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1. Introduction

Frames were first introduced in 1952 by Duffin and Schaefer [6] in the study of nonhar-
monic Fourier series. Frames possess many nice properties which make them very useful
in wavelet analysis, irregular sampling theory, signal processing and many other fields.
The theory of frames has been generalized rapidly and various generalizations of frames
in Hilbert spaces and Hilbert C∗-modules.

In this article, a new notion of frames is introduced: ∗-K-g-Frames as generalization of
∗-g-frames in Hilbert C∗-modules introduced byAlijani [2] and we establish some results.
The paper is organized as follows: In section 2, we briefly recall the definitions and basic
properties of C∗-algebra, Hilbert C∗-modules, frames, g-frames, ∗-frames, ∗-g-frames and
K-frames in Hilbert C∗-modules. In section 3, we introduce the ∗-K-g-Frame, the analysis
operator, the synthesis operator and the frame operator. In section 4, we investigate
tensor product of Hilbert C∗-modules, we show that tensor product of ∗-K-g-Frame for
Hilbert C∗-modules H and K, present ∗-K-g-Frame for H ⊗ K, and tensor product of
their frame operators is the frame operator of the tensor product of ∗-K-g-Frame.
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2. Preliminaries

Let I and J be countable index sets. In this section we briefly recall the definitions and
basic properties of C∗-algebra, Hilbert C∗-modules, frame, g-frame, ∗-frame, ∗-g-frame
and K-frame in Hilbert C∗-modules. For information about frames in Hilbert spaces we
refer to [3]. Our reference for C∗-algebras is [4, 5]. For a C∗-algebra A, an element a ∈ A
is positive (a ⩾ 0) if a = a∗ and sp(a) ⊂ R+. A+ denotes the set of positive elements of
A.

Definition 2.1 [9] Let A be a unital C∗-algebra and H be a left A-module, such that
the linear structures of A and H are compatible. H is a pre-Hilbert A-module if H is
equipped with an A-valued inner product ⟨., .⟩A : H×H → A such that is sesquilinear,
positive definite and respects the module action. In the other words,

(i) ⟨x, x⟩A ⩾ 0 for all x ∈ H and ⟨x, x⟩A = 0 if and only if x = 0.
(ii) ⟨ax+ y, z⟩A = a⟨x, y⟩A + ⟨y, z⟩A for all a ∈ A and x, y, z ∈ H.
(iii) ⟨x, y⟩A = ⟨y, x⟩∗A for all x, y ∈ H.

For x ∈ H, we define ||x|| = ||⟨x, x⟩A||
1

2 . If H is complete with ||.||, it is called a Hilbert A-

module or a Hilbert C∗-module over A. For every a in C∗-algebra A, we have |a| = (a∗a)
1

2

and the A-valued norm on H is defined by |x| = ⟨x, x⟩
1

2

A for x ∈ H.
Let H and K be two Hilbert A-modules, A map T : H → K is said to be adjointable if

there exists a map T ∗ : K → H such that ⟨Tx, y⟩A = ⟨x, T ∗y⟩A for all x ∈ H and y ∈ K.
From now on, we assume that {Vi}i∈I and {Wj}j∈J are two sequences of Hilbert A-

modules. We also reserve the notation End∗A(H,K) for the set of all adjointable operators
from H to K and End∗A(H,H) is abbreviated to End∗A(H).

Definition 2.2 [7] Let H be a Hilbert A-module. A family {xi}i∈I of elements of H is
a frame for H, if there exist two positive constants A,B such that for all x ∈ H,

A⟨x, x⟩A ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. (1)

The numbers A and B are called lower and upper bounds of the frame, respectively. If
A = B = λ, the frame is λ-tight. If A = B = 1, it is called a normalized tight frame or a
Parseval frame. If the sum in the middle of (1) is convergent in norm, the frame is called
standard.

