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Abstract. In this paper, we shall establish some fixed point theorems for mappings with
the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces
(X,M,N, ∗,♢). We also use Lebesgue-integrable mapping to obtain new results. Akram,
Zafar, and Siddiqui introduced the notion of A-contraction mapping on metric space. In this
paper by using the main idea of the work, we introduce the concept of A-fuzzy contractive
mappings. Finally, we support our results by some examples.
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1. Introduction

In 2002, Branciari [3] analyzed the existence of fixed point for mapping T defined
on a complete metric space (X, d) satisfying a general contractive condition of integral
type. After the paper of Branciari, a lot of research works have been carried out on
generalizing contractive conditions of integral type for different contractive mappings
satisfying various known properties. In 2003, A fine work has been done by Rhoades
extending the result by replacing new condition [12]. Akram et al. [1] introduced a new
class of contraction maps, called A-contraction. which is a proper superclass of Kannan’s,
Reich’s and Bianchini’s type contractions [2, 7, 11]. In 2011, Dey et al. [4] proved some
fixed point theorems for mixed type of contraction mappings of integral type in complete
metric space .
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In this paper we consider (X,M,N, ∗,♢) intuitionistic fuzzy metric spaces in Park’s
sense [9] and by using their idea, we provide some fixed point results for the mappings f
define on the space, satisfying a contractive condition of integral type.

2. Preliminaries

Definition 2.1 ([13]) A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is called a continuous
t-norm whenever it satisfies the following conditions:
(a) ∗ is commutative and associative,
(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],
(d) a ∗ b ⩽ c ∗ d for all a, b, c, d ∈ [0, 1] with a ⩽ c and b ⩽ d.

For example, a ∗ b = ab, a ∗ b = min{a, b}, a ∗ b = max{a+ b− 1, 0} and

a ∗ b = ab

max{a, b, λ}

for 0 < λ < 1 are continuous t-norms.

Definition 2.2 ([13]) A binary operation ♢ : [0, 1]× [0, 1] → [0, 1] is called a continuous
t-conorm whenever it satisfies the following conditions:
(a) ♢ is commutative and associative,
(b) ♢ is continuous,
(c) a♢0 = a for all a ∈ [0, 1].
(d) a♢b ⩽ c♢d whenever a ⩽ c and b ⩽ d, and a, b, c, d ∈ [0, 1].

For example, a♢b = min{a+ b, 1} and a♢b = max{a, b} are continuous t-conorms.

Definition 2.3 ([9]) A 5-tuple (X,M,N, ∗,♢) is said to be intuitionistic fuzzy metric
space whenever X is a set, ∗ is a continuous t-norm, ♢ is a continuous t-conorm and M ,
N are fuzzy sets on X2 × [0,∞) satisfying the following conditions:
(i) M(x, y, t) +N(x, y, t) ⩽ 1,
(ii) M(x, y, 0) = 0,
(iii) M(x, y, t) = 1 for all t > 0 if and only if x = y,
(iv) M(x, y, t) = M(y, x, t),
(v) M(x, y, t) ∗M(y, z, s) ⩽ M(x, z, t+ s) for all x, y, z ∈ X, s, t > 0,
(vi) M(x, y, .) : [0,∞) −→ [0, 1] is continuous,
(vii) limt→∞M(x, y, t) = 1 for all x, y ∈ X,
(viii) N(x, y, 0) = 1,
(ix) N(x, y, t) = 0 for all t > 0 if and only if x = y,
(x) N(x, y, t) = N(y, x, t),
(xi) N(x, y, t)♢N(y, z, s) ⩾ N(x, z, t+ s) for all x, y, z ∈ X, s, t > 0,
(xii) N(x, y, .) : [0,∞) −→ [0, 1] is continuous,
(xiii) limt→∞N(x, y, t) = 0 for all x, y ∈ X.
Then (M,N) is called an intuitionistic fuzzy metric on X.

Example 2.4 ([9]) Let (X, d) be a metric space. Denote a∗b = ab and a♢b = min{1, a+b}
for all a, b ∈ [0, 1] and let Md and Nd be fuzzy sets on X2 × (0,∞) defined as follows:

Md(x, y, t) =
htn

htn +md(x, y)
, N(x, y, t) =

d(x, y)

ktn +md(x, y)
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for all h, k,m, n ∈ R+. If h = k = m = n = 1, we get

Md(x, y, t) =
t

t+ d(x, y)
, Nd(x, y, t) =

d(x, y)

t+ d(x, y)
.

We call this intuitionistic fuzzy metric induced by a metric d the standard intuitionistic
fuzzy metric and (X,Md, Nd, ∗,♢) is an intuitionistic fuzzy metric space.

