Journal of Linear and Topological Algebra Vol. 07*, No.* 03*,* 2018*,* 183*-* 199

Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space

M. E. Samei^a

^a*Department of Mathematics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.*

Received 12 February 2018; Accepted 18 April 2018. Communicated by Ghasem Soleimani Rad

Abstract. In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M, N, *, \Diamond)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of *A*-contraction mapping on metric space. In this paper by using the main idea of the work, we introduce the concept of *A*-fuzzy contractive mappings. Finally, we support our results by some examples.

*⃝*c 2018 IAUCTB. All rights reserved.

Keywords: Intuitionistic fuzzy metric space, fixed point, *A*-fuzzy contractions. **2010 AMS Subject Classification**: 15B15, 47H09, 47H10.

1. Introduction

In 2002, Branciari [3] analyzed the existence of fixed point for mapping *T* defined on a complete metric space (X, d) satisfying a general contractive condition of integral type. After the paper of Branciari, a lot of research works have been carried out on generalizing contractive conditions of integral type for different contractive mappings satisfying various known properties. In 2003, A fine work has been done by Rhoades extending the result by replacing new condition [12]. Akram et al. [1] introduced a new class of contraction maps, called *A*-contraction. which is a proper superclass of Kannan's, Reich's and Bianchini's type contractions [2, 7, 11]. In 2011, Dey et al. [4] proved some fixed point theorems for mixed type of contraction mappings of integral type in complete metric space .

E-mail address: mesamei@basu.ac.ir & mesamei@gmail.com (M. E. Samei).

In this paper we consider $(X, M, N, *, \Diamond)$ intuitionistic fuzzy metric spaces in Park's sense [9] and by using their idea, we provide some fixed point results for the mappings *f* define on the space, satisfying a contractive condition of integral type.

2. Preliminaries

Definition 2.1 ([13]) A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous *t*-norm whenever it satisfies the following conditions:

- (a) *∗* is commutative and associative,
- (b) *∗* is continuous,
- (c) $a * 1 = a$ for all $a \in [0, 1]$,

(d) $a * b \leq c * d$ for all $a, b, c, d \in [0, 1]$ with $a \leq c$ and $b \leq d$.

For example, $a * b = ab$, $a * b = min\{a, b\}$, $a * b = max\{a + b - 1, 0\}$ and

$$
a * b = \frac{ab}{\max\{a, b, \lambda\}}
$$

for $0 < \lambda < 1$ are continuous *t*-norms.

Definition 2.2 ([13]) A binary operation $\Diamond : [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous *t*-conorm whenever it satisfies the following conditions:

(a) \Diamond is commutative and associative,

(b) \diamond is continuous,

 (c) $a \Diamond 0 = a$ for all $a \in [0, 1]$.

(d) $a \Diamond b \leq c \Diamond d$ whenever $a \leq c$ and $b \leq d$, and $a, b, c, d \in [0, 1]$.

For example, $a\Diamond b = \min\{a+b, 1\}$ and $a\Diamond b = \max\{a, b\}$ are continuous *t*-conorms.

Definition 2.3 ([9]) A 5-tuple $(X, M, N, *, \Diamond)$ is said to be intuitionistic fuzzy metric space whenever X is a set, $*$ is a continuous *t*-norm, \diamond is a continuous *t*-conorm and M, *N* are fuzzy sets on $X^2 \times [0, \infty)$ satisfying the following conditions:

(i) $M(x, y, t) + N(x, y, t) \leq 1$, (ii) $M(x, y, 0) = 0$, (iii) $M(x, y, t) = 1$ for all $t > 0$ if and only if $x = y$, (iv) $M(x, y, t) = M(y, x, t),$ (v) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + s)$ for all $x, y, z \in X$, $s, t > 0$, (vi) $M(x, y, .): [0, \infty) \longrightarrow [0, 1]$ is continuous, (vii) $\lim_{t\to\infty} M(x, y, t) = 1$ for all $x, y \in X$, (viii) $N(x, y, 0) = 1$, (ix) $N(x, y, t) = 0$ for all $t > 0$ if and only if $x = y$, $(X) N(x, y, t) = N(y, x, t),$ (xi) $N(x, y, t) \Diamond N(y, z, s) \geq N(x, z, t + s)$ for all $x, y, z \in X, s, t > 0$, (xii) $N(x, y, .): [0, \infty) \longrightarrow [0, 1]$ is continuous, (xii) lim_{$t\rightarrow\infty$} $N(x, y, t) = 0$ for all $x, y \in X$. Then (*M, N*) is called an intuitionistic fuzzy metric on *X*.

<i>Example **2.4** ([9]) Let (X, d) be a metric space. Denote $a * b = ab$ and $a \Diamond b = \min\{1, a+b\}$ for all $a, b \in [0, 1]$ and let M_d and N_d be fuzzy sets on $X^2 \times (0, \infty)$ defined as follows:

$$
M_d(x,y,t) = \frac{ht^n}{ht^n + md(x,y)}, \quad N(x,y,t) = \frac{d(x,y)}{kt^n + md(x,y)}
$$

for all $h, k, m, n \in \mathbb{R}^+$. If $h = k = m = n = 1$, we get

$$
M_d(x, y, t) = \frac{t}{t + d(x, y)}, \quad N_d(x, y, t) = \frac{d(x, y)}{t + d(x, y)}.
$$

We call this intuitionistic fuzzy metric induced by a metric *d* the standard intuitionistic fuzzy metric and $(X, M_d, N_d, *, \Diamond)$ is an intuitionistic fuzzy metric space.

For an intuitionistic fuzzy metric space $(X, M, N, *, \Diamond)$, define

$$
B(x,r,t) = \{ y \in X : M(x,y,t) > 1-r, N(x,y,t) < r \},
$$

for all $t > 0$ and $0 < r < 1$. Denote the generated topology by the sets $B(x, r, t)$ by $\tau_{(M,N)}$. A sequence $\{x_n\}$ in $(X, M, N, *, \Diamond)$ is said to be Cauchy whenever for each $\varepsilon > 0$ and $t > 0$, there exists a natural number n_0 such that $M(x_n, x_m, t) > 1 - \varepsilon$ and $N(x_n, x_m, t) < \varepsilon$ for all $n, m \geq n_0$. Also, $(X, M, N, \varepsilon, \Diamond)$ is called complete whenever every Cauchy sequence is convergent with respect $\tau_{(M,N)}$.

Definition 2.5 ([5]) Let $(X, M, N, *, \Diamond)$ be a intuitionistic fuzzy metric space. The fuzzy metric *M*, *N* is triangular whenever

$$
\frac{1}{M(x,y,t)} - 1 \leqslant \frac{1}{M(x,z,t)} - 1 + \frac{1}{M(z,y,t)} - 1
$$

and $N(x, y, t) \le N(x, z, t) + N(z, y, t)$ for all $x, y, z \in X$ and $t > 0$.