Definition 2.3 [10] We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a g-frame in Hilbert
A-module H with respect to {Vi : i ∈ I} if there exist two positive constants C, D such
that for all x ∈ H,

C⟨x, x⟩A ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ D⟨x, x⟩A. (2)

The numbers C and D are called lower and upper bounds of the g-frame, respectively. If
C = D = λ, the g-frame is λ-tight. If C = D = 1, it is called a g-Parseval frame. If the
sum in the middle of (2) is convergent in norm, the g-frame is called standard.

Definition 2.4 [1] Let H be a Hilbert A-module over a unital C∗-algebra. A family
{xi}i∈I of elements of H is a ∗-frame for H, if there exist strictly nonzero elements
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A,B ∈ A such that for all x ∈ H,

A⟨x, x⟩AA∗ ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩AB∗. (3)

The elements A and B are called lower and upper bounds of the ∗-frame, respectively.
If A = B = λ1, the ∗-frame is λ1-tight. If A = B = 1, it is called a normalized tight
∗-frame or a Parseval ∗-frame. If the sum in the middle of (3) is convergent in norm, the
∗-frame is called standard.

Definition 2.5 [2] We call a sequence {Λi ∈ End∗A(H, Vi) : i ∈ I} a ∗-g-frame in Hilbert
A-module H over a unital C∗-algebra with respect to {Vi : i ∈ I} if there exist strictly
nonzero elements A, B in A such that for all x ∈ H,

A⟨x, x⟩AA∗ ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗. (4)

The elements A and B are called lower and upper bounds of the ∗-g-frame, respectively.
If A = B = λ1, the ∗-g-frame is λ1-tight. If A = B = 1, it is called a ∗-g-Parseval frame.
If the sum in the middle of (4) is convergent in norm, the ∗-g-frame is called standard.
The ∗-g-frame operator SΛ is defined by:

SΛx =
∑
i∈I

Λ∗
iΛix, ∀x ∈ H.

In [8], Gavruta introduced K-frames to study atomic systems for operators in Hilbert
spaces.

Definition 2.6 [12] Let K ∈ End∗A(H). A family {xi}i∈I of elements in a Hilbert A-
moduleH over a unital C∗-algebra is aK-frame forH, if there exist two positive constants
A, B such that for all x ∈ H,

A⟨K∗x,K∗x⟩A ⩽
∑
i∈I

⟨x, xi⟩A⟨xi, x⟩A ⩽ B⟨x, x⟩A. (5)

The numbers A and B are called lower and upper bounds of the K-frame, respectively.

3. ∗-K-g-frames in Hilbert A-modules

Definition 3.1 Let K ∈ End∗A(H). We call a sequence {Λi ∈ End∗A(H,Hi) : i ∈ I} is
a ∗-K-g-frame in Hilbert A-module H with respect to {Hi : i ∈ I} if there exist strictly
nonzero elements A, B in A such that

A⟨K∗x,K∗x⟩AA∗ ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗,∀x ∈ H. (6)

The numbers A and B are called lower and upper bounds of the ∗-K-g-frame, respectively.
If

A⟨K∗x,K∗x⟩A∗ =
∑
i∈I

⟨Λix,Λix⟩, ∀x ∈ H. (7)
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The ∗-K-g-frame is A-tight.

Remark 1

(1) Every ∗-g-frame for H with respect to {Hi : i ∈ I} is an ∗-K-g-frame, for any
K ∈ End∗A(H): K ̸= 0.

(2) If K ∈ End∗A(H) is a surjective operator, then every ∗-K-g-frame for H with
respect to {Hi : i ∈ I} is a ∗-g-frame.