For an intuitionistic fuzzy metric space (X,M,N, ∗,♢), define

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r,N(x, y, t) < r},

for all t > 0 and 0 < r < 1. Denote the generated topology by the sets B(x, r, t)
by τ(M,N). A sequence {xn} in (X,M,N, ∗,♢) is said to be Cauchy whenever for each
ε > 0 and t > 0, there exists a natural number n0 such that M(xn, xm, t) > 1 − ε and
N(xn, xm, t) < ε for all n,m ⩾ n0. Also, (X,M,N, ∗,♢) is called complete whenever
every Cauchy sequence is convergent with respect τ(M,N).

Definition 2.5 ([5]) Let (X,M,N, ∗,♢) be a intuitionistic fuzzy metric space. The fuzzy
metric M , N is triangular whenever

1

M(x, y, t)
− 1 ⩽ 1

M(x, z, t)
− 1 +

1

M(z, y, t)
− 1

and N(x, y, t) ⩽ N(x, z, t) +N(z, y, t) for all x, y, z ∈ X and t > 0.

Definition 2.6 ([6]) A sequence {xn} in a intuitionistic fuzzy metric space
(X,M,N, ∗,♢) is called intuitionistic fuzzy contractive sequence if there exists 0 < k < 1
such that

1

M(xn+1, xn+2, t)
− 1 ⩽ k

(
1

M(xn, xn+1, t)
− 1

)
and N(xn+1, xn+2, t) ⩽ kN(xn, xn+1, t) for all n and t > 0.

Lemma 2.7 ([8]) Let (X,M,N, ∗,♢) be a triangular intuitionistic fuzzy metric space
and {xn} an intuitionistic fuzzy contractive sequence in X. Then {xn} is a Cauchy
sequence.

Definition 2.8 ([10]) Let (X,M,N, ∗,♢) be a intuitionistic fuzzy metric space. A self-
map f on X is said to be intuitionistic fuzzy contractive whenever there exists k ∈ (0, 1)
such that

1

M(f(x), f(y), t)
− 1 ⩽ k

(
1

M(x, y, t)
− 1

)
and N(f(x), f(y), t) ⩽ kN(x, y, t) for all x, y ∈ X and t > 0.

Definition 2.9 ([1]) Let R+ denote the set of all non-negative real numbers and A be
the set of all functions α : R3

+ → R+ satisfying
(A1) α is continuous on the set R3

+ (with respect to the Euclidean metric on R3),
(A2) a ⩽ kb for some k ∈ [0, 1) whenever a ⩽ α(a, b, b) or a ⩽ α(b, a, b) or a ⩽ α(b, b, a)
for all a, b.
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3. Main results

Theorem 3.1 Let (X,M,N, ∗,♢) be a complete intuitionistic fuzzy metric space, c ∈
(0, 1), and let f : X → X be a mapping such that for each x, y ∈ X, t > 0,

∫ 1

M(fx,fy,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(x,y,t)
−1

0
φ(s)ds, (1)∫ N(fx,fy,t)

0
φ(s)ds ⩽ c

∫ N(x,y,t)

0
φ(s)ds, (2)

where φ : [0,+∞) → [0,+∞) is a Lebesgue-integrable mapping which is summable (i.e.,
with finite integral) on each compact subset of [0,+∞), nonnegative, and such that for
each ε > 0, ∫ ε

0
φ(s) ds > 0.

Then f has a unique fixed point a ∈ X such that for each x ∈ X, lim
n→+∞

fnx = a.

Proof. Step 1. We have

∫ 1

M(fnx,fn+1x,t)
−1

0
φ(s)ds ⩽ cn

∫ 1

M(x,fx,t)
−1

0
φ(s)ds.

This follows immediately by iterating (1) n times:

∫ 1

M(fnx,fn+1x,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(fn−1x,fnx,t)
−1

0
φ(s)ds ⩽ · · · ⩽ cn

∫ 1

M(x,fx,t)
−1

0
φ(s)ds.

As a consequence, since c ∈ (0, 1), we get

∫ 1

M(fnx,fn+1x,t)
−1

0
φ(s)ds ⩽ cn

∫ 1

M(x,fx,t)
−1

0
φ(s)ds → 0+.

Step 2. We have 1
M(fnx,fn+1x,t) − 1 → 0 as n → +∞. Suppose that

lim
n→+∞

sup

(
1

M(fnx, fn+1x, t)
− 1

)
=

ε

t
> 0,

Then there exists a mε ∈ N and a sequence {fnm}m⩾mε
such that

(
1

M(fnx, fn+1x, t)
− 1

)
→ ε

t
> 0

as m → +∞ and 1
M(fnmx,fnm+1x,t) − 1 ⩾ ε

2t for m ⩾ mε. Thus, by Step 1 and the sign of
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φ, we have the following contradiction:

0 = lim
m→+∞

∫ 1

M(fnmx,fnm+1x,t)
−1

0
φ(s)ds ⩾

∫ ε

2t

0
φ(s)ds > 0.

Step 3. For each x ∈ X, {fnx}n∈N is a Cauchy sequence, that is

∀ε > 0 ∃mε ∈ N : ∀m,n ∈ N,m > n > mε :
1

M(fmx, fnx, t)
− 1 <

ε

t
.