Definition 2.6 ([6]) A sequence $\{x_n\}$ in a intuitionistic fuzzy metric space $(X, M, N, *, \Diamond)$ is called intuitionistic fuzzy contractive sequence if there exists $0 < k < 1$ such that

$$
\frac{1}{M(x_{n+1}, x_{n+2}, t)} - 1 \leq k \left(\frac{1}{M(x_n, x_{n+1}, t)} - 1 \right)
$$

and $N(x_{n+1}, x_{n+2}, t) \leq kN(x_n, x_{n+1}, t)$ for all *n* and $t > 0$.

Lemma 2.7 ([8]) Let $(X, M, N, *, \Diamond)$ be a triangular intuitionistic fuzzy metric space and $\{x_n\}$ an intuitionistic fuzzy contractive sequence in X. Then $\{x_n\}$ is a Cauchy sequence.

Definition 2.8 ([10]) Let $(X, M, N, *, \Diamond)$ be a intuitionistic fuzzy metric space. A selfmap *f* on *X* is said to be intuitionistic fuzzy contractive whenever there exists $k \in (0,1)$ such that

$$
\frac{1}{M(f(x),f(y),t)}-1\leqslant k\left(\frac{1}{M(x,y,t)}-1\right)
$$

and $N(f(x), f(y), t) \leq kN(x, y, t)$ for all $x, y \in X$ and $t > 0$.

Definition 2.9 ([1]) Let R⁺ denote the set of all non-negative real numbers and *A* be the set of all functions $\alpha : \mathbb{R}^3_+ \to \mathbb{R}_+$ satisfying

(A1) α is continuous on the set \mathbb{R}^3_+ (with respect to the Euclidean metric on \mathbb{R}^3), $(A2)$ $a \le k b$ for some $k \in [0, 1)$ whenever $a \le \alpha(a, b, b)$ or $a \le \alpha(b, a, b)$ or $a \le \alpha(b, b, a)$ for all *a, b*.

3. Main results

Theorem 3.1 Let $(X, M, N, *, \Diamond)$ be a complete intuitionistic fuzzy metric space, $c \in \Diamond$ $(0,1)$, and let $f: X \to X$ be a mapping such that for each $x, y \in X, t > 0$,

$$
\int_0^{\frac{1}{M(fx, fy, t)} - 1} \varphi(s) ds \leqslant c \int_0^{\frac{1}{M(x, y, t)} - 1} \varphi(s) ds,
$$
 (1)

$$
\int_0^{N(fx, fy, t)} \varphi(s) ds \leq c \int_0^{N(x, y, t)} \varphi(s) ds,
$$
\n(2)

where $\varphi : [0, +\infty) \to [0, +\infty)$ is a Lebesgue-integrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0, +\infty)$, nonnegative, and such that for each $\varepsilon > 0$,

$$
\int_0^\varepsilon \varphi(s) \, ds > 0.
$$

Then *f* has a unique fixed point $a \in X$ such that for each $x \in X$, $\lim_{n \to +\infty} f^n x = a$.

Proof. Step 1. We have

$$
\int_0^{\frac{1}{M(f^n x, f^{n+1} x, t)} - 1} \varphi(s) ds \leqslant c^n \int_0^{\frac{1}{M(x, f x, t)} - 1} \varphi(s) ds.
$$

This follows immediately by iterating (1) *n* times:

$$
\int_0^{\frac{1}{M(f^n x, f^{n+1} x, t)} - 1} \varphi(s) ds \leqslant c \int_0^{\frac{1}{M(f^{n-1} x, f^n x, t)} - 1} \varphi(s) ds \leqslant \cdots \leqslant c^n \int_0^{\frac{1}{M(x, f x, t)} - 1} \varphi(s) ds.
$$

As a consequence, since $c \in (0, 1)$, we get

$$
\int_0^{\frac{1}{M(f^n x, f^{n+1} x, t)} - 1} \varphi(s) ds \leq c^n \int_0^{\frac{1}{M(x, f x, t)} - 1} \varphi(s) ds \to 0^+.
$$

Step 2. We have $\frac{1}{M(f^n x, f^{n+1} x, t)} - 1 \to 0$ as $n \to +\infty$. Suppose that

$$
\lim_{n \to +\infty} \sup \left(\frac{1}{M(f^n x, f^{n+1} x, t)} - 1 \right) = \frac{\varepsilon}{t} > 0,
$$

Then there exists a $m_{\varepsilon} \in \mathbb{N}$ and a sequence $\{f^{n_m}\}_{m \geqslant m_{\varepsilon}}$ such that

$$
\left(\frac{1}{M(f^nx, f^{n+1}x, t)} - 1\right) \to \frac{\varepsilon}{t} > 0
$$

as $m \to +\infty$ and $\frac{1}{M(f^{n_m}x, f^{n_m+1}x,t)} - 1 \geq \frac{\varepsilon}{2i}$ $\frac{\varepsilon}{2t}$ for $m \geqslant m_{\varepsilon}$. Thus, by Step 1 and the sign of φ , we have the following contradiction:

$$
0 = \lim_{m \to +\infty} \int_0^{\frac{1}{M(f^{n_m}x, f^{n_m+1}x, t)} - 1} \varphi(s) ds \geqslant \int_0^{\frac{\varepsilon}{2t}} \varphi(s) ds > 0.
$$

Step 3. For each $x \in X$, $\{f^n x\}_{n \in \mathbb{N}}$ is a Cauchy sequence, that is

$$
\forall \varepsilon > 0 \quad \exists m_{\varepsilon} \in \mathbb{N} : \forall m, n \in \mathbb{N}, m > n > m_{\varepsilon} : \frac{1}{M(f^m x, f^n x, t)} - 1 < \frac{\varepsilon}{t}.
$$