Example 3.2 Let H be a finitely or countably generated Hilbert A-module. Let K ∈
End∗A(H): K ̸= 0. Let A be a Hilbert A-module over itself with the inner product
⟨a, b⟩ = ab∗. Let {xi}i∈I be an ∗-frame for H with bounds A and B, respectively. For
each i ∈ I, we define Λi : H → A by Λix = ⟨x, xi⟩ for all x ∈ H. Λi is adjointable and
Λ∗
i a = axi for each a ∈ A. Also, we have

A⟨x, x⟩A∗ ⩽
∑
i∈I

⟨x, xi⟩⟨xi, x⟩ ⩽ B⟨x, x⟩B∗,∀x ∈ H

Or

⟨K∗x,K∗x⟩ ⩽ ∥K∥2⟨x, x⟩,∀x ∈ H.

Then

∥K∥−1A⟨K∗x,K∗x⟩(∥K∥−1A)∗ ⩽
∑
i∈I

⟨Λix,Λix⟩ ⩽ B⟨x, x⟩B∗, ∀x ∈ H.

So {Λi}i∈I is an ∗-K-g-frame for H with bounds ∥K∥−1A and B, respectively.

Let {Λi}i∈I be an ∗-K-g-frame in H with respect to {Hi : i ∈ I}. Define an operator
T : H → ⊕i∈IHi by Tx = {Λix}i for all x ∈ H, then T is called the analysis operator.
So it’s adjoint operator is T ∗ : ⊕i∈IHi → H given by T ∗({xi}i) =

∑
i∈I Λ

∗
ixi for all

{xi}i ∈ ⊕i∈IHi. The operator T ∗ is called the synthesis operator. By composing T and
T ∗, the frame operator S : H → H is given by Sx = T ∗Tx =

∑
i∈I Λ

∗
iΛix.

Note that S need not be invertible in general. But under some condition S will be
invertible.

Theorem 3.3 Let K ∈ End∗A(H) be a surjective operator. If {Λi}i∈I is an ∗-K-g-frame
in H with respect to {Hi : i ∈ I}, then the frame operator S is positive, invertible and
adjointable. Moreover we have the reconstruction formula, x =

∑
i∈I Λ

∗
iΛiS

−1x,∀x ∈ H.

Proof. Result of (2) in Remark 1 and Theorem 3.8 in [2]. ■

Let K ∈ End∗A(H), in the following theorem using an ∗-g-frame we constructed an
∗-K-g-frame.

Theorem 3.4 Let K ∈ End∗A(H) and {Λi}i∈I be an ∗-g-frame in H with respect to
{Hi : i ∈ I} with bounds A, B. Then {ΛiK}i∈I is an ∗-K∗-g-frame in H with respect
to {Hi : i ∈ I} with bounds A, ∥K∥B. The frame operator of {ΛiK}i∈I is S

′
= K∗SK,

where S is the frame operator of {Λi}i∈I .

Proof. Form

A⟨x, x⟩AA∗ ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗
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for all x ∈ H, we get

A⟨Kx,Kx⟩AA∗ ⩽
∑
i∈I

⟨ΛiKx,ΛiKx⟩A ⩽ B⟨Kx,Kx⟩AB∗ ⩽ ∥K∥B⟨x, x⟩A(∥K∥B)∗.

Then {ΛiK}i∈I is an ∗-K∗-g-frame in H with respect to {Hi : i ∈ I} with bounds A,
∥K∥B. By definition of S,we have SKx =

∑
i∈I Λ

∗
iΛiKx. Then

K∗SKx = K∗
∑
i∈I

Λ∗
iΛiKx =

∑
i∈I

K∗Λ∗
iΛiKx.

Hence S
′
= K∗SK. ■

Corollary 3.5 Let K ∈ End∗A(H) and {Λi}i∈I be an ∗-g-frame. Then {ΛiS
−1K}i∈I is

an ∗-K∗-g-frame, where S is the frame operator of {Λi}i∈I .

