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Abstract. The object of this paper is to present a new iteration process. We will show that
our process is faster than the known recent iterative schemes. We discuss stability results of
our iteration and prove some results in the context of uniformly convex Banach space for
Suzuki generalized nonexpansive mappings. We also present a numerical example for proving
the rate of convergence of our results. Our results improves many known results of the existing
literature.
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1. Introduction and preliminaries

If T : X → X and p be a point in X such that Tp = p, then p is said to be a fixed
point of T . It was in the year 1922 when Banach introduced the ground breaking result
known as Banach contraction principle, which guarantees the existence of a fixed point.
This completely initiated a new dimension of research in the field of nonlinear analysis.
This result was done on a complete metric space. From then on, many researchers have
considered different spaces and have taken different contraction condition to prove the
existence of a fixed point. However, finding the value of the fixed point is not that easy.
So to solve this problem, we need an iterative processes that can give us the fixed point.
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It all began by the result given in Mann [11], Ishikawa [9], Agarwal et al. [2], Noor [12],

Abbas [1], Ćirić et al. [4], Dukić et al. [5], Vatan Two-step [10], K-iteration process [8],
M∗ iteration process [17], K∗ iteration process [18], M-iteration process [19] and so on.
All the above process depends on choosing some initial point on the space that would
generate a sequence obeying the iterative schemes and converges to the fixed point.

Recently, a new type of iteration has been obtained by Hussian et al. [8] known as
K-iteration process. They have considered the contraction condition and (C) condition
also known as generalized nonexpansive mapping for approximation of fixed points. Also,
Ullah et al. [21] have used this iteration process in CAT(0) space.

A Banach space X is called uniformly convex if for each ϵ ∈ (0, 2] there exists δ > 0
such that for x, y ∈ X with ∥x∥ ≤ 1 and ∥y∥ ≤ 1, |x− y∥ > ϵ implies ∥x+y

2 ∥ ≤ δ.
Let C be a nonempty subset of a Banach space X. A mapping T : C → C is said to be

a contraction if there exist L ∈ (0, 1) such that for all x, y ∈ C, ∥Tx− Ty∥ ≤ L∥x− y∥.
If L = 1 then T is called nonexpansive mapping and quasi nonexpansive if for all x ∈ C
and p ∈ F (T ), we have ∥Tx− p∥ ≤ ∥x− p∥.

In 2008, Suzuki [14] introduced the concept of generalized nonexpansive mapping. A
mapping T : X → X is said to be generalized nonexpansive mappings if for all x, y ∈ X,
1
2∥x− Tx∥ ≤ ∥x− y∥ implies ∥Tx− Ty∥ ≤ ∥x− y∥.

Definition 1.1 [3] Let {un}∞n=0 and {vn}∞n=0 be two fixed point iteration procedure
sequences that converge to the same fixed point p and ∥un − p∥ ≤ an and ∥vn − p∥ ≤ bn,
for all n ≥ 0. If the sequences {an}∞n=0 and {bn}∞n=0 converge to a and b, respectively,

and limn→∞
∥an−a∥
∥bn−b∥ = 0, then we say that {un}∞n=0 converge faster than {vn}∞n=0 to p.

Definition 1.2 [7] Let {tn}∞n=0 be an arbitrary sequence in C. Then, an iteration pro-
cedure xn+1 = f(T, xn) converging to a fixed point p is said to be T−stable or stable
with respect to T , if for ϵn = ∥tn+1 − f(T, tn)∥, n ∈ N, we have limn→∞ ϵ = 0 if and
only if limn→∞ tn = p.

Lemma 1.3 [22] Let {un}∞n=0 and {wn}∞n=0 be nonnegative real sequences satisfying the
relation un+1 ≤ (1 − wn)un + wn, where wn ∈ (0, 1) for all n ∈ N ,

∑∞
n=0wn = ∞ and

wn

wn
→ 0 as n → ∞. Then limn→∞ un = 0.

Lemma 1.4 [13] Suppose that X is a uniformly convex Banach space and {tn} be
any real sequence such that 0 < p ≤ tn ≤ q < 1 for all n ≥ 1. Let {xn} and {yn}
be any two sequences of X such that limn→∞ sup ∥xn∥ ≤ r, limn→∞ sup ∥yn∥ ≤ r and
limn→∞ sup ∥tnxn + (1− tnyn)∥ = r hold for some r ≥ 0. Then limn→∞ ∥xn − yn∥ = 0.