Suppose that there exists a $\varepsilon > 0$ such that for each $l \in \mathbb{N}$ there are $m_l, n_l \in \mathbb{N}$ with $m_l > n_l > l$ such that $\frac{1}{M(f^{m_l}x, f^{n_l}x,t)} - 1 \geqslant \frac{\varepsilon}{t}$ $\frac{\varepsilon}{t}$. Then we choose the sequences $\{m_l\}_{l \in \mathbb{N}}$ and $\{n_l\}_{l \in \mathbb{N}}$ such that for each $l \in \mathbb{N}$, m_l is "minimal" in $\frac{1}{M(f^{m_l}x, f^{n_l}x,t)} - 1 \geq \frac{\varepsilon}{t}$ $\frac{\varepsilon}{t}$, but 1 $\frac{1}{M(f^h x, f^n t x, t)} - 1 < \frac{\varepsilon}{t}$ $\frac{\varepsilon}{t}$ for each $h \in \{n_l + 1, \dots, m_l - 1\}$. Now, we analyze the properties of $\frac{1}{M(f^{m_l}x, f^{n_l}x,t)} - 1$ and $\frac{1}{M(f^{m_l+1}x, f^{n_l+1}x,t)} - 1$. At the first, we have

$$
\frac{1}{M(f^{m_l}x,f^{n_l}x,t)}-1\to \frac{\varepsilon^+}{t}
$$

as $l \rightarrow +\infty$. Now, by the triangular inequality and Step 2

$$
\frac{\varepsilon}{t} \leq \frac{1}{M(f^{m_l}x, f^{n_l}x, t)} - 1
$$
\n
$$
\leq \frac{1}{M(f^{m_l}x, f^{m_l-1}x, t)} - 1 + \frac{1}{M(f^{m_l-1}x, f^{n_l}x, t)} - 1
$$
\n
$$
< \frac{1}{M(f^{m_l}x, f^{m_l-1}x, t)} - 1 + \frac{\varepsilon}{t} \to \frac{\varepsilon^+}{t} \text{ as } l \to +\infty.
$$

Further there exists $\mu \in \mathbb{N}$ such that for each natural number $\nu > \mu$,

$$
\frac{1}{M(f^{m_{\nu}+1}x, f^{n_{\nu}+1}x, t)} - 1 < \frac{\varepsilon}{t}.
$$

In fact, if there exists a subsequence $\{\nu_k\}_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that

$$
\frac{1}{M(f^{m_{\nu_k}+1}x, f^{n_{\nu_k}+1}x, t)} - 1 \geqslant \frac{\varepsilon}{t},
$$

then

$$
\frac{\varepsilon}{t} \leq \frac{1}{M(f^{m_{\nu_k}+1}x, f^{n_{\nu_k}+1}x, t)} - 1
$$
\n
$$
\leq \frac{1}{M(f^{m_{\nu_k}+1}x, f^{m_{\nu_k}}x, t)} - 1
$$
\n
$$
+ \frac{1}{M(f^{m_{\nu_k}}x, f^{n_{\nu_k}}x, t)} - 1 + \frac{1}{M(f^{n_{\nu_k}}x, f^{n_{\nu_k}+1}x, t)} - 1 \to \frac{\varepsilon}{t} \text{ as } k \to +\infty
$$

and from (1) ,

$$
\int_0^{\frac{1}{M(f^{m\nu_k+1}x,f^{n\nu_k+1}x,t)}-1} \varphi(s)ds \leqslant c \int_0^{\frac{1}{M(f^{m\nu_k}x,f^{n\nu_k}x,t)}-1} \varphi(s)ds. \tag{3}
$$

Letting now $k \to +\infty$ in both sides of (3), we have

$$
\int_0^\varepsilon \varphi(s)ds \leqslant c \int_0^\varepsilon \varphi(s)ds
$$

which is a contradiction being $c \in (0,1)$ and the integral being positive. Therefore, for a certain $\mu \in \mathbb{N}$,

$$
\frac{1}{M(f^{m_{\nu}+1}x, f^{n_{\nu}+1}x, t)} - 1 < \frac{\varepsilon}{t}
$$

for all $\nu > \mu$. Finally, we prove the stronger property that there exist a $\sigma_{\varepsilon} \in (0, \varepsilon)$ and a *ν*_{*ε*} \in N such that for each *ν > ν*_{*ε*} (*ν* \in N), we have

$$
\frac{1}{M(f^{m_{\nu}+1}x, f^{n_{\nu}+1}x, t)} - 1 < \frac{\varepsilon - \sigma_{\varepsilon}}{t}.
$$

Suppose the existence of a subsequence $\{\nu_k\}_{k \in \mathbb{N}} \subseteq \mathbb{N}$ such that

$$
\frac{1}{M(f^{m_{\nu_k}+1}x, f^{n_{\nu_k}+1}x, t)} - 1 \to \frac{\varepsilon}{t}
$$

as $k \to +\infty$. Also, we have

$$
\int_{0}^{\frac{1}{M(f^{m_{\nu_k}+1}x,f^{n_{\nu_k}+1}x,t)}}^{-1}\varphi(s)ds \leqslant c\int_{0}^{\frac{1}{M(f^{m_{\nu_k}}x,f^{n_{\nu_k}}x,t)}}^{-1}\varphi(s)ds.
$$

Letting $k \to +\infty$, we have again the contradiction that

$$
\int_0^{\frac{\varepsilon}{t}} \varphi(s)ds \leqslant c \int_0^{\frac{\varepsilon}{t}} \varphi(s)ds.
$$

In conclusion of this step, we can prove the Cauchy character of ${f^n x}_{n \in \mathbb{N}}$ ($x \in X$). In fact, for each natural number $\nu > \nu_{\varepsilon}$ (ν_{ε} as above), we have

$$
\frac{\varepsilon}{t} \leq \frac{1}{M(f^{m_{\nu}}x, f^{n_{\nu}}x, t)} - 1
$$
\n
$$
\leq \frac{1}{M(f^{m_{\nu}}x, f^{m_{\nu}+1}x, t)} - 1
$$
\n
$$
+ \frac{1}{M(f^{m_{\nu}+1}x, f^{n_{\nu}+1}x, t)} - 1 + \frac{1}{M(f^{n_{\nu}+1}x, f^{n_{\nu}}x, t)} - 1
$$
\n
$$
< \frac{1}{M(f^{m_{\nu}}x, f^{n_{\nu}+1}x, t)} - 1 + (\varepsilon - \sigma_{\varepsilon}) + \frac{1}{M(f^{n_{\nu}}x, f^{n_{\nu}+1}x, t)} - 1,
$$

when $\nu \to +\infty$, we have $\varepsilon < \varepsilon - \sigma_{\varepsilon}$, which is a contradiction. This prove Step 3. **Step 4.** Existence of a fixed point. Since $(X, M, N, *, \Diamond)$ is a complete intuitionistic fuzzy metric space, there exists a point $a \in X$ such that $a = \lim_{n \to +\infty} f^n x$. Further *a* is a fixed point. In fact, suppose that $\frac{1}{M(a,fa,t)} - 1 > 0$. Then

$$
0 < \frac{1}{M(a, fa, t)} - 1 \leq \frac{1}{M(a, f^{n+1}x, t)} - 1 + \frac{1}{M(f^{n+1}x, fa, t)} - 1 \to 0 \text{ as } n \to +\infty,\tag{4}
$$

Becuase $M(a, f^{n+1}x, t)$ and $M(f^{n+1}x, fa, t)$ converge to 1 as $n \to +\infty$. For the first one it is obvious, while the second one we have

$$
\int_0^{\frac{1}{M(f^{n+1}x, fa, t)}} \varphi(s) ds \leq c \int_0^{\frac{1}{M(f^n x, a, t)}} \varphi(s) ds \to 0 \text{ as } n \to +\infty.
$$