Suppose that there exists a ε > 0 such that for each l ∈ N there are ml, nl ∈ N with
ml > nl > l such that 1

M(fmlx,fnlx,t) − 1 ⩾ ε
t . Then we choose the sequences {ml}l∈N

and {nl}l∈N such that for each l ∈ N, ml is “minimal” in 1
M(fmlx,fnlx,t) − 1 ⩾ ε

t , but
1

M(fhx,fnlx,t) − 1 < ε
t for each h ∈ {nl + 1, · · · ,ml − 1}. Now, we analyze the properties

of 1
M(fmlx,fnlx,t) − 1 and 1

M(fml+1x,fnl+1x,t) − 1. At the first, we have

1

M(fmlx, fnlx, t)
− 1 → ε+

t

as l → +∞. Now, by the triangular inequality and Step 2

ε

t
⩽ 1

M(fmlx, fnlx, t)
− 1

⩽ 1

M(fmlx, fml−1x, t)
− 1 +

1

M(fml−1x, fnlx, t)
− 1

<
1

M(fmlx, fml−1x, t)
− 1 +

ε

t
→ ε+

t
as l → +∞.

Further there exists µ ∈ N such that for each natural number ν > µ,

1

M(fmν+1x, fnν+1x, t)
− 1 <

ε

t
.

In fact, if there exists a subsequence {νk}k∈N ⊆ N such that

1

M(fmνk
+1x, fnνk

+1x, t)
− 1 ⩾ ε

t
,

then

ε

t
⩽ 1

M(fmνk
+1x, fnνk

+1x, t)
− 1

⩽ 1

M(fmνk
+1x, fmνkx, t)

− 1

+
1

M(fmνkx, fnνkx, t)
− 1 +

1

M(fnνkx, fnνk
+1x, t)

− 1 → ε

t
as k → +∞
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and from (1),

∫ 1

M(f
mνk

+1
x,f

nνk
+1

x,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(f
mνk x,f

nνk x,t)
−1

0
φ(s)ds. (3)

Letting now k → +∞ in both sides of (3), we have∫ ε

0
φ(s)ds ⩽ c

∫ ε

0
φ(s)ds

which is a contradiction being c ∈ (0, 1) and the integral being positive. Therefore, for a
certain µ ∈ N,

1

M(fmν+1x, fnν+1x, t)
− 1 <

ε

t

for all ν > µ. Finally, we prove the stronger property that there exist a σε ∈ (0, ε) and a
νε ∈ N such that for each ν > νε (ν ∈ N), we have

1

M(fmν+1x, fnν+1x, t)
− 1 <

ε− σε
t

.

Suppose the existence of a subsequence {νk}k∈N ⊆ N such that

1

M(fmνk
+1x, fnνk

+1x, t)
− 1 → ε

t

as k → +∞. Also, we have∫ 1

M(f
mνk

+1
x,f

nνk
+1

x,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(f
mνk x,f

nνk x,t)
−1

0
φ(s)ds.

Letting k → +∞, we have again the contradiction that∫ ε

t

0
φ(s)ds ⩽ c

∫ ε

t

0
φ(s)ds.

In conclusion of this step, we can prove the Cauchy character of {fnx}n∈N (x ∈ X). In
fact, for each natural number ν > νε (νε as above), we have

ε

t
⩽ 1

M(fmνx, fnνx, t)
− 1

⩽ 1

M(fmνx, fmν+1x, t)
− 1

+
1

M(fmν+1x, fnν+1x, t)
− 1 +

1

M(fnν+1x, fnνx, t)
− 1

<
1

M(fmνx, fnν+1x, t)
− 1 + (ε− σε) +

1

M(fnνx, fnν+1x, t)
− 1,
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when ν → +∞, we have ε < ε− σε, which is a contradiction. This prove Step 3.
Step 4. Existence of a fixed point. Since (X,M,N, ∗,♢) is a complete intuitionistic fuzzy
metric space, there exists a point a ∈ X such that a = limn→+∞ fnx. Further a is a fixed
point. In fact, suppose that 1

M(a,fa,t) − 1 > 0. Then

0 <
1

M(a, fa, t)
− 1 ⩽ 1

M(a, fn+1x, t)
− 1 +

1

M(fn+1x, fa, t)
− 1 → 0 as n → +∞, (4)

Becuase M(a, fn+1x, t) and M(fn+1x, fa, t) converge to 1 as n → +∞. For the first one
it is obvious, while the second one we have

∫ 1

M(fn+1x,fa,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(fnx,a,t)
−1

0
φ(s)ds → 0 as n → +∞.

Now, if M(fn+1x, fa, t) does not converge to 1 as n → +∞, then there exists a subse-
quence {fnν+1x}ν∈N ⊆ {fn+1x}n∈N such that 1

M(fnν+1x,a,t) − 1 ⩾ ε
t for a certain ε > 0.