Proposition 1.5 [14] Let C be a nonempty subset of a Banach space X and T : C → C
be any mapping. Then

(1) If T is nonexpansive, then T is Suzuki generalized nonexpansive mapping.
(2) T is Suzuki generalized nonexpansive mapping and has a fixed point, then T is a

quasi-nonexpansive mapping.

Also, the author in [14] proved the following lemma (lemma 7, [14]):

Lemma 1.6 [14] Let C be a nonempty subset of a Banach space X and T : C → C be
Suzuki generalized nonexpansive mapping. Then, for all x, y ∈ X, we have

∥Tx− Ty∥ ≤ 3∥Tx− x∥+ ∥x− y∥.

Let C be a nonempty closed convex subset of a Banach space X, and let {xn} be
a bounded sequence in X. For x ∈ X, we set r(x, {xn}) = lim supn→∞∥xn − x∥. The
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asymptotic radius of {xn} relative to C is given by r(C, {xn}) = inf {r(x, {xn}) : x ∈ C}
and the asymptotic center of {xn} relative to C is the set

A(C, {xn}) = {x ∈ C : r(x, {xn}) = r(C, {xn})}.

It is known that, in a uniformly convex Banach space, A(C, {xn}) consists of exactly one
point.

Throughout this section, we have {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are real sequences
in [0, 1]. In 2014, the authors in [6] introduced the concept of Picard S iteration process
as follows: 

u0 ∈ C,
wn = (1− βn)un + βnTun,
vn = (1− αn)Tun + αnTwn,
un+1 = Tvn.

Here it was shown that the Picard S iteration process is faster than all other iterations
like Picard, Mann, Ishikawa, Noor, SP, CR, S, S∗, Abbas, Normal-S and Two-step Mann
iteration process.

In 2015, the authors in [10] introduced new two-step iteration process even faster than
the Picard S iteration process as follows:

u0 ∈ C,
vn = T [(1− βn)un + βnTun],
un+1 = T [(1− αn)vn + αnTvn].

Then, in the year 2016, the authors in [16] introduced new iteration process known as
“Thakur new iteration process” as follows:


u0 ∈ C,
wn = (1− βn)un + βnTun,
vn = T [(1− αn)un + αnTwn],
un+1 = Tvn.

This iteration proved to be faster than Picard, Mann, Ishikawa, Agarwal, Noor and
Abbas iteration process for some class of mappings. Again, in 2016, a new iteration was
introduced by the authors in [15] in the following way:


x0 ∈ C,
zn = (1− βn)xn + βnTxn],
yn = (1− αn)zn + αnTzn,
xn+1 = (1− γn)Tzn + γnTyn.

The authors here proved that their iteration is faster than that of Picard, Mann,
Ishikawa, Noor, Agarwal et al., Abbas et. al., iteration process for the contractive map-
pings in the sense of Berinde [3]. In 2017, the authors in [17] introduced the following
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iteration process known as M∗ iteration process.
x0 ∈ C,
zn = (1− βn)xn + βnTxn],
yn = T [(1− αn)xn + αnTzn],
xn+1 = Tyn.

Recently, in 2018, the authors in [8] introduced the new iteration process called “K
iteration process” and proved some weak and strong convergence theorems for fixed point
of Suzuki generalized nonexpansive mappings in the setting of uniformly convex Banach
spaces. 

x0 ∈ C,
zn = (1− βn)xn + βnTxn],
yn = T [(1− αn)Txn + αnTzn],
xn+1 = Tyn.

K iteration process is faster than the iterations i.e., Picard S iteration, new two step
iteration process, Thakur new iteration process. The authors proved some weak and
strong convergence results considering Suzuki generalized nonexpansive mappings in the
setting of Uniformly convex Banach spaces.

In 2018, the authors in [18] introduced K∗ iteration process and proved some weak
and strong convergence results considering Suzuki generalized nonexpansive mappings in
the setting of Uniformly convex Banach spaces. They have shown that the K∗ iteration
process is faster than Picard S iteration [6] and S iteration.

x0 ∈ C,
zn = (1− βn)xn + βnTxn,
yn = T [(1− αn)zn + αnTzn],
xn+1 = Tyn.