Now, if $M(f^{n+1}x, fa, t)$ does not converge to 1 as $n \to +\infty$, then there exists a subsequence ${f^{n_\nu+1}x}_{\nu \in \mathbb{N}} \subseteq {f^{n+1}x}_{n \in \mathbb{N}}$ such that $\frac{1}{M(f^{n_\nu+1}x,a,t)} - 1 \geq \frac{\varepsilon}{t}$ $\frac{\varepsilon}{t}$ for a certain $\varepsilon > 0$. Thus, we have following contradictions:

$$
0<\int_0^{\frac{\varepsilon}{t}}\varphi(s)ds\leqslant \int_0^{\frac{1}{M(f^{n_{\nu}+1}x,fa,t)}-1}\varphi(s)ds\to 0 \text{ as } \nu\to+\infty.
$$

Step 5. Uniqueness of the fixed point. Suppose that there are two distinct points $a, b \in X$ such that $fa = a$ and $fb = b$. Then, by (1), we have the contradiction

$$
0 < \int_0^{\frac{1}{M(a,b,t)} - 1} \varphi(s) ds = \int_0^{\frac{1}{M(fa,fb,t)} - 1} \varphi(s) ds \leq c \int_0^{\frac{1}{M(a,b,t)} - 1} \varphi(s) ds < \int_0^{\frac{1}{M(a,b,t)} - 1} \varphi(s) ds.
$$

The final step also proves that for each $x \in X$, $\lim_{n \to +\infty} f^n x = a = fa$. The proof is completed.

Now we give remark and examples concerning these contractive mappings of integral type, which clarify the connection between our result and the classical ones.

Remark 1 Theorem 3.1 is a generalization of the Banach principle, letting $\varphi(s) = 1$ *for* \int *each* $s \geq 0$ *in* (1)*, we have*

$$
\int_0^{\frac{1}{M(fx, fy, t)} - 1} \varphi(s) ds = \frac{1}{M(fx, fy, t)} - 1 \leq c \left(\frac{1}{M(x, y, t)} - 1 \right) = c \int_0^{\frac{1}{M(x, y, t)} - 1} \varphi(s) ds.
$$

Thus, a Banach fuzzy contraction also satisfies (1)*. The converse is not true as we will see in follow examples.*

Example **3.2** Let $X := \{\frac{1}{n}\}$ $\frac{1}{n}|n \in \mathbb{N}\}$ \cup {0}, $M(x, y, t) = \frac{t}{t+d(x,y)}$ and $N(x, y, t) = \frac{d(x,y)}{t+d(x,y)}$ with metric induced by $\mathbb{R} : d(x, y) := |x - y|$, thus, since X is a closed subset of \mathbb{R} , it is a intuitionistic complete fuzzy metric space. We consider now a mapping $f: X \to X$ defined by

$$
fx := \begin{cases} \frac{1}{n+1} & x = \frac{1}{n}, n \in \mathbb{N}, \\ 0 & x = 0, \end{cases}
$$

Then it satisfies (1) with $\varphi(t) = t^{\frac{1}{t}-2} [1 - \log t]$ for $t > 0$, $\varphi(0) = 0$, and $c = \frac{1}{2}$ $\frac{1}{2}$. In this context $\int_0^r \varphi(s)ds = r^{\frac{1}{r}}$, so that (1), for $x \neq y$ is equivalent to

$$
\left(\frac{1}{M(fx, fy, t)} - 1\right)^{1/\left(\frac{1}{M(fx, fy, t)} - 1\right)} \leqslant c \left(\frac{1}{M(x, y, t)} - 1\right)^{1/\left(\frac{1}{M(x, y, t)} - 1\right)}.
$$

If $m, n \in \mathbb{N}$ with $m > n$ and $x = \frac{1}{n}$ $\frac{1}{n}$, $y = \frac{1}{m}$ $\frac{1}{m}$, then we have

$$
\left(\frac{1}{M(fx, fy, t)} - 1\right)^{1/\left(\frac{1}{M(fx, fy, t)} - 1\right)} = \left|\frac{1}{n+1} - \frac{1}{m+1}\right|^{1/\left|\frac{1}{n+1} - \frac{1}{m+1}\right|}
$$

$$
= \left[\frac{m-n}{(n+1)(m+1)}\right]^{\frac{(n+1)(m+1)}{m-n}}.
$$

On the other hand,

$$
\left(\frac{1}{M(x,y,t)} - 1\right)^{1/\left(\frac{1}{M(x,y,t)} - 1\right)} \left|\frac{1}{n} - \frac{1}{m}\right|^{1/\left|\frac{1}{n} - \frac{1}{m}\right|} = \left[\frac{m-n}{nm}\right]^{\frac{nm}{m-n}}
$$

.

Now, we show that

$$
\left[\frac{m-n}{(n+1)(m+1)}\right]^{\frac{(n+1)(m+1)}{m-n}} \leqslant \frac{1}{2} \left[\frac{m-n}{nm}\right]^{\frac{nm}{m-n}}
$$

or equivalently,

$$
\left[\frac{m-n}{(n+1)(m+1)}\right]^{\frac{(n+m+1)}{m-n}} \cdot \left[\frac{nm}{(n+1)(m+1)}\right]^{\frac{nm}{m-n}} \leqslant \frac{1}{2}.
$$

Since $nm < (n+1)(m+1)$ and $\frac{nm}{m-n} > 0$, we have $\left[\frac{nm}{(n+1)(m+1)}\right]^{\frac{nm}{m-n}} \leq 1$. In addition to, since for all $m, n \in \mathbb{N}$, we have $m \leqslant 3n + nm + 1$, and so $2(m - n) \leqslant (n + 1)(m + 1)$, we have

$$
\left[\frac{m-n}{(n+1)(m+1)}\right]^{\frac{(n+m+1)}{m-n}} \leqslant \frac{1}{2}.
$$

On the other hand, taking $x = \frac{1}{n}$ $\frac{1}{n}$ and $y = 0$. For each $n \in \mathbb{N}$, we have $\left[\frac{n}{n+1}\right]^{n} \cdot \frac{1}{n+1} \leq \frac{1}{2}$ $\overline{2}$ and so,

$$
\left(\frac{1}{M(fx, fy, t)} - 1\right)^{1/\left(\frac{1}{M(fx, fy, t)} - 1\right)} = \left[\frac{1}{n+1}\right]^{n+1} \leqslant \frac{1}{2} \left[\frac{1}{n}\right]^n = \frac{1}{2} \left(\frac{1}{M(x, y, t)} - 1\right)^{1/\left(\frac{1}{M(x, y, t)} - 1\right)}
$$

Therefore, such mapping f satisfies condition (3.2) with $c = \frac{1}{2}$ $\frac{1}{2}$ and therefore (1) with the same *c* and for defined by $\varphi(t) = t^{\frac{1}{t}-2}[1 - \log t]$ for $t > 0$ and $\varphi(0) = 0$, but

$$
\sup_{\{x,y\in X\mid x\neq y\}}\frac{\frac{1}{M(fx, fy, t)}-1}{\frac{1}{M(x, y, t)}-1}=1.
$$

Thus, it is not a Banach contraction.

