|z\right\|_{\mathcal{A}}^{\frac{r}{3}}$$
(30)

and

$$\|f([x,y,z]) - [f(x),y,z] - [x,f(y),z] - [x,y,f(z)]\|_{\mathcal{A}} \leqslant \varepsilon \cdot \|x\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \|y\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \|z\|_{\mathcal{A}}^{\frac{r}{3}}$$
(31)

for all $\mu \in \mathbb{S}$ and all $x, y, z \in \mathcal{A}$. Then there exists a unique C^{*}-ternary derivation

 $\delta: \mathcal{A} \to \mathcal{A}$ such that

$$\|f(x) - \delta(x)\|_{\mathcal{A}} \leqslant \frac{\varepsilon}{\left(1 - \left(\frac{2+\eta}{\eta}\right)^{r-1}\right)(2+\eta)} \|x\|_{\mathcal{A}}^{r}$$

for all $x \in X$.

Proof. The proof follows from Theorem 3.2 by taking $\psi(x, y, z) = \varepsilon \cdot ||x||_{\mathcal{A}}^{\frac{r}{3}} \cdot ||y||_{\mathcal{A}}^{\frac{r}{3}} \cdot ||z||_{\mathcal{A}}^{\frac{r}{3}}$ for all $x, y, z \in \mathcal{A}$. Then, $\gamma = \left(\frac{2+\eta}{\eta}\right)^{r-1}$ and we get the desired results.

Theorem 3.4 Let $f : \mathcal{A} \to \mathcal{A}$ be a mapping for which there exists a function $\psi : \mathcal{A}^3 \to [0, \infty)$ satisfying (27), (28) and

$$\lim_{j \to \infty} \left(\frac{2+\eta}{\eta}\right)^{3j} \cdot \psi\left(\left(\frac{\eta}{2+\eta}\right)^j x, \left(\frac{\eta}{2+\eta}\right)^j y, \left(\frac{\eta}{2+\eta}\right)^j z\right) = 0$$

for all $\mu \in \mathbb{S}$ and all $x, y, z \in \mathcal{A}$. If there exists a $\gamma < 1$ satisfying (24) for all $x \in \mathcal{A}$, then there exist a unique \mathbb{C} -linear mapping $\delta : \mathcal{A} \to \mathcal{A}$ such that

$$\|f(x) - \delta(x)\|_{\mathcal{A}} \leq \frac{\gamma}{(1-\gamma) \cdot (2+\eta)} \psi(x, x, x)$$

for all $x \in \mathcal{A}$. Moreover $\delta : \mathcal{A} \to \mathcal{A}$ is generalized derivation on \mathcal{A} .

Proof. The proof is similar to the proofs of Theorems 2.3 and Theorem 3.2.

Corollary 3.5 Let r > 3 and ε be nonnegative real numbers, and let $f : \mathcal{A} \to \mathcal{A}$ be a mapping satisfying (30) and (31). Then, there exists a unique generalized derivation $\delta : \mathcal{A} \to \mathcal{A}$ such that

$$\|f(x) - \delta(x)\|_{\mathcal{A}} \leqslant \frac{\varepsilon}{\left(\left(\frac{\eta}{2+\eta}\right)^{1-r} - 1\right)(2+\eta)} \|x\|_{\mathcal{A}}^{r}$$

for all $x \in \mathcal{A}$.

Proof. The proof follows Theorem 3.4 by taking $\psi(x, y, z) := \varepsilon \cdot \|x\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \|y\|_{\mathcal{A}}^{\frac{r}{3}} \cdot \|z\|_{\mathcal{A}}^{\frac{r}{3}}$ for all $x, y, z \in \mathcal{A}$. Then, $\gamma = \left(\frac{2+\eta}{\eta}\right)^{1-r}$ and we get the desired results.

Acknowledgment

The author would like to thank the Naresuan University for facilities support.