In the same year, the authors in [19] introduced M iteration process as follows:
x0 ∈ C,
zn = (1− βn)xn + βnTxn,
yn = Tzn,
xn+1 = Tyn.

2. Main result

We now introduce a new iteration process call it “J iteration process” as follows:
x0 ∈ C,
zn = T [(1− βn)xn + βnTxn],
yn = T [(1− αn)zn + αnTzn],
xn+1 = Tyn.

Here we prove that J iteration process is faster than that of the recent iteration process
such as K iteration process, K∗ iteration process, M∗ iteration process, M iteration
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process. Here we prove that the sequence of iteration obtained from J iteration process
converges to the fixed point of T . The proof is on the lines similar to that of [8] and is the
same proof in [20]. Here we use the condition

∑∞
n=0 βn = ∞ instead of

∑∞
n=0 βnαn = ∞.

Theorem 2.1 Let C be a nonempty closed convex subset of a Banach space X and T :
C → C be a contraction mapping. Let {xn}∞n=0 be an iterative sequence generated by J
iteration process with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] satisfying

∑∞
n=0 βn =

∞ or (
∑∞

n=0 αn = ∞). Then {xn}∞n=0 converge strongly to a unique fixed point of T .

Proof. Since T is a contraction mapping in a Banach space, T has a unique fixed point
in C. Let us suppose that p is a fixed point of T . From J iteration process, we get

∥zn − p∥ = ∥T [(1− βn)xn + βnTxn]− Tp∥

⩽ k∥(1− βn)xn + βnTxn − p∥

⩽ k∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ k∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ k(1− βn)∥xn − p∥+ βn∥Txn − p∥

⩽ k{(1− βn)∥xn − p∥+ kβn∥xn − p∥}

⩽ k{1− βn(1− k)}∥xn − p∥.

Now,

∥yn − p∥ = ∥T [(1− αn)zn + αnTzn]− Tp∥

⩽ k∥(1− αn)zn + αnTzn − p∥

⩽ k∥(1− αn)zn + αnTzn − p∥

⩽ k∥(1− αn)(zn − p) + αn(Tzn − p)∥

⩽ k∥(1− αn)(zn − p) + kαn(zn − p)∥

⩽ k(1− αn)∥zn − p)∥+ k2αn∥(zn − p)∥

⩽ k(1− αn + kαn)∥(zn − p)∥ ≤ k∥zn − p∥

⩽ k2{1− βn(1− k)}∥xn − p∥.

Then,

∥xn+1 − p∥ ⩽ ∥Tyn − p∥ ⩽ k3{1− βn(1− k)}∥xn − p∥.

By repeating the above process, we get

∥xn − p∥ ⩽ k3{1− βn−1(1− k)}∥xn−1 − p∥,

∥xn−1 − p∥ ⩽ k3{1− βn−2(1− k)}∥xn−2 − p∥,
...

∥x1 − p∥ ⩽ k3{1− β0(1− k)}∥x0 − p∥.
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Therefore, we obtain ∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
∏n

i=0{1− βi(1− k)}. Now, k < 1 so
(1− k) > 0 and βn ⩽ 1 for all n ∈ N. Therefore, we get 1− βn(1− k) < 1 for all n ∈ N.
Again, we know that 1− x ≤ e−x, for all x ∈ [0, 1]. So we have

∥xn+1 − p∥ ≤ k3(n+1)∥x0 − p∥e−(1−k)
∑n

i=0 βi .

Taking the limits n → ∞ both sides, we get limn→∞ ∥xn − p∥ = 0. ■

Remark 1 In the above theorem, replace the condition
∑∞

n=0 βn = ∞ by
∑∞

n=0 αn = ∞.
Then we take ∥zn − p∥ ⩽ k∥xn − p∥ and we get ∥yn − p∥ ⩽ k2{1− αn(1− k)}∥xn − p∥.
Thus,

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
n∏

i=0

{1− αi(1− k)}.

Therefore, we get the desired result.