Proof. Result of the Theorem 3.4 for the ∗-g-frame {ΛiS
−1}i∈I . ■

4. Tensor Product

Suppose that A,B are unitals C∗-algebras and we take A⊗B as the completion of A⊗algB
with the spatial norm. A⊗B is the spatial tensor product of A and B, also suppose thatH
is a Hilbert A-module and K is a Hilbert B-module. We want to define H⊗K as a Hilbert
(A ⊗ B)-module. Start by forming the algebraic tensor product H ⊗alg K of the vector
spaces H, K (over C). This is a left module over (A⊗algB) (the module action being given
by (a⊗ b)(x⊗ y) = ax⊗ by (a ∈ A, b ∈ B, x ∈ H, y ∈ K)). For (x1, x2 ∈ H, y1, y2 ∈ K) we
define ⟨x1⊗y1, x2⊗y2⟩A⊗B = ⟨x1, x2⟩A⊗⟨y1, y2⟩B. We also know that for z =

∑n
i=1 xi⊗yi

in H⊗algK we have ⟨z, z⟩A⊗B =
∑

i,j⟨xi, xj⟩A⊗⟨yi, yj⟩B ⩾ 0 and ⟨z, z⟩A⊗B = 0 iff z = 0.

This extends by linearity to an (A⊗alg B)-valued sesquilinear form on H⊗alg K, which
makes H ⊗alg K into a semi-inner-product module over the pre-C∗-algebra (A ⊗alg B).
The semi-inner-product on H⊗algK is actually an inner product, see [11]. Then H⊗algK
is an inner-product module over the pre-C∗-algebra (A⊗alg B), and we can perform the
double completion discussed in chapter 1 of [11] to conclude that the completion H⊗K
of H⊗alg K is a Hilbert (A⊗B)-module. We call H⊗K the exterior tensor product of H
and K. With H ,K as above, we wish to investigate the adjointable operators on H⊗K.
Suppose that S ∈ End∗A(H) and T ∈ End∗B(K). We define a linear operator S ⊗ T on
H ⊗ K by S ⊗ T (x ⊗ y) = Sx ⊗ Ty(x ∈ H, y ∈ K). It is a routine verification that is
S∗ ⊗ T ∗ is the adjoint of S ⊗ T , so in fact S ⊗ T ∈ End∗A⊗B(H⊗K). For more details,
see [5, 11]. We note that if a ∈ A+ and b ∈ B+ , then a⊗ b ∈ (A⊗ B)+. Plainly if a , b
are Hermitian elements of A and a ⩾ b, then for every positive element x of B, we have
a⊗ x ⩾ b⊗ x.

Let I and J be countable index sets. Our next theorem is a generalization of theorem
2.2 in [1]

Theorem 4.1 Let H and K be two Hilbert C∗-modules over unital C∗-algebras A and
B, respectively. Let {Λi}i∈I ⊂ End∗A(H, Vi) be an ∗-K-g-frame for H with bounds A and
B and frame operators SΛ and {Γj}j∈J ⊂ End∗B(K,Wi) be an ∗-L-g-frame for K with
bounds C and D and frame operators SΓ. Then {Λi ⊗ Γj}i∈I,j∈J is an ∗-K⊗L-g-frame
for Hilbert A ⊗ B-module H ⊗ K with frame operator SΛ ⊗ SΓ and bounds A ⊗ C and
B ⊗D.
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Proof. By the definition of ∗-K-g-frame {Λi}i∈I and ∗-L-g-frame {Γj}j∈J we have

A⟨K∗x,K∗x⟩AA∗ ⩽
∑
i∈I

⟨Λix,Λix⟩A ⩽ B⟨x, x⟩AB∗,∀x ∈ H,

C⟨L∗y, L∗y⟩BC∗ ⩽
∑
j∈J

⟨Γjy,Γjy⟩B ⩽ D⟨y, y⟩BD∗, ∀y ∈ K.