Example 3.3 Let $f : \mathbb{R}^+ \to \mathbb{R}^+$ be defined by $fx := x+2, \varphi \equiv -2, M(x, y, t) = \frac{t}{t+d(x,y)}$ $N(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$ and *d* be the Euclidean distance function. Then, for an arbitrary $c \in (0, 1)$, we have

$$
\int_0^{\frac{1}{M(fx, fy, t)} - 1} \varphi(s) ds = -2 \left(\frac{1}{M(fx, fy, t)} - 1 \right) = -2 \left(\frac{1}{M(x, y, t)} - 1 \right)
$$

$$
\leq -2c \left(\frac{1}{M(x, y, t)} - 1 \right) = c \int_0^{\frac{1}{M(x, y, t)} - 1} \varphi(s) ds.
$$

Thus (1) is satisfied with $\varphi \equiv -2$ and for all $c \in (0,1)$, but f, being a translation on \mathbb{R}^+ , has no fixed points.

Definition 3.4 A self-map *f* on a intuitionistic fuzzy metric spaces $(X, M, N, *, \Diamond)$ is said to be *A*-fuzzy contraction if it satisfies the condition

$$
\frac{1}{M(fx,fy,t)}-1\leqslant \alpha\left(\frac{1}{M(x,y,t)}-1,\frac{1}{M(x,fx,t)}-1,\frac{1}{M(y,fy,t)}-1\right)
$$

for all $x, y \in X$ and some $\alpha \in A$.

Lemma 3.5 Let a self-map *f* on a intuitionistic fuzzy metric spaces $(X, M, N, *, \Diamond)$, for all $x, y \in X$, $t > 0$ and some $\beta \in [0, \frac{1}{2}]$ $(\frac{1}{2})$ satisfying

$$
\frac{1}{M(fx, fy, t)} - 1 \leq \beta \max \left\{ \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2 \right\},\,
$$

is a *A*-fuzzy contraction.

Proof. Define the map $\alpha : \mathbb{R}^3_+ \to \mathbb{R}_+$ as

$$
\alpha(u, v, w) = \beta \max\{u + v, v + w, u + w\}
$$

for all $u, v, w \in \mathbb{R}_+$, where β is any fixed number in $[0, \frac{1}{2}]$ $\frac{1}{2}$). Then $\alpha \in A$ ([1]). first note that α is continuous, second for

$$
u \leqslant \alpha(u, v, v) = \beta \max\{u + v, v + u, v + v\},\
$$

we consider the following cases.

Case I. max $\{u + v, v + u, v + v\} = u + v$. In this case, $u \leq \frac{\beta}{1-\beta}$ $\frac{\beta}{1-\beta}v$, with $k=\frac{\beta}{1-\beta}$ $\frac{\beta}{1-\beta}$ ∈ [0, 1). **Case II.** max $\{u + v, v + u, v + v\} = 2v$. In this case, $u \leq k v$, with $k = 2\beta \in [0, 1)$. Similarly, for $u \leq \alpha(v, u, v)$ or $u \leq \alpha(v, v, u)$ we have $u \leq kv$ for some $k \in [0, 1)$. Hence,

$$
\frac{1}{M(fx, fy, t)} - 1 \leq \beta \max \left\{ \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2 \right\},\
$$

$$
= \alpha \left(\frac{1}{M(x, y, t)} - 1, \frac{1}{M(x, x, t)} - 1, \frac{1}{M(fy, y, t)} - 1 \right),
$$

by the construction of α . Thus, f is an A -contraction.

Example 3.6 Let $X = \{0, 11, 12, 13, 14, 15, 16, 17, 18, 19\}$, $M(x, y, t) = \frac{t}{t + d(x, y)}$ and $N(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$ with usual metric relative to real line. *f* be a self-map on *X*, given by

$$
fx = \begin{cases} 12 & x = 0, \\ 11 & otherwise. \end{cases}
$$

One can easily verify that *f* satisfies

$$
\frac{1}{M(fx, fy, t)} - 1 \leq \beta \max \left\{ \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2 \right\},\,
$$

for all $x, y \in X$ and some $\beta \in [0, \frac{1}{2}]$ $\frac{1}{2}$). Hence, by Lemma 3.5, *f* is a *A*-fuzzy contraction.

Theorem 3.7 Let *f* be a self-map of a complete intuitionistic fuzzy metric space $(X, M, N, *, \Diamond)$ satisfying the following condition:

$$
\int_0^{\frac{1}{M(fx, fy, t)} - 1} \varphi(s) ds \leq \alpha \left(\int_0^{\frac{1}{M(x, y, t)} - 1} \varphi(s) ds, \int_0^{\frac{1}{M(x, fx, t)} - 1} \varphi(s) ds, \int_0^{\frac{1}{M(y, fy, t)} - 1} \varphi(s) ds \right) \tag{5}
$$

for each $x, y \in X$ and $t > 0$ with some $\alpha \in A$, where $\varphi : [0, +\infty) \to [0, \infty)$ is a Lebesgueintegrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0, +\infty)$, nonnegative, and such that for each $\varepsilon > 0$,

$$
\int_0^\varepsilon \varphi(s) \, ds > 0. \tag{6}
$$

Then *f* has a unique fixed point $z \in X$ and for each $x \in X$, $\lim_{n \to +\infty} f^n x = z$.

Proof. Let $x_0 \in X$ be a arbitrary and define $x_{n+1} = fx_n$. From (5), for each integer

 $n \geqslant 1$, we get

$$
\begin{split} \int_{0}^{\frac{1}{M(x_n,x_{n+1},t)}-1} &\varphi(s)ds = \int_{0}^{\frac{1}{M(fx_{n-1},fx_n,t)}-1} \varphi(s)ds \\ &\leqslant \alpha \left(\int_{0}^{\frac{1}{M(x_{n-1},x_n,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(x_{n-1},fx_{n-1},t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(x_n,fx_n,t)}-1} \varphi(s)ds\right) \\ &\qquad\qquad= \alpha \left(\int_{0}^{\frac{1}{M(x_{n-1},x_n,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(x_{n-1},x_n,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(x_n,x_{n+1},t)}-1} \varphi(s)ds\right). \end{split}
$$