Theorem 2.2 Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a contraction mapping with a fixed point p. For a given x0 = u0, let
{xn}∞n=0 and {un}∞n=0 be an iterative sequence generated by J iteration process and K∗-
iteration process [18] respectively, with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1]
satisfying β ⩽ βn < 1 and α ⩽ αn < 1, for some α, β > 0 and for all n ∈ N. Then
{xn}∞n=0 converges to p faster than {un}∞n=0.

Proof. From inequality (10) of Theorem 3.2 in [18], we have

∥un+1 − p∥ ⩽ k2(n+1)∥u0 − p∥
n∏

i=0

{1− αi(1− k)}.

Since α ⩽ αn for all n ∈ N, we obtain ∥un+1 − p∥ ⩽ k2(n+1)∥u0 − p∥{1− α (1− k)}n+1.
Let an = k2(n+1)∥u0 − p∥{1− α (1− k)}n+1. Now, from Remark 1, we get

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
n∏

i=0

{1− αi(1− k)}.

Again α ⩽ αn for all n ∈ N gives

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥{1− α(1− k)}n+1.

Let bn = k3(n+1)∥x0 − p∥{1− α(1− k)}n+1. Then,

bn
an

=
k3(n+1)∥x0 − p∥{1− α(1− k)}n+1

k2(n+1)∥u0 − p∥{1− α (1− k)}n+1
=

bn
an

= kn+1.

Thus, we get limn→∞
bn
an

= 0. Hence, the result follows. ■

Here, we prove that the J iteration process is faster than that of the K iteration process
[8].

Theorem 2.3 Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a contraction mapping with a fixed point p. For a given x0 = u0, let
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{xn}∞n=0 and {un}∞n=0 be an iterative sequence generated by J iteration process and
K-iteration process [8] respectively, with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1]
satisfying β ⩽ βn < 1 and α ⩽ αn < 1 for some α, β > 0 and for all n ∈ N. Then {xn}∞n=0

converges to p faster than {un}∞n=0.

Proof. From Theorem 2.1, we have ∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
∏n

i=0{1− βi(1− k)}.
Since α ⩽ αn and β ⩽ βn for all n ∈ N. We get

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
n∏

i=0

{1− β(1− k)}

= k3(n+1)∥x0 − p∥{1− β(1− k)}n+1.

Now, from Theorem 3.1 of [8], we get ∥un+1−p∥ ⩽ k3(n+1)∥u0−p∥
∏n

i=0{1−βiαi(1−k)}.
Using α ⩽ αn and β ⩽ βn for all n ∈ N, we get

∥un+1 − p∥ ⩽ k3(n+1)∥u0 − p∥
n∏

i=0

{1− βα(1− k)}

= k3(n+1)∥u0 − p∥{1− βα(1− k)}n+1.

Define

∥an∥ = k3(n+1)∥x0 − p∥{1− β(1− k)}n+1,

∥bn∥ = k3(n+1)∥u0 − p∥{1− βα(1− k)}n+1.

Then, we have

an
bn

=
k3(n+1)∥x0 − p∥{1− β(1− k)}n+1

k3(n+1)∥u0 − p∥{1− βα(1− k)}n+1
=

∥x0 − p∥{1− β(1− k)}n+1

∥u0 − p∥{1− βα(1− k)}n+1
.

Taking limit as n → ∞, we obtain limn→∞
an

bn
= 0. ■

Here we prove that the J iteration process is faster than that of the M iteration process
as described in [19].

Theorem 2.4 Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a contraction mapping with a fixed point p. For a given x0 = u0, let
{xn}∞n=0 and {un}∞n=0 be an iterative sequence generated by J iteration process and M
iteration process as in [19] respectively, with real sequences {αn}∞n=0 and {βn}∞n=0 in
[0, 1] satisfying β ≤ βn < 1 and α ≤ αn < 1, for some α, β > 0 and for all n ∈ N. Then
{xn}∞n=0 converges to p faster than {un}∞n=0.

Proof. From Theorem 2.1, we have ∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
∏n

i=0{1− βi(1− k)}.
Since β ⩽ βn for all n ∈ N. We get

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
n∏

i=0

{1− β(1− k)} ⩽ k3(n+1)∥x0 − p∥{1− β(1− k)}n+1.
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Now, for M iteration process, we have
u0 ∈ C,
wn = (1− βn)un + βnTun,
vn = Twn,
un+1 = Tvn.