Thus, we have following contradictions:

0 <

∫ ε

t

0
φ(s)ds ⩽

∫ 1

M(fnν+1x,fa,t)
−1

0
φ(s)ds → 0 as ν → +∞.

Step 5. Uniqueness of the fixed point. Suppose that there are two distinct points a, b ∈ X
such that fa = a and fb = b. Then, by (1), we have the contradiction

0 <

∫ 1

M(a,b,t)
−1

0
φ(s)ds =

∫ 1

M(fa,fb,t)
−1

0
φ(s)ds ⩽ c

∫ 1

M(a,b,t)
−1

0
φ(s)ds <

∫ 1

M(a,b,t)
−1

0
φ(s)ds.

The final step also proves that for each x ∈ X, limn→+∞ fnx = a = fa. The proof is
completed. ■

Now we give remark and examples concerning these contractive mappings of integral
type, which clarify the connection between our result and the classical ones.

Remark 1 Theorem 3.1 is a generalization of the Banach principle, letting φ(s) = 1 for
each s ⩾ 0 in (1), we have

∫ 1

M(fx,fy,t)
−1

0
φ(s)ds =

1

M(fx, fy, t)
− 1 ⩽ c

(
1

M(x, y, t)
− 1

)
= c

∫ 1

M(x,y,t)
−1

0
φ(s)ds.

Thus, a Banach fuzzy contraction also satisfies (1). The converse is not true as we will
see in follow examples.

Example 3.2 Let X := { 1
n |n ∈ N} ∪ {0}, M(x, y, t) = t

t+d(x,y) and N(x, y, t) = d(x,y)
t+d(x,y)

with metric induced by R : d(x, y) := |x − y|, thus, since X is a closed subset of R, it
is a intuitionistic complete fuzzy metric space. We consider now a mapping f : X → X
defined by

fx :=

{
1

n+1 x = 1
n , n ∈ N,

0 x = 0,
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Then it satisfies (1) with φ(t) = t
1

t
−2 [1− log t] for t > 0, φ(0) = 0, and c = 1

2 . In this

context
∫ r
0 φ(s)ds = r

1

r , so that (1), for x ̸= y is equivalent to

(
1

M(fx, fy, t)
− 1

)1/
(

1

M(fx,fy,t)
−1

)
⩽ c

(
1

M(x, y, t)
− 1

)1/
(

1

M(x,y,t)
−1

)
.

If m,n ∈ N with m > n and x = 1
n , y = 1

m , then we have

(
1

M(fx, fy, t)
− 1

)1/
(

1

M(fx,fy,t)
−1

)
=

∣∣∣∣ 1

n+ 1
− 1

m+ 1

∣∣∣∣1/| 1

n+1
− 1

m+1 |

=

[
m− n

(n+ 1)(m+ 1)

] (n+1)(m+1)

m−n

.

On the other hand,

(
1

M(x, y, t)
− 1

)1/
(

1

M(x,y,t)
−1

) ∣∣∣∣ 1n − 1

m

∣∣∣∣1/| 1

n
− 1

m |
=

[
m− n

nm

] nm

m−n

.

Now, we show that

[
m− n

(n+ 1)(m+ 1)

] (n+1)(m+1)

m−n

⩽ 1

2

[
m− n

nm

] nm

m−n

or equivalently,

[
m− n

(n+ 1)(m+ 1)

] (n+m+1)

m−n

.

[
nm

(n+ 1)(m+ 1)

] nm

m−n

⩽ 1

2
.

Since nm < (n+ 1)(m+ 1) and nm
m−n > 0, we have

[
nm

(n+1)(m+1)

] nm

m−n ⩽ 1. In addition to,

since for all m,n ∈ N, we have m ⩽ 3n+ nm+ 1, and so 2(m− n) ⩽ (n+ 1)(m+ 1), we
have

[
m− n

(n+ 1)(m+ 1)

] (n+m+1)

m−n

⩽ 1

2
.

On the other hand, taking x = 1
n and y = 0. For each n ∈ N, we have

[
n

n+1

]n
. 1
n+1 ⩽ 1

2

and so,

(
1

M(fx, fy, t)
− 1

)1/
(

1

M(fx,fy,t)
−1

)
=

[
1

n+ 1

]n+1

⩽ 1

2

[
1

n

]n
=

1

2

(
1

M(x, y, t)
− 1

)1/
(

1

M(x,y,t)
−1

)

Therefore, such mapping f satisfies condition (3.2) with c = 1
2 and therefore (1) with the
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same c and for defined by φ(t) = t
1

t
−2[1− log t] for t > 0 and φ(0) = 0, but

sup
{x,y∈X|x̸=y}

1
M(fx,fy,t) − 1

1
M(x,y,t) − 1

= 1.

Thus, it is not a Banach contraction.