Then, by the axiom $(A2)$ of function α ,

$$
\int_0^{\frac{1}{M(x_n, x_{n+1}, t)} - 1} \varphi(s) ds \leq k \int_0^{\frac{1}{M(x_{n-1}, x_n, t)} - 1} \varphi(s) ds \tag{7}
$$

for some $k \in [0, 1)$ as $\alpha \in A$. In this fashion, one can obtain

$$
\int_0^{\frac{1}{M(x_n, x_{n+1}, t)} - 1} \varphi(s) ds \leq k \int_0^{\frac{1}{M(x_{n-1}, x_n, t)} - 1} \varphi(s) ds
$$

$$
\leq k^2 \int_0^{\frac{1}{M(x_{n-2}, x_{n-1}, t)} - 1} \varphi(s) ds
$$

$$
\cdots
$$

$$
\leq k^n \int_0^{\frac{1}{M(x_0, x_1, t)} - 1} \varphi(s) ds.
$$

Taking limit as $n \to +\infty$, we get $\lim_{n} \int_0^{\frac{1}{M(x_n,x_{n+1},t)}} - 1 \varphi(s) ds = 0$ as $k \in [0,1)$. Which, from (6) implies that

$$
\lim_{n} \frac{1}{M(x_n, x_{n+1}, 1)} - 1 = 0.
$$
\n(8)

We now show that $\{x_n\}$ is a Cauchy sequence. Suppose that it is not a Cauchy sequence. Then there exists $\varepsilon > 0$ and subsequences $\{m_i\}$ and $\{n_i\}$ such that $m_i < n_i < m_{i+1}$ with

$$
\frac{1}{M(x_{m_i}, x_{n_i}, t)} - 1 \geq \frac{\varepsilon}{t}, \quad \frac{1}{M(x_{m_i}, x_{n_i-1}, t)} - 1 < \frac{\varepsilon}{t}.\tag{9}
$$

Now, we have

$$
\frac{1}{M(x_{m_i-1}, x_{n_i}, t)} - 1 \le \frac{1}{M(x_{m_i-1}, x_{m_i}, t)} - 1 + \frac{1}{M(x_{m_i}, x_{n_i-1}, t)} - 1
$$
\n
$$
< \frac{1}{M(x_{m_i-1}, x_{m_i}, t)} - 1 + \frac{\varepsilon}{t}.
$$
\n(10)

So, by (8) and (10) , we get

$$
\lim_{i} \int_{0}^{\frac{1}{M(x_{m_i-1}, x_{n_i-1}, t)} - 1} \varphi(s) ds \leqslant \int_{0}^{\varepsilon} \varphi(s) ds. \tag{11}
$$

Using (7) , (9) and (11) , we have

$$
\int_0^{\varepsilon} \varphi(s)ds \leqslant \int_0^{\frac{1}{M(x_{m_i}, x_{n_i}, t)} - 1} \varphi(s)ds \leqslant k \int_0^{\frac{1}{M(x_{m_i-1}, x_{n_i-1}, t)} - 1} \varphi(s)ds \leqslant k \int_0^{\varepsilon} \varphi(s)ds,
$$

which is a contradiction (since $k \in [0, 1)$). Thus, $\{x_n\}$ is Cauchy and hence, is convergent. Call the limit z . From (5) , we get

$$
\begin{split} \int_0^{\frac{1}{M(fz,x_{n+1},t)}-1}\varphi(s)ds&=\int_0^{\frac{1}{M(fz,fx_{n},t)}-1}\varphi(s)ds\\ &\leqslant \alpha \left(\int_0^{\frac{1}{M(z,x_{n},t)}-1}\varphi(s)ds,\int_0^{\frac{1}{M(z,fz,t)}-1}\varphi(s)ds,\int_0^{\frac{1}{M(x_{n},x_{n+1},t)}-1}\varphi(s)ds\right). \end{split}
$$

Taking limit as $n \to \infty$, we get

$$
\int_0^{\frac{1}{M(fz,z,t)}-1}\varphi(s)ds\leqslant \alpha\left(0,\int_0^{\frac{1}{M(z,fz,t)}-1}\varphi(s)ds,0\right).
$$

So, by the axiom $(A2)$ of function α ,

$$
\int_0^{\frac{1}{M(fz,z,t)}-1} \varphi(s)ds \leq k \cdot 0 = 0,
$$

which implies that $\frac{1}{M(fz,z,t)} = 1$ or $fz = z$ (by (6)). Next, suppose that $w \neq z$ be another fixed point of *f*. From (5) we have

$$
\int_{0}^{\frac{1}{M(z,w,t)}-1} \varphi(s)ds = \int_{0}^{\frac{1}{M(z,x,y,t)}-1} \varphi(s)ds
$$

$$
\leq \alpha \left(\int_{0}^{\frac{1}{M(z,w,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(z,fz,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(w,fw,t)}-1} \varphi(s)ds \right)
$$

$$
= \alpha \left(\int_{0}^{\frac{1}{M(z,w,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(z,z,t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M(w,w,t)}-1} \varphi(s)ds \right)
$$

$$
= \alpha \left(\int_{0}^{\frac{1}{M(z,w,t)}-1} \varphi(s)ds, 0, 0 \right).
$$

So, by axiom $(A2)$ of function α ,

$$
\int_0^{\frac{1}{M(z,w,t)}-1} \varphi(s)ds = 0
$$

l,

, whice implies that $\frac{1}{M(z,w,t)} = 1$ or $z = w$ (by (6)). Hence, the fixed point is unique.

Next theorem describes common fixed point of two self-maps on *X* having two related metrics in integral setting.

Theorem 3.8 Let $(X, M_d, N_d, *, \Diamond)$ and $(X, M_\delta, N_\delta, *, \Diamond)$ be intuitionistic fuzzy metric spaces with two fuzzy metric $M_d(x, y, t) = \frac{t}{t + d(x, y)}, N_d(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$ and $M_{\delta}(x, y, t) = \frac{t}{t + \delta(x, y)}, N_{\delta}(x, y, t) = \frac{\delta(x, y)}{t + \delta(x, y)}$ satisfying the following conditions: (i) for all $x, y \in \overline{X}$,

$$
\int_0^{\frac{1}{M_d(x,y,t)}-1}\varphi(s)ds\leqslant \int_0^{\frac{1}{M_\delta(x,y,t)}-1}\varphi(s)ds\text{ and }\int_0^{N_d(x,y,t)}\varphi(s)ds\leqslant \int_0^{N_\delta(x,y,t)}\varphi(s)ds,
$$

(ii) $(X, M_d, N_d, * \Diamond)$ is complete,

(iii) *S*, *T* are self-maps on *X* such that *T* is continuous with respect to *d* and

$$
\int_0^{\frac{1}{M_\delta(Tx, Sy,t)}-1} \varphi(s)ds \leqslant \alpha \left(\int_0^{\frac{1}{M_\delta(x,y,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(x,Tx,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(y, Sy,t)}-1} \varphi(s)ds \right) \tag{12}
$$

for each $x, y \in X$ and $t > 0$ with some $\alpha \in A$, where $\varphi : [0, +\infty) \to [0, \infty)$ is a Lebesgueintegrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0, +\infty)$, nonnegative, and such that for each $\varepsilon > 0$,

$$
\int_0^\varepsilon \varphi(s) \, ds > 0. \tag{13}
$$

Then *T* and *S* have a unique common fixed point $z \in X$.