Then

∥wn − p∥ = ∥(1− βn)un + βnTun − p∥

⩽ ∥(1− βn)(un − p) + βn(Tun − p)∥

⩽ (1− βn)∥un − p∥+ βn∥Tun − p∥

⩽ (1− βn)∥un − p∥+ kβn∥un − p∥

⩽ (1− βn(1− k))∥un − p∥.

Now,

∥vn − p∥ ⩽ ∥Twn − p∥ ⩽ k∥wn − p∥ ⩽ k(1− βn(1− k))∥un − p∥.

Therefore, we get

∥un+1 − p∥ ⩽ ∥Tvn − p∥ ⩽ k∥vn − p∥ ⩽ k2(1− βn(1− k))∥un − p∥.

By repeating the above process, we have

∥un − p∥ ⩽ k2{1− βn−1(1− k)}∥un−1 − p∥,

∥un−1 − p∥ ⩽ k2{1− βn−2(1− k)}∥un−2 − p∥,
...

∥u1 − p∥ ⩽ k2{1− β0(1− k)}∥u0 − p∥.

Therefore, we get ∥un+1 − p∥ ⩽ k2(n+1)∥u0 − p∥
∏n

i=0{1− βi(1− k)}. Now, since β ⩽ βn
for all n ∈ N, we have ∥un+1 − p∥ ⩽ k2(n+1)∥u0 − p∥{1− β(1− k)}n+1. Define,

∥an∥ = k3(n+1)∥x0 − p∥{1− β(1− k)}n+1,

∥bn∥ = k2(n+1)∥u0 − p∥{1− β(1− k)}n+1.

Then we get

Ψn =
an
bn

=
k3(n+1)∥x0 − p∥{1− β(1− k)}n+1

k2(n+1)∥u0 − p∥{1− β(1− k)}n+1
= k(n+1).

Now, k < 1. So we get limn→∞
an

bn
= limn→∞Ψn = 0. Thus, the sequence {xn}∞n=0

converges to p faster than {un}∞n=0. ■

Here we consider the rate of convergence of M∗ iteration process under contraction
mapping and compare it with the J iteration process.
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Theorem 2.5 Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a contraction mapping with a fixed point p. For a given x0 = u0, let
{xn}∞n=0 and {un}∞n=0 be an iterative sequence generated by J iteration process and M∗

iteration process as in [17] respectively, with real sequences {αn}∞n=0 and {βn}∞n=0 in
[0, 1] satisfying β ⩽ βn < 1 and α ⩽ αn < 1, for some α, β > 0 and for all n ∈ N. Then
{xn}∞n=0 converges to p faster than {un}∞n=0.

Proof. Since T is a contraction mapping in a Banach space, T has a unique fixed point
in C. Let us suppose that p is a fixed point of T . From J iteration process, we get

∥zn − p∥ = ∥T [(1− βn)xn + βnTxn]− Tp∥

⩽ k∥(1− βn)xn + βnTxn − p∥

⩽ k∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ k∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ k(1− βn)∥xn − p∥+ βn∥Txn − p∥

⩽ k{(1− βn)∥xn − p∥+ kβn∥xn − p∥}

⩽ k{1− βn(1− k)}∥xn − p∥.

Now,

∥yn − p∥ = ∥T [(1− αn)zn + αnTzn]− Tp∥

⩽ k∥(1− αn)zn + αnTzn − p∥

⩽ k∥(1− αn)zn + αnTzn − p∥

⩽ k∥(1− αn)(zn − p) + αn(Tzn − p)∥

⩽ k∥(1− αn)(zn − p) + kαn(zn − p)∥

⩽ k(1− αn)∥zn − p)∥+ k2αn∥(zn − p)∥

⩽ k{1− αn(1− k)}∥(zn − p)∥

⩽ k2{1− αn(1− k)}{1− βn(1− k)}∥xn − p∥.

Then, ∥xn+1−p∥ ⩽ ∥Tyn−p∥ ≤ k3{1−αn(1−k)}{1−βn(1−k)}∥xn−p∥. By repeating
the above process, we get

∥xn − p∥ ⩽ k3{1− αn−1(1− k)}{1− βn−1(1− k)}∥xn−1 − p∥,

∥xn−1 − p∥ ⩽ k3{1− αn−2(1− k)}{1− βn−2(1− k)}∥xn−2 − p∥,
...