Example 3.3 Let f : R+ → R+ be defined by fx := x+2, φ ≡ −2, M(x, y, t) = t
t+d(x,y) ,

N(x, y, t) = d(x,y)
t+d(x,y) and d be the Euclidean distance function. Then, for an arbitrary

c ∈ (0, 1), we have

∫ 1

M(fx,fy,t)
−1

0
φ(s)ds =− 2

(
1

M(fx, fy, t)
− 1

)
= −2

(
1

M(x, y, t)
− 1

)
⩽− 2c

(
1

M(x, y, t)
− 1

)
= c

∫ 1

M(x,y,t)
−1

0
φ(s)ds.

Thus (1) is satisfied with φ ≡ −2 and for all c ∈ (0, 1), but f , being a translation on R+,
has no fixed points.

Definition 3.4 A self-map f on a intuitionistic fuzzy metric spaces (X,M,N, ∗,♢) is
said to be A-fuzzy contraction if it satisfies the condition

1

M(fx, fy, t)
− 1 ⩽ α

(
1

M(x, y, t)
− 1,

1

M(x, fx, t)
− 1,

1

M(y, fy, t)
− 1

)
for all x, y ∈ X and some α ∈ A.

Lemma 3.5 Let a self-map f on a intuitionistic fuzzy metric spaces (X,M,N, ∗,♢), for
all x, y ∈ X, t > 0 and some β ∈ [0, 12) satisfying

1

M(fx, fy, t)
− 1 ⩽ βmax

{
1

M(fx, x, t)
+

1

M(fy, y, t)
− 2,

1

M(fy, y, t)
+

1

M(x, y, t)
− 2,

1

M(fx, x, t)
+

1

M(x, y, t)
− 2

}
,

is a A-fuzzy contraction.

Proof. Define the map α : R3
+ → R+ as

α(u, v, w) = βmax{u+ v, v + w, u+ w}

for all u, v, w ∈ R+, where β is any fixed number in [0, 12). Then α ∈ A ([1]). first note
that α is continuous, second for

u ⩽ α(u, v, v) = βmax{u+ v, v + u, v + v},

we consider the following cases.
Case I. max{u+ v, v + u, v + v} = u+ v. In this case, u ⩽ β

1−β v, with k = β
1−β ∈ [0, 1).
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Case II. max{u + v, v + u, v + v} = 2v. In this case, u ⩽ kv, with k = 2β ∈ [0, 1).
Similarly, for u ⩽ α(v, u, v) or u ⩽ α(v, v, u) we have u ⩽ kv for some k ∈ [0, 1). Hence,

1

M(fx, fy, t)
− 1 ⩽βmax

{
1

M(fx, x, t)
+

1

M(fy, y, t)
− 2,

1

M(fy, y, t)
+

1

M(x, y, t)
− 2,

1

M(fx, x, t)
+

1

M(x, y, t)
− 2

}
,

=α

(
1

M(x, y, t)
− 1,

1

M(x, x, t)
− 1,

1

M(fy, y, t)
− 1

)
,

by the construction of α. Thus, f is an A-contraction. ■

Example 3.6 Let X = {0, 11, 12, 13, 14, 15, 16, 17, 18, 19}, M(x, y, t) = t
t+d(x,y) and

N(x, y, t) = d(x,y)
t+d(x,y) with usual metric relative to real line. f be a self-map on X, given

by

fx =

{
12 x = 0,
11 otherwise.

One can easily verify that f satisfies

1

M(fx, fy, t)
− 1 ⩽ βmax

{
1

M(fx, x, t)
+

1

M(fy, y, t)
− 2,

1

M(fy, y, t)
+

1

M(x, y, t)
− 2,

1

M(fx, x, t)
+

1

M(x, y, t)
− 2

}
,

for all x, y ∈ X and some β ∈ [0, 12). Hence, by Lemma 3.5, f is a A-fuzzy contraction.

Theorem 3.7 Let f be a self-map of a complete intuitionistic fuzzy metric space
(X,M,N, ∗,♢) satisfying the following condition:

∫ 1

M(fx,fy,t)
−1

0
φ(s)ds ⩽α

(∫ 1

M(x,y,t)
−1

0
φ(s)ds,

∫ 1

M(x,fx,t)
−1

0
φ(s)ds,

∫ 1

M(y,fy,t)
−1

0
φ(s)ds

)
(5)

for each x, y ∈ X and t > 0 with some α ∈ A, where φ : [0,+∞) → [0,∞) is a Lebesgue-
integrable mapping which is summable (i.e., with finite integral) on each compact subset
of [0,+∞), nonnegative, and such that for each ε > 0,∫ ε

0
φ(s) ds > 0. (6)

Then f has a unique fixed point z ∈ X and for each x ∈ X, limn→+∞ fnx = z.