Proof. For each integer $n \geq 0$, we define $x_{2n+1} = Tx_{2n}$ and $x_{2n+2} = Sx_{2n+1}$. Then, from (12) , we get

$$
\int_{0}^{\frac{1}{M_{\delta}(x_{1},x_{2},t)}-1} \varphi(s)ds = \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds
$$

$$
\leq \alpha \left(\int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{0},t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M_{\delta}(x_{1},x_{1},t)}-1} \varphi(s)ds \right)
$$

$$
\leq \alpha \left(\int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds, \int_{0}^{\frac{1}{M_{\delta}(x_{1},x_{2},t)}-1} \varphi(s)ds \right).
$$

Then, by the axiom $(A2)$ function α ,

$$
\int_0^{\frac{1}{M_\delta(x_1, x_2, t)} - 1} \varphi(s) ds \leq k \int_0^{\frac{1}{M_\delta(x_0, x_1, t)} - 1} \varphi(s) ds
$$

for some $k \in [0, 1)$. Similarly, one can show that

$$
\int_0^{\frac{1}{M_\delta(x_2, x_3, t)} - 1} \varphi(s) ds \leq k \int_0^{\frac{1}{M_\delta(x_1, x_2, t)} - 1} \varphi(s) ds
$$

for some $k \in [0, 1)$. In general, for any $r \in \mathbb{N}$ odd or even,

$$
\int_0^{\frac{1}{M_\delta(x_r,x_{r+1},t)}-1}\varphi(s)ds\leqslant k\int_0^{\frac{1}{M_\delta(x_{r-1},x_r,t)}-1}\varphi(s)ds.
$$

Thus, for any $n \in \mathbb{N}$ odd or even, one can easily obtain that

$$
\int_0^{\frac{1}{M_\delta(x_n,x_{n+1},t)}-1} \varphi(s)ds \leqslant k^n \int_0^{\frac{1}{M_\delta(x_0,x_1,t)}-1} \varphi(s)ds.
$$

Then, by the condition (i) of the theorem, we obtain

$$
\int_0^{\frac{1}{M_d(x_n,x_{n+1},t)}-1}\varphi(s)ds\leqslant \int_0^{\frac{1}{M_\delta(x_n,x_{n+1},t)}-1}\varphi(s)ds\leqslant k^n\int_0^{\frac{1}{M_\delta(x_0,x_1,t)}-1}\varphi(s)ds.
$$

Taking limit as $n \to \infty$, we get

$$
\lim_{n} \int_{0}^{\frac{1}{M(x_n, x_{n+1}, t)} - 1} \varphi(s) ds = 0
$$

as $k \in [0, 1)$, which from (13) implies that $\lim_{n} \frac{1}{M(x_n, x_{n+1}, t)} - 1 = 0$ or $M(x_n, x_{n+1}, t) = 1$. We now show that $\{x_n\}$ is a Cauchy sequence with respect to $(X, M_d, N_d, *, \Diamond)$. For any integer $p > 0$,

$$
\int_{0}^{\frac{1}{M(x_{n},x_{n+p},t)}-1} \varphi(s)ds \leq \int_{0}^{\frac{1}{M_{\delta}(x_{n},x_{n+1},t)}-1} \varphi(s)ds
$$
\n
$$
\leq \int_{0}^{\frac{1}{M_{\delta}(x_{n},x_{n+1},t)}-1} \varphi(s)ds + \int_{0}^{\frac{1}{M_{\delta}(x_{n+1},x_{n+2},t)}-1} \varphi(s)ds
$$
\n
$$
+\cdots + \int_{0}^{\frac{1}{M_{\delta}(x_{n+p-1},x_{n+p},t)}-1} \varphi(s)ds
$$
\n
$$
\leq k^{n} \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds + k^{n+1} \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds
$$
\n
$$
+\cdots + k^{n+p-1} \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds
$$
\n
$$
\leq \frac{k^{n}}{1-k} \int_{0}^{\frac{1}{M_{\delta}(x_{0},x_{1},t)}-1} \varphi(s)ds \to 0 \text{ as } n \to +\infty,
$$

since $k \in [0, 1)$. Therefore, $\{x_n\}$ is Cauchy. Hence, by completeness of X , $\{x_n\}$ converges to some $z \in X$, i.e. $\frac{1}{M_d(x_n,z,t)} - 1 \to 0$ or $M_d(x_n,z,t) = 1$ as $n \to +\infty$ for some $z \in X$.

Since *T* is continuous with the respect to *d*, we get

$$
0 = \lim_{n} \int_{0}^{\frac{1}{M_d(x_{2n+1},z,t)} - 1} \varphi(s) ds = \lim_{n} \int_{0}^{\frac{1}{M_d(x_{2n},z,t)} - 1} \varphi(s) ds = \lim_{n} \int_{0}^{\frac{1}{M_d(x_{2n},z,t)} - 1} \varphi(s) ds.
$$

So, by (13), $\frac{1}{M_d(Tz, z, t)} - 1 = 0$ or $M_d(Tz, z, t) = 1$ i.e. $Tz = z$. Now, by (12), we have

$$
\int_0^{\frac{1}{M_\delta(z,s,z,t)}-1} \varphi(s)ds = \int_0^{\frac{1}{M_\delta(Tz,s,z,t)}-1} \varphi(s)ds
$$

\$\leq \alpha \left(\int_0^{\frac{1}{M_\delta(z,z,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(z,Tz,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(z,s,z,t)}-1} \varphi(s)ds \right) \$
\$\leq \alpha \left(0, 0, \int_0^{\frac{1}{M_\delta(z,s,z,t)}-1} \varphi(s)ds \right).

Then, by the axiom $(A2)$ of function α ,

$$
\int_0^{\frac{1}{M_\delta(z,Sz,t)}-1}\varphi(s)ds\leqslant k\cdot 0=0
$$

and by (13), $M_\delta(z, Sz, t) = 1$ or $Sz = z$. Thus *z* is a common fixed point of *S* and *T*.

Let $w \neq z$ be another common fixed point of *S* and *T* in *X*. Then by (12)

$$
\int_0^{\frac{1}{M_\delta(z,w,t)}}^{-1} \varphi(s)ds = \int_0^{\frac{1}{M_\delta(Tz,Sw,t)}} \varphi(s)ds
$$

\$\leq \alpha \left(\int_0^{\frac{1}{M_\delta(z,w,t)}} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(z,Tz,t)}} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(w,Sw,t)}} \varphi(s)ds \right)\$
\$\leq \alpha \left(\int_0^{\frac{1}{M_\delta(z,w,t)}} \varphi(s)ds, 0, 0 \right)\$
\$\leq k \cdot 0 = 0 \text{ as } \alpha \in A\$.