∥x1 − p∥ ⩽ k3{1− α0(1− k)}{1− β0(1− k)}∥x0 − p∥.

Therefore, we get

∥xn+1 − p∥ ⩽ k3(n+1)∥x0 − p∥
n∏

i=0

{1− αi(1− k)}{1− βi(1− k)}.
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Since α ⩽ αn and β ⩽ βn for all n ∈ N, we get

∥xn+1 − p∥ ⩽ k3(n+1)[{1− α(1− k)}{1− β(1− k)}]n+1∥x0 − p∥,

which implies that

∥xn+1 − p∥ ⩽ k3(n+1)[1− (1− k){α(1− βk) + β(1 + α)}]n+1∥x0 − p∥.

Let an = k3(n+1)[1 − (1 − k){α(1 − βk) + β(1 + α)}]n+1∥x0 − p∥. From M∗ iteration
process, we have 

u0 ∈ C,
wn = (1− βn)un + βnTun],
vn = T [(1− αn)un + αnTwn],
un+1 = Tvn.

and

∥wn − p∥ = ∥(1− βn)un + βnTun − Tp∥

⩽ ∥(1− βn)(un − p) + βn(Tun − p)∥

⩽ (1− βn)∥un − p∥+ βn∥Tun − p∥

⩽ (1− βn)∥un − p∥+ kβn∥un − p∥

⩽ {1− βn(1− k)}∥un − p∥.

Now,

∥vn − p∥ = ∥T [(1− αn)un + αnTwn]− Tp∥

⩽ k∥(1− αn)un + αnTwn − p∥

⩽ k∥(1− αn)(un − p) + αn(Twn − p)∥

⩽ k(1− αn)∥un − p∥+ kαn∥wn − p∥

⩽ k(1− αn)∥un − p)∥+ kαn{1− βn(1− k)}∥(un − p)∥

⩽ k[1− αn + kαn − kαnβn(1− k)}]∥(un − p)∥

⩽ k[1− (1− k)αn − kαnβn(1− k)}]∥(un − p)∥

⩽ k[1− αn(1− k)(1− kβn)}]∥(un − p)∥.

Then, ∥un+1 − p∥ ⩽ ∥Tyn − p∥ ⩽ k2[1−αn(1− k)(1− kβn)]∥(un − p)∥. By repeating the
above process, we get

∥un − p∥ ⩽ k2[1− αn−1(1− k)(1− kβn−1)]∥(un−1 − p)∥,

∥un−1 − p∥ ⩽ k2[1− αn−2(1− k)(1− kβn−2)]∥(un−2 − p)∥,
...

∥u1 − p∥ ⩽ k2[1− α0(1− k)(1− kβ0)]∥(u0 − p)∥.
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Therefore, we have

∥un+1 − p∥ ⩽ k2(n+1)∥u0 − p∥
n∏

i=0

[1− αi(1− k)(1− kβi)].

Since α ⩽ αn and β ⩽ βn for all n ∈ N, we have

∥un+1 − p∥ ⩽ k2(n+1)[1− α(1− k)(1− kβ)]n+1∥u0 − p∥.

Let bn = k2(n+1)[1− α(1− k)(1− kβ)]n+1∥u0 − p∥. Now,

an
bn

=
k3(n+1) [1− (1− k){α(1− βk) + β(1 + α)}]n+1 ∥x0 − p∥

k2(n+1) [1− α(1− k)(1− kβ)]n+1 ∥u0 − p∥

= kn+1 ∥x0 − p∥ [1− (1− k) {α (1− βk) + β (1 + α)}]n+1

∥u0 − p∥ [1− α (1− k) (1− k β)]n+1
.

Again, since 1−(1−k){α(1−βk)+β(1+α)}
1−α(1−k)(1−kβ) < 1 and by taking limits as n → ∞, we get

limn→∞
an

bn
= 0. Thus, the sequence {xn}∞n=0 converges to p faster than {un}∞n=0. ■

We now present an example by taking T (x) = (x + 2)
1

2 a contraction mapping and
αn = βn = γn = 1

4 for all n ∈ N.