Proof. Let x0 ∈ X be a arbitrary and define xn+1 = fxn. From (5), for each integer
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n ⩾ 1, we get

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds =

∫ 1

M(fxn−1,fxn,t)
−1

0
φ(s)ds

⩽ α

(∫ 1

M(xn−1,xn,t)
−1

0
φ(s)ds,

∫ 1

M(xn−1,fxn−1,t)
−1

0
φ(s)ds,

∫ 1

M(xn,fxn,t)
−1

0
φ(s)ds

)

= α

(∫ 1

M(xn−1,xn,t)
−1

0
φ(s)ds,

∫ 1

M(xn−1,xn,t)
−1

0
φ(s)ds,

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds

)
.

Then, by the axiom (A2) of function α,

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds ⩽ k

∫ 1

M(xn−1,xn,t)
−1

0
φ(s)ds (7)

for some k ∈ [0, 1) as α ∈ A. In this fashion, one can obtain

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds ⩽ k

∫ 1

M(xn−1,xn,t)
−1

0
φ(s)ds

⩽k2
∫ 1

M(xn−2,xn−1,t)
−1

0
φ(s)ds

· · ·

⩽kn
∫ 1

M(x0,x1,t)
−1

0
φ(s)ds.

Taking limit as n → +∞, we get limn

∫ 1

M(xn,xn+1,t)
−1

0 φ(s)ds = 0 as k ∈ [0, 1). Which,
from (6) implies that

lim
n

1

M(xn, xn+1, 1)
− 1 = 0. (8)

We now show that {xn} is a Cauchy sequence. Suppose that it is not a Cauchy sequence.
Then there exists ε > 0 and subsequences {mi} and {ni} such that mi < ni < mi+1 with

1

M(xmi
, xni

, t)
− 1 ⩾ ε

t
,

1

M(xmi
, xni−1, t)

− 1 <
ε

t
. (9)

Now, we have

1

M(xmi−1, xni
, t)

− 1 ⩽ 1

M(xmi−1, xmi
, t)

− 1 +
1

M(xmi
, xni−1, t)

− 1

<
1

M(xmi−1, xmi
, t)

− 1 +
ε

t
. (10)
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So, by (8) and (10), we get

lim
i

∫ 1

M(xmi−1,xni−1,t)
−1

0
φ(s)ds ⩽

∫ ε

0
φ(s)ds. (11)

Using (7), (9) and (11), we have∫ ε

0
φ(s)ds ⩽

∫ 1

M(xmi
,xni

,t)
−1

0
φ(s)ds ⩽ k

∫ 1

M(xmi−1,xni−1,t)
−1

0
φ(s)ds ⩽ k

∫ ε

0
φ(s)ds,

which is a contradiction (since k ∈ [0, 1)). Thus, {xn} is Cauchy and hence, is convergent.
Call the limit z. From (5), we get∫ 1

M(fz,xn+1,t)
−1

0
φ(s)ds =

∫ 1

M(fz,fxn,t)
−1

0
φ(s)ds

⩽α

(∫ 1

M(z,xn,t)
−1

0
φ(s)ds,

∫ 1

M(z,fz,t)
−1

0
φ(s)ds,

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds

)
.

Taking limit as n → ∞, we get∫ 1

M(fz,z,t)
−1

0
φ(s)ds ⩽ α

(
0,

∫ 1

M(z,fz,t)
−1

0
φ(s)ds, 0

)
.

So, by the axiom (A2) of function α,∫ 1

M(fz,z,t)
−1

0
φ(s)ds ⩽ k · 0 = 0,

which implies that 1
M(fz,z,t) = 1 or fz = z (by (6)). Next, suppose that w ̸= z be another

fixed point of f . From (5) we have∫ 1

M(z,w,t)
−1

0
φ(s)ds =

∫ 1

M(fz,fw,t)
−1

0
φ(s)ds

⩽α

(∫ 1

M(z,w,t)
−1

0
φ(s)ds,

∫ 1

M(z,fz,t)
−1

0
φ(s)ds,

∫ 1

M(w,fw,t)
−1

0
φ(s)ds

)

=α

(∫ 1

M(z,w,t)
−1

0
φ(s)ds,

∫ 1

M(z,z,t)
−1

0
φ(s)ds,

∫ 1

M(w,w,t)
−1

0
φ(s)ds

)

=α

(∫ 1

M(z,w,t)
−1

0
φ(s)ds, 0, 0

)
.

So, by axiom (A2) of function α,∫ 1

M(z,w,t)
−1

0
φ(s)ds = 0
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, whice implies that 1
M(z,w,t) = 1 or z = w (by (6)). Hence, the fixed point is unique. ■

Next theorem describes common fixed point of two self-maps on X having two related
metrics in integral setting.