References

- Abramov, R. Kerner, B. L. Roy, Hypersymmetry: a Z₃-graded generalization of supersymmetry, J. Math. Phys. 38 (1997), 1650-1669.
- [2] P. Ara, M. Mathieu, Local Multipliers of C*-algebras, Springer, London, 2003.
- C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta. Math. Sin. 22 (6) (2006), 1789-1796.
- [4] J. A. Baker, The stability of certain functional equations, Proc. Am. Math. Soc. 112 (1991), 729-732.
- [5] J. Brzdęk, W. Fechner, M. S. Moslehian, J. Silorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278-326.
- [6] J. Brzdęk, D. Popa, I. Rasa, B. Xu, Ulam Stability of Operators, Mathematical Analysis and its Applications, Academic Press, Elsevier, Oxford, 2018.
- [7] L. Cădariu, V. Radu, Fixed points and the stability of Jensens functional equation, J. Ineq. Pure Appl. Math 4 (1) (2003), 2003:4.

14

- [8] J. B. Diaz, B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Am. Math. Soc. 74 (2) (1968), 305-309.
- [9] I. E. Fassai, Non-Archimedean hyperstability of Cauchy-Jensen functional equations on a restricted domain, J. Appl. Anal. 24 (2) (2019), 155-165.
- [10] Z. X. Gao, H. X. Cao, W. T. Zheng, L. Xu, Generalized Hyers-Ulam-Rassias stability of functional inequalities and functional equations, J. Math. Inequal. 3 (1) (2009), 63-77.
- [11] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (4) (1941), 222-224.
- [12] R. V. Kasdison, G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
- [13] P. Kaskasem, C. Klin-eam, Approximation of the generalized Cauchy-Jensen functional equation in C^{*}algebras, J. Inequal. Appl. 2018, 2018:236.
- [14] P. Kaskasem, C. Klin-eam, Hyperstability of the generalized Cauchy-Jensen functional equation in ultrametric spaces. Acta. Math. Sci. 39 B(4) (2019), 1017-1032.
- [15] P. Kaskasem, C. Klin-eam, On approximation solutions of the Cauchy-Jensen and the additive-quadratic functional equation in paranormed spaces, Int. J. Anal. Appl. 17 (3) (2019), 369-387.
- [16] P. Kaskasem, C. Klin-eam, Y. J. Cho, On the stability of the generalized Cauchy-Jensen set-valued functional equations, J. Fixed Point Theory Appl. 20 (2018), 2018:76.
- [17] R. Kerner, Ternary algebraic structures and their applications in physics, Preprint: arXiv:math-ph/0011023, 2000.
- [18] H. M. Kenari, R. Saadati, C. Park, Homomorphisms and derivations in C*-ternary algebras via fixed point method, Adv. Difference Equ. 2012, 2012:137.
- [19] W. A. J. Luxemburg, On the covergence of successive approximations in the theory of ordinary differential equations, II Koninkl, Nederl. Akademie van Wetenschappen, Indag. Math. 20 (1958), 540-546.
- [20] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79-97
- [21] C. Park, Isomorphisms between C^* -ternary algebras, J. Math. Phys. 47 (2006), 2006:103512.
- [22] C. Park, J. S. An, Stability of the Cauchy-Jensen functional equation in C*-algebras: a fixed point approach, Fixed Point Theory Appl. 2008, 2008:872190.
- [23] C. Park, M. S. Moslehian, On the stability of θ-derivations on JB*-triples, Bull. Braz. Math. Soc. 38 (1) (2007), 115-127.
- [24] G. Pólya, G. Szegő, Aufgaben und Lehrsätze aus der Analysis vol. I, Springer, Berlin, 1925.
- [25] V. Radu, The fixed point alternative and the stability of functional equations, Fixed point Theory. 4 (2003), 91-96.
- [26] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc. 72 (2) (1978), 297-300.
- [27] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts. Pure. Appl. Math, New York, USA, 1960.
- [28] L. Vainerman, R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), 2553-2565.