It. J iteration K∗ iteration K iteration M∗ iteration M iteration

0 4 4 4 4 4

1 2.018287635607934 2.022430709480216 2.025983430909863 2.089209472207758 2.090225974648651

2 2.000188396786911 2.000284309634019 2.000386162189640 2.004438767284909 2.004553853178992

4 2.000000020044780 2.000003609326324 2.000005750773716 2.000222089966109 2.000231178486197

5 2.000000000206761 2.000000045821514 2.000000085643808 2.000011115179405 2.000011739347189

6 2.000000000002133 2.000000000581718 2.000000001275457 2.000000556301295 2.000000596138247

7 2.000000000000022 2.000000000007385 2.000000000018995 2.000000027842227 2.000000030272644

8 2 2.000000000000094 2.000000000000283 2.000000001393471 2.000000001537283

9 2 2.000000000000001 2.000000000000004 2.000000000069742 2.000000000078065

10 2 2 2 2.000000000003491 2.000000000003964

11 2 2 2 2.000000000000175 2.000000000000201

12 2 2 2 2.000000000000009 2.000000000000010

13 2 2 2 2.000000000000000 2.000000000000000

14 2 2 2 2 2
15 2 2 2 2 2
16 2 2 2 2 2
17 2 2 2 2 2
18 2 2 2 2 2
19 2 2 2 2 2
20 2 2 2 2 2
21 2 2 2 2 2
22 2 2 2 2 2
23 2 2 2 2 2

Thus it is clear from the table that J iteration process converges faster than that of
the above iterative schemes.
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Theorem 2.6 Let C be a nonempty closed convex subset of a Banach space X and T :
C → C be a contraction mapping. Let {xn}∞n=0 be an iterative sequence generated by J
iteration process, with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] satisfying

∑∞
n=0 βn =

∞ for all n ∈ N. Then the J iterative process is T− stable.

Proof. Let {xn}∞n=0 ⊂ X be an arbitrary sequence in C. Also, let the sequence generated
by J iterative process be xn+1 = f(T, xn) converging to unique fixed point p (follows from
Theorem 2.1) and ϵn = ∥tn+1 − f(T, tn)∥. We will prove that limn→∞ ϵn = 0 if and only
if limn→∞ tn = p. Let limn→∞ ϵn = 0. Then, we have

∥tn+1 − p∥ ⩽ ∥tn+1 − f(T, tn)∥+ ∥f(T, tn)− p∥ = ϵn + ∥tn+1 − p∥.

From Theorem 2.1, we get ⩽ ϵn + k3{1 − βn(1 − k)}∥tn − p∥. Since 0 < k < 1 and
0 ⩽ βn ≤ 1 for all n ∈ N and limn→∞ ϵn = 0, then from the above inequality and
using Lemma 1.3, we get limn→∞ ∥tn − p∥ = 0. Hence, limn→∞ tn = p. Conversely, let
limn→∞ tn = p. Then, we have

ϵn = ∥tn+1 − f(T, tn)∥ ⩽ ∥tn+1 − p∥+ ∥f(T, tn)− p∥

⩽ ∥tn+1 − p∥+ k3{1− βn(1− k)}∥tn − p∥.

Thus, we have lim
n→∞

ϵn = 0. Hence, the J iteration process is stable with respect to T . ■

3. Convergence for Suzuki generalized nonexpansive mappings under
J iteration process

Lemma 3.1 Let C be a nonempty closed convex subset of a Banach space X and
T : C → C be a Suzuki generalized nonexpansive mapping with F (T ) ̸= ϕ. For ar-
bitrary chosen x0 ∈ C, let {xn}∞n=1 be an iterative sequence generated by J iteration
process with real sequences {αn}∞n=0 and {βn}∞n=0 in [0, 1] satisfying

∑∞
n=0 βn = ∞.

Then limn→∞ ∥xn − p∥ exists for any p ∈ F (T ).

Proof. Suppose p ∈ F (T ) and since C is convex (1− βn)xn + βnTxn ∈ C for all n ∈ N.
Now, T is a Suzuki generalized nonexpansive mapping

1
2∥p− Tp∥ = 0 ⩽ ∥p− ((1− βn)xn + βnTxn)∥,

which implies that

∥Tp− T [(1− βn)xn + βnTxn]∥ ⩽ ∥p− ((1− βn)xn + βnTxn)∥.