Therefore,

(A⟨K∗x,K∗x⟩AA∗)⊗ (C⟨L∗y, L∗y⟩BC∗) ⩽
∑
i∈I

⟨Λix,Λix⟩A ⊗
∑
j∈J

⟨Γjy,Γjy⟩B

⩽ (B⟨x, x⟩AB∗)⊗ (D⟨y, y⟩BD∗)

for all x ∈ H and all y ∈ K. Then

(A⊗ C)(⟨K∗x,K∗x⟩A ⊗ ⟨L∗y, L∗y⟩B)(A∗ ⊗ C∗) ⩽
∑

i∈I,j∈J
⟨Λix,Λix⟩A ⊗ ⟨Γjy,Γjy⟩B

⩽ (B ⊗D)(⟨x, x⟩A ⊗ ⟨y, y⟩B)(B∗ ⊗D∗)

for all x ∈ H and all y ∈ K. Consequently, we have

(A⊗ C)⟨K∗x⊗ L∗y,K∗x⊗ L∗y⟩A⊗B(A⊗ C)∗ ⩽
∑

i∈I,j∈J
⟨Λix⊗ Γjy,Λix⊗ Γjy⟩A⊗B

⩽ (B ⊗D)⟨x⊗ y, x⊗ y⟩A⊗B(B ⊗D)∗

for all x ∈ H and all y ∈ K. Then, for all x⊗ y in H⊗K, we have

(A⊗ C)⟨(K ⊗ L)∗(x⊗ y), (K ⊗ L)∗(x⊗ y)⟩A⊗B(A⊗ C)∗

⩽
∑

i∈I,j∈J
⟨(Λi ⊗ Γj)(x⊗ y), (Λi ⊗ Γj)(x⊗ y)⟩A⊗B

⩽ (B ⊗D)⟨x⊗ y, x⊗ y⟩A⊗B(B ⊗D)∗.

The last inequality is satisfied for every finite sum of elements in H ⊗alg K and then
it’s satisfied for all z ∈ H ⊗K. It shows that {Λi ⊗ Γj}i∈I,j∈J is an ∗-K ⊗ L-g-frame for
Hilbert A⊗B-module H⊗K with lower and upper bounds A⊗C and B⊗D, respectively.
By the definition of frame operator SΛ and SΓ we have

SΛx =
∑
i∈I

Λ∗
iΛix,∀x ∈ H,

SΓy =
∑
j∈J

Γ∗
jΓjy,∀y ∈ K.
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Therefore,

(SΛ ⊗ SΓ)(x⊗ y) = SΛx⊗ SΓy

=
∑
i∈I

Λ∗
iΛix⊗

∑
j∈J

Γ∗
jΓjy

=
∑

i∈I,j∈J
Λ∗
iΛix⊗ Γ∗

jΓjy

=
∑

i∈I,j∈J
(Λ∗

i ⊗ Γ∗
j )(Λix⊗ Γjy)

=
∑

i∈I,j∈J
(Λ∗

i ⊗ Γ∗
j )(Λi ⊗ Γj)(x⊗ y)

=
∑

i∈I,j∈J
(Λi ⊗ Γj)

∗(Λi ⊗ Γj)(x⊗ y).

Now, by the uniqueness of frame operator, the last expression is equal to SΛ⊗Γ(x ⊗ y).
Consequently, we have (SΛ ⊗ SΓ)(x ⊗ y) = SΛ⊗Γ(x ⊗ y). The last equality is satisfied
for every finite sum of elements in H⊗alg K and then it’s satisfied for all z ∈ H ⊗K. It
shows that (SΛ ⊗ SΓ)(z) = SΛ⊗Γ(z). So SΛ⊗Γ = SΛ ⊗ SΓ. ■

The two following theorems are a generalization of Theorem 3.5 in [9].