Then by (13) we have $\frac{1}{M_\delta(z, w, t)} - 1 = 0$ or $M_\delta(z, w, t) = 1$, hence $z = w$. ■

If $S = T$, then the Theorem 3.8 gives as follow.

Corollary 3.9 Let $(X, M_d, N_d, *, \Diamond)$ and $(X, M_\delta, N_\delta, *, \Diamond)$ be intuitionistic fuzzy metric spaces with two fuzzy metric $M_d(x, y, t) = \frac{t}{t + d(x,y)}$, $N_d(x, y, t) = \frac{d(x,y)}{t + d(x,y)}$ and $M_{\delta}(x, y, t) = \frac{t}{t + \delta(x, y)}, N_{\delta}(x, y, t) = \frac{\delta(x, y)}{t + \delta(x, y)}$ satisfying the following conditions: (i) for all $x, y \in X$,

$$
\int_0^{\frac{1}{M_d(x,y,t)}-1} \varphi(s)ds \leqslant \int_0^{\frac{1}{M_\delta(x,y,t)}-1} \varphi(s)ds,
$$

198 *M. E. Samei / J. Linear. Topological. Algebra.* 07*(*03*) (*2018*)* 183*-*199*.*

$$
\int_0^{N_d(x,y,t)} \varphi(s)ds \leqslant \int_0^{N_\delta(x,y,t)} \varphi(s)ds,
$$

- (ii) $(X, M_d, N_d, *, \Diamond)$ is complete,
- (iii) *T* is self-map on *X* such that *T* is continuous with respect to *d* and

$$
\int_0^{\frac{1}{M_\delta(Tx,Ty,t)}-1} \varphi(s)ds \leqslant \alpha \left(\int_0^{\frac{1}{M_\delta(x,y,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(x,Tx,t)}-1} \varphi(s)ds, \int_0^{\frac{1}{M_\delta(y,Ty,t)}-1} \varphi(s)ds \right)
$$

for each $x, y \in X$ and $t > 0$ with some $\alpha \in A$, where $\varphi : [0, +\infty) \to [0, \infty)$ is a Lebesgueintegrable mapping which is summable (i.e., with finite integral) on each compact subset of $[0, +\infty)$, nonnegative, and such that for each $\varepsilon > 0$,

$$
\int_0^\varepsilon \varphi(s) \, ds > 0.
$$

Then *T* has a unique fixed point $z \in X$.

Example **3.10** Consider *X* as Example 3.6, $M(x, y, t) = \frac{t}{t+d(x,y)}$ and $N(x, y, t) =$ $\frac{d(x,y)}{t+d(x,y)}$ with usual metric relative to real line. Define *f* on *X* by

$$
fx = \begin{cases} 12 & x = 0, \\ 11 & otherwise. \end{cases}
$$

Let $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ be given by $\varphi(s) = \frac{s-1}{s}$ for all $s \in \mathbb{R}_+$. Then $\varphi : [0, +\infty) \to [0, +\infty)$ is a Lebesgue-integrable mapping which is summable on each compact subset of $[0, +\infty)$, non-negative, and such that for each $\varphi > 0$, $\int_0^{\varepsilon} \varphi(s) ds > 0$. Now, as we know from Example 3.6, a self-map *f* satisfying

$$
\frac{1}{M(fx, fy, t)} - 1 \leq \beta \max \left\{ \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(fy, y, t)} - 2, \frac{1}{M(fx, x, t)} + \frac{1}{M(x, y, t)} - 2 \right\}
$$

for all $x, y \in X$, $t > 0$ and some $\beta \in [0, \frac{1}{2}]$ $(\frac{1}{2})$, is an *A*-fuzzy contraction. We have

$$
\int_{0}^{\frac{1}{M(fx, fy, t)}} \frac{1}{\varphi(s)} ds \leq \alpha \left(\int_{0}^{\frac{1}{M(x, y, t)}} \frac{1}{\varphi(s)} ds, \int_{0}^{\frac{1}{M(x, fx, t)}} \frac{1}{\varphi(s)} ds, \int_{0}^{\frac{1}{M(y, fy, t)}} \frac{1}{\varphi(s)} ds \right)
$$

$$
= \beta \max \left\{ \int_{0}^{\frac{1}{M(fx, x, t)}} \frac{1}{\varphi(s)} ds, \int_{0}^{\varphi(s)} ds, \int_{0}^{\frac{1}{M(fy, y, t)}} \frac{1}{\varphi(s)} ds \right\}
$$

$$
\int_{0}^{\frac{1}{M(fx, x, t)}} \frac{1}{\varphi(s)} ds, \int_{0}^{\frac{1}{M(fy, y, t)}} \frac{1}{\varphi(s)} ds \leq \alpha \left(\frac{1}{\varphi(s)} \right).
$$

which is satisfied for all $x, y \in X$, $t > 0$ and some $\beta \in [0, \frac{1}{2}]$ $(\frac{1}{2})$.

References

- [1] M. Akram, A. A. Siddiqui, A general class of contractions: *A*-contractions, Novi Sad J. Math. 38 (1) (2008), 25-33.
- [2] R. Bianchini, Su un problema di S. Riech riguardante la teori dei punti fissi, Boll. Un. Math. Ital. 5 (1972), 103-108.
- [3] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 29 (2002), 531-536.
- [4] D. Dey, A. Ganguly, M. Saha, Fixed point theorems for mappings under general contractive condition of integral type, Bull. Math. Anal. Appl. 3 (1) (2011), 27-34.
- [5] C. Di Bari, C. Vetro, A fixed point theorem for a family of mappings in a fuzzy metric space, Rend. Circ. Math. Palermo. 52 (2003), 315-321.
- [6] V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems. 125 (2002), 245-252.
- [7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc. 60 (1968), 71-76.
- [8] H. Karayilan, M. Telci, Common fixed point theorem for contractive type mappings in fuzzy metric spaces, Rend. Circ. Mat. Palermo. 60 (2011), 145-152.
- [9] J. H. Park, Intuitionistic fuzzy metric spaces, Chaos. Solitons. Fractals. 22 (2004), 1039-1046.
- [10] M. Rafi, M. S. M. Noorani, Fixed point theorem on intuitionistic fuzzy metric spaces, Iran. J. Fuzzy System. 3 (1) (2006), 23-29.
- [11] S. Reich, Kannan's fixed point theorem, Boll. Un. Math. Ital. 4 (1971), 1-11.
- [12] B. E. Rhoades, Two fixed point theorems formappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci. 63 (2003), 4007-4013.
- [13] B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 314-334.