Now, we have

∥zn − p∥ = ∥T [(1− βn)xn + βnTxn]− Tp∥

⩽ ∥(1− βn)xn + βnTxn − p∥

⩽ ∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ ∥(1− βn)(xn − p) + βn(Txn − p)∥

⩽ (1− βn)∥xn − p∥+ βn∥Txn − p∥

⩽ {(1− βn)∥xn − p∥+ βn∥xn − p∥}

⩽ ∥xn − p∥
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and

∥yn − p∥ = ∥T [(1− αn)zn + αnTzn]− Tp∥

⩽ ∥(1− αn)zn + αnTzn − p∥

⩽ ∥(1− αn)zn + αnTzn − p∥

⩽ ∥(1− αn)(zn − p) + αn(Tzn − p)∥

⩽ ∥(1− αn)(zn − p) + αn(zn − p)∥

⩽ (1− αn)∥zn − p)∥+ αn∥(zn − p)∥

⩽ ∥zn − p∥ ⩽ ∥xn − p∥.

Then ∥xn+1−p∥ ≤ ∥Tyn−p∥ ≤ ∥xn−p∥, which implies that {∥xn−p∥} is bounded and
non-increasing sequence for all p ∈ F (T ). Thus, limn→∞ ∥xn − p∥ exists. ■

Theorem 3.2 Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and T : C → C be a Suzuki generalized nonexpansive mapping. For arbitrary
chosen x0 ∈ C, let {xn}∞n=0 be an iterative sequence generated by J iteration process with
real sequences {αn}∞n=0 and {βn}∞n=0 in [a, b] for some a and b satisfying 0 < a ≤ b < 1.
Then F (T ) ̸= ϕ if and only if {xn}∞n=0 is bounded and limn→∞ ∥Txn − xn∥ = 0.

Proof. Suppose F (T ) ̸= ϕ and choose p ∈ F (T ). Then, by the Lemma 3.1, limn→∞ ∥xn−
p∥ exists and {xn} is bounded. Let limn→∞ ∥xn − p∥ = r for some r ≥ 0. Then, from
Lemma 3.1, we obtain limn→∞ sup∥zn − p∥ ≤ limn→∞ sup∥xn − p∥ = r. By Proposition
1.5 (ii), we have limn→∞ sup∥Txn − p∥ ≤ limn→∞ sup∥xn − p∥ = r. Again, we have

∥xn+1 − p∥ = ∥Tyn − Tp∥ ⩽ ∥yn − p∥

⩽ ∥T [(1− αn)zn + αnTzn]− p∥

⩽ ∥(1− αn)zn + αnTzn − p∥

⩽ ∥(1− αn)(zn − p) + αn(Tzn − p)∥

⩽ ∥(1− αn)(zn − p) + αn(zn − p)∥,

which implies that ∥xn+1 − p∥ ≤ ∥zn − p∥. Therefore, we have r ⩽ limn→∞ inf∥zn − p∥;
that is,

r ⩽ lim
n→∞

inf∥zn − p∥ ⩽ lim
n→∞

sup∥zn − p∥ ⩽ r,

which implies r = limn→∞ ∥zn − p∥. Thus, we get

r = lim
n→∞

∥T [(1− βn)xn + βnTxn]− p∥ ⩽ lim
n→∞

∥(1− βn)xn + βnTxn − p∥

Hence,

r ⩽ lim
n→∞

∥(1− βn)(xn − p) + βn(Txn − p)∥ ⩽ r.

Thus, r = limn→∞ ∥(1 − βn)(xn − p) + βn(Txn − p)∥. By Lemma 1.4, we get
limn→∞ ∥Txn − xn∥ = 0. Conversely, {xn}∞n=0 is bounded and limn→∞ ∥Txn − xn∥ = 0.
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Let p ∈ A(C, {xn}). By Lemma 1.6, we have

r(Tp, {xn}) = lim sup
n→∞

∥xn − Tp∥

⩽ lim sup
n→∞

(3∥Txn − xn∥+ ∥xn − p∥)

⩽ lim sup
n→∞

∥xn − p∥.

This implies that Tp ∈ A(C, {xn}). Since X is uniformly convex Banach space, it follows
that A(C, {xn}) is singleton. Hence, we have Tp = p. Thus, F (T ) ̸= ϕ. ■
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