Theorem 4.2 If Q ∈ End∗A(H) is invertible and {Λi}i∈I ⊂ End∗A⊗B(H⊗K, Vi) is an
∗-K-g-frame for H⊗K with lower and upper bounds A and B respectively and frame
operator S. If K commute with Q⊗ I, then {Λi(Q

∗⊗ I)}i∈I is an ∗-K-g-frame for H⊗K
with lower and upper bounds ∥Q∗−1∥−1A and ∥Q∥B respectively and frame operator
(Q⊗ I)S(Q∗ ⊗ I).

Proof. Since Q ∈ End∗A(H), Q⊗I ∈ End∗A⊗B(H⊗K) with inverse Q−1⊗I. It is obvious
that the adjoint of Q⊗ I is Q∗ ⊗ I. An easy calculation shows that for every elementary
tensor x⊗ y,

∥(Q⊗ I)(x⊗ y)∥2 = ∥Q(x)⊗ y∥2

= ∥Q(x)∥2∥y∥2

⩽ ∥Q∥2∥x∥2∥y∥2

= ∥Q∥2∥x⊗ y∥2.

So, Q ⊗ I is bounded and it can be extended to H⊗K. Similarly for Q∗ ⊗ I, Q ⊗ I is
A⊗ B-linear, adjointable with adjoint Q∗ ⊗ I. Hence, for every z ∈ H ⊗K, we have

∥Q∗−1∥−1.|z| ⩽ |(Q∗ ⊗ I)z| ⩽ ∥Q∥.|z|.

By the definition of ∗-K-g-frame, we have

A⟨K∗z,K∗z⟩A⊗BA
∗ ⩽

∑
i∈I

⟨Λiz,Λiz⟩A⊗B ⩽ B⟨z, z⟩A⊗BB
∗.
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Then

A⟨K∗(Q∗ ⊗ I)z,K∗(Q∗ ⊗ I)z⟩A⊗BA
∗ ⩽

∑
i∈I

⟨Λi(Q
∗ ⊗ I)z,Λi(Q

∗ ⊗ I)z⟩A⊗B

⩽ B⟨(Q∗ ⊗ I)z, (Q∗ ⊗ I)z⟩A⊗B

⩽ ∥Q∥B⟨z, z⟩A⊗B(∥Q∥B)∗

or

A⟨K∗(Q∗ ⊗ I)z,K∗(Q∗ ⊗ I)z⟩A⊗BA
∗ = A⟨(Q∗ ⊗ I)K∗z, (Q∗ ⊗ I)K∗z⟩A⊗BA

∗

⩾ ∥Q∗−1∥−1A⟨K∗z,K∗z⟩A⊗B(∥Q∗−1∥−1A)∗.

So, we have

∥Q∗−1∥−1A⟨K∗z,K∗z⟩A⊗B(∥Q∗−1∥−1A)∗

⩽
∑
i∈I

⟨Λi(Q
∗ ⊗ I)z,Λi(Q

∗ ⊗ I)z⟩A⊗B

⩽ ∥Q∥B⟨z, z⟩A⊗B(∥Q∥B)∗.

Now,

(Q⊗ I)S(Q∗ ⊗ I) = (Q⊗ I)(
∑
i∈I

Λ∗
iΛi)(Q

∗ ⊗ I)

=
∑
i∈I

(Q⊗ I)Λ∗
iΛi(Q

∗ ⊗ I)

=
∑
i∈I

(Λi(Q
∗ ⊗ I))∗Λi(Q

∗ ⊗ I),

which completes the proof. ■

Theorem 4.3 If Q ∈ End∗B(K) is invertible and {Λi}i∈I ⊂ End∗A⊗B(H⊗K, Vi) is an
∗-K-g-frame for H⊗K with lower and upper bounds A and B respectively and frame
operator S. If K commute with I⊗Q, then {Λi(I⊗Q∗)}i∈I is an ∗-K-g-frame for H⊗K
with lower and upper bounds ∥Q∗−1∥−1A and ∥Q∥B respectively and frame operator
(I ⊗Q)S(I ⊗Q∗).

Proof. Similar to the proof of the theorem 4.2. ■
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