Theorem 3.8 Let (X,Md, Nd, ∗,♢) and (X,Mδ, Nδ, ∗,♢) be intuitionistic fuzzy met-

ric spaces with two fuzzy metric Md(x, y, t) = t
t+d(x,y) , Nd(x, y, t) = d(x,y)

t+d(x,y) and

Mδ(x, y, t) =
t

t+δ(x,y) , Nδ(x, y, t) =
δ(x,y)

t+δ(x,y) satisfying the following conditions:

(i) for all x, y ∈ X,

∫ 1

Md(x,y,t)
−1

0
φ(s)ds ⩽

∫ 1

Mδ(x,y,t)
−1

0
φ(s)ds and

∫ Nd(x,y,t)

0
φ(s)ds ⩽

∫ Nδ(x,y,t)

0
φ(s)ds,

(ii) (X,Md, Nd, ∗♢) is complete,
(iii) S, T are self-maps on X such that T is continuous with respect to d and

∫ 1

Mδ(Tx,Sy,t)
−1

0
φ(s)ds ⩽ α

(∫ 1

Mδ(x,y,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x,Tx,t)
−1

0
φ(s)ds,

∫ 1

Mδ(y,Sy,t)
−1

0
φ(s)ds

)
(12)

for each x, y ∈ X and t > 0 with some α ∈ A, where φ : [0,+∞) → [0,∞) is a Lebesgue-
integrable mapping which is summable (i.e., with finite integral) on each compact subset
of [0,+∞), nonnegative, and such that for each ε > 0,

∫ ε

0
φ(s) ds > 0. (13)

Then T and S have a unique common fixed point z ∈ X.

Proof. For each integer n ⩾ 0, we define x2n+1 = Tx2n and x2n+2 = Sx2n+1. Then,
from (12), we get

∫ 1

Mδ(x1,x2,t)
−1

0
φ(s)ds =

∫ 1

Mδ(Tx0,Sx1,t)
−1

0
φ(s)ds

⩽α

(∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x0,Tx0,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x1,Sx1,t)
−1

0
φ(s)ds

)

⩽α

(∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x1,x2,t)
−1

0
φ(s)ds

)
.

Then, by the axiom (A2) function α,

∫ 1

Mδ(x1,x2,t)
−1

0
φ(s)ds ⩽ k

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds
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for some k ∈ [0, 1). Similarly, one can show that

∫ 1

Mδ(x2,x3,t)
−1

0
φ(s)ds ⩽ k

∫ 1

Mδ(x1,x2,t)
−1

0
φ(s)ds

for some k ∈ [0, 1). In general, for any r ∈ N odd or even,

∫ 1

Mδ(xr,xr+1,t)
−1

0
φ(s)ds ⩽ k

∫ 1

Mδ(xr−1,xr,t)
−1

0
φ(s)ds.

Thus, for any n ∈ N odd or even, one can easily obtain that

∫ 1

Mδ(xn,xn+1,t)
−1

0
φ(s)ds ⩽ kn

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds.

Then, by the condition (i) of the theorem, we obtain

∫ 1

Md(xn,xn+1,t)
−1

0
φ(s)ds ⩽

∫ 1

Mδ(xn,xn+1,t)
−1

0
φ(s)ds ⩽ kn

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds.

Taking limit as n → ∞, we get

lim
n

∫ 1

M(xn,xn+1,t)
−1

0
φ(s)ds = 0

as k ∈ [0, 1), which from (13) implies that limn
1

M(xn,xn+1,t)
−1 = 0 or M(xn, xn+1, t) = 1.

We now show that {xn} is a Cauchy sequence with respect to (X,Md, Nd, ∗,♢). For any
integer p > 0,

∫ 1

M(xn,xn+p,t)
−1

0
φ(s)ds ⩽

∫ 1

Mδ(xn,xn+p,t)
−1

0
φ(s)ds

⩽
∫ 1

Mδ(xn,xn+1,t)
−1

0
φ(s)ds+

∫ 1

Mδ(xn+1,xn+2,t)
−1

0
φ(s)ds

+ · · ·+
∫ 1

Mδ(xn+p−1,xn+p,t)
−1

0
φ(s)ds

⩽kn
∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds+ kn+1

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds

+ · · ·+ kn+p−1

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds

⩽ kn

1− k

∫ 1

Mδ(x0,x1,t)
−1

0
φ(s)ds → 0 as n → +∞,

since k ∈ [0, 1). Therefore, {xn} is Cauchy. Hence, by completeness of X, {xn} converges
to some z ∈ X, i.e. 1

Md(xn,z,t)
− 1 → 0 or Md(xn, z, t) = 1 as n → +∞ for some z ∈ X.
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Since T is continuous with the respect to d, we get

0 = lim
n

∫ 1

Md(x2n+1,z,t)
−1

0
φ(s)ds = lim

n

∫ 1

Md(Tx2n,z,t)
−1

0
φ(s)ds = lim

n

∫ 1

Md(Tz,z,t)
−1

0
φ(s)ds.

So, by (13), 1
Md(Tz,z,t) − 1 = 0 or Md(Tz, z, t) = 1 i.e. Tz = z. Now, by (12), we have

∫ 1

Mδ(z,Sz,t)
−1

0
φ(s)ds =

∫ 1

Mδ(Tz,Sz,t)
−1

0
φ(s)ds

⩽ α

(∫ 1

Mδ(z,z,t)
−1

0
φ(s)ds,

∫ 1

Mδ(z,Tz,t)
−1

0
φ(s)ds,

∫ 1

Mδ(z,Sz,t)
−1

0
φ(s)ds

)

⩽ α

(
0, 0,

∫ 1

Mδ(z,Sz,t)
−1

0
φ(s)ds

)
.

Then, by the axiom (A2) of function α,

∫ 1

Mδ(z,Sz,t)
−1

0
φ(s)ds ⩽ k · 0 = 0

and by (13), Mδ(z, Sz, t) = 1 or Sz = z. Thus z is a common fixed point of S and T .
Let w ̸= z be another common fixed point of S and T in X. Then by (12)

∫ 1

Mδ(z,w,t)
−1

0
φ(s)ds =

∫ 1

Mδ(Tz,Sw,t)
−1

0
φ(s)ds

⩽ α

(∫ 1

Mδ(z,w,t)
−1

0
φ(s)ds,

∫ 1

Mδ(z,Tz,t)
−1

0
φ(s)ds,

∫ 1

Mδ(w,Sw,t)
−1

0
φ(s)ds

)

⩽ α

(∫ 1

Mδ(z,w,t)
−1

0
φ(s)ds, 0, 0

)
⩽ k · 0 = 0 as α ∈ A.

Then by (13) we have 1
Mδ(z,w,t) − 1 = 0 or Mδ(z, w, t) = 1, hence z = w. ■

If S = T , then the Theorem 3.8 gives as follow.

Corollary 3.9 Let (X,Md, Nd, ∗,♢) and (X,Mδ, Nδ, ∗,♢) be intuitionistic fuzzy met-

ric spaces with two fuzzy metric Md(x, y, t) = t
t+d(x,y) , Nd(x, y, t) = d(x,y)

t+d(x,y) and

Mδ(x, y, t) =
t

t+δ(x,y) , Nδ(x, y, t) =
δ(x,y)

t+δ(x,y) satisfying the following conditions:

(i) for all x, y ∈ X,

∫ 1

Md(x,y,t)
−1

0
φ(s)ds ⩽

∫ 1

Mδ(x,y,t)
−1

0
φ(s)ds,
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0
φ(s)ds ⩽

∫ Nδ(x,y,t)

0
φ(s)ds,

(ii) (X,Md, Nd, ∗,♢) is complete,
(iii) T is self-map on X such that T is continuous with respect to d and

∫ 1

Mδ(Tx,Ty,t)
−1

0
φ(s)ds ⩽α

(∫ 1

Mδ(x,y,t)
−1

0
φ(s)ds,

∫ 1

Mδ(x,Tx,t)
−1

0
φ(s)ds,

∫ 1

Mδ(y,Ty,t)
−1

0
φ(s)ds

)

for each x, y ∈ X and t > 0 with some α ∈ A, where φ : [0,+∞) → [0,∞) is a Lebesgue-
integrable mapping which is summable (i.e., with finite integral) on each compact subset
of [0,+∞), nonnegative, and such that for each ε > 0,∫ ε

0
φ(s) ds > 0.

Then T has a unique fixed point z ∈ X.

Example 3.10 Consider X as Example 3.6, M(x, y, t) = t
t+d(x,y) and N(x, y, t) =

d(x,y)
t+d(x,y) with usual metric relative to real line. Define f on X by

fx =

{
12 x = 0,
11 otherwise.

Let φ : R+ → R+ be given by φ(s) = s−1
s for all s ∈ R+. Then φ : [0,+∞) → [0,+∞) is

a Lebesgue-integrable mapping which is summable on each compact subset of [0,+∞),
non-negative, and such that for each φ > 0,

∫ ε
0 φ(s)ds > 0. Now, as we know from

Example 3.6, a self-map f satisfying

1

M(fx, fy, t)
− 1 ⩽ βmax

{
1

M(fx, x, t)
+

1

M(fy, y, t)
− 2,

1

M(fy, y, t)
+

1

M(x, y, t)
− 2,

1

M(fx, x, t)
+

1

M(x, y, t)
− 2

}
for all x, y ∈ X, t > 0 and some β ∈ [0, 12), is an A-fuzzy contraction. We have

∫ 1

M(fx,fy,t)
−1

0
φ(s)ds ⩽α

(∫ 1

M(x,y,t)
−1

0
φ(s)ds,

∫ 1

M(x,fx,t)
−1

0
φ(s)ds,

∫ 1

M(y,fy,t)
−1

0
φ(s)ds

)

=βmax

{∫ 1

M(fx,x,t)
+ 1

M(x,y,t)
−2

0
φ(s)ds,

∫ 1

M(fx,x,t)
+ 1

M(fy,y,t)
−2

0
φ(s)ds,

∫ 1

M(fy,y,t)
+ 1

M(x,y,t)
−2

0
φ(s)ds

}
,
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which is satisfied for all x, y ∈ X, t > 0 and some β ∈ [0, 12).
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