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Abstract. The aim of this paper is to introduce and solve the generalized radical cubic
functional equation related to quadratic functional equation

£ (Vaz®+057) + £ (Vaa® = by?) = 20°f(2) + 27 (), @,y € R,

for a mapping f from R into a vector space. We also investigate some stability and hypersta-
bility results for the considered equation in 2-Banach spaces by using an analogue theorem
of Brzdek in [17].
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1. Introduction

Throughout this paper, we will denote the set of natural numbers by N, the set of real
numbers by R, Ry = [0, 00) the set of non negative real numbers and Ry = R\{0}. By
N, for m € N, we will denote the set of all natural numbers greater than or equal to m.

The notion of linear 2-normed spaces was introduced by Géhler [21, 22] in the mid-
dle of 1960. We need to recall some basic facts concerning 2-normed spaces and some
preliminary results.
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Definition 1.1 Let X be a real linear space with dimX > 1 and ||.,.|| : X x X — R
be a function satisfying the following properties:

(1) ||z, y|| = 0 if and only if = and y are linearly dependent,

(2) llz,yll = lly, =[],
(3) 1Az, yll = [Alll=, yll;
4) Nz +y, 2l < ||z, 2] + [y, 2,

for all z,y,z € X and A € R. Then the function ||.,.|| is called a 2-norm on X and the
pair (X, ||.,.||) is called a linear 2-normed space. Sometimes the condition (4) called the
triangle inequality.

Exzample 1.2 For v = (z1,72), y = (y1,%2) € X = R?, the Euclidean 2-norm ||z, y||r:
is defined by

2, yllrz = |T1y2 — T201] .

Definition 1.3 A sequence {zj} in a 2-normed space X is called a convergent sequence
if there is an x € X such that

lim [z, — z,y[ =0,
k—oo

for all y € X. If {x} converges to x, write x; — x with £ — oo and call = the limit
of {zx}. In this case, we also write limy_, zy = .

Definition 1.4 A sequence {x} in a 2-normed space X is said to be a Cauchy sequence
with respect to the 2-norm if

lim ||z —x,y] =0,
[e.e]

)

for all y € X. If every Cauchy sequence in X converges to some x € X, then X is said
to be complete with respect to the 2-norm. Any complete 2-normed space is said to be
a 2-Banach space.

Now, we state the following results as lemma (see [27] for the details).
Lemma 1.5 Let X be a 2-normed space. Then,

(1) [z, 2ll = lly, 2ll| < [l =y, 2|| for all 2,y, 2 € X,
(2) if ||z, 2| =0 for all z € X, then x =0,
(3) for a convergent sequence x, in X,

lim ||xg,, z|| =
n—oQ

lim x,, zH
n—-aoo

for all z € X.

The first stability problem of functional equation was raised by Ulam [31] in 1940.
This included the following question concerning the stability of group homomorphisms.
Let (Gy,#1) be a group and let (Ga,*2) be a metric group with a metric d(.,.). Given
€ > 0, does there exists a § > 0 such that if a mapping h : G; — G2 satisfies the
inequality

d(h(z *1y), h(z) %2 h(y)) <&
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for all x,y € GG, then there exists a homomorphism H : G; — G5 with
d(h(z),H(z)) <e

for all x € G17
If the answer is affirmative, we say that the equation of homomorphism

h(z *1y) = h(z) *2 H(y)

is stable. Since then, this question has attracted the attention of many researchers. In
1941, Hyers [23] gave a first partial answer to Ulam’s question and introduced the stability
result as follows:

Theorem 1.6 [23] Let E; and E3 be two Banach spaces and f : By — Es be a function
such that

[f(z+y) = flz) = fyl <o

for some § > 0 and for all x,y € F1. Then the limit

A(z) = lim 27" f(2"2)

n— o0

exists for each z € Fy, and A : By — E5 is the unique additive function such that
If(z) — A(z)]| <6

for all x € FEj. Moreover, if f(tz) is continuous in ¢ for each fixed z € Fj, then the
function A is linear.

Later, Aoki [10] and Bourgin [11] considered the problem of stability with unbounded
Cauchy differences. Rassias [29] attempted to weaken the condition for the bound of the
norm of Cauchy difference

1f(z+y) = flz) = f)

and proved a generalization of Theorem 1.6 using a direct method (cf. Theorem 1.7):

Theorem 1.7 [29] Let E; and E3 be two Banach spaces. If f : B} — FE satisfies the
inequality

£ (z +y) = f(z) = F)ll < 0= + [lylI”)

for some 6 > 0, for some p € R with 0 < p < 1, and for all x,y € E;, then there exists a
unique additive function A : F1 — Es such that

26
2-—-2p

[f(x) = A(2)] <

l2[?

for each x € E;. If, in addition, f(¢x) is continuous in ¢ for each fixed x € Ej, then the
function A is linear.

After then, Rassias [28, 30] motivated Theorem 1.7 as follows:
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Theorem 1.8 Let E; be a normed space, Fs be a Banach space, and f : £ — E3 be a
function. If f satisfies the inequality

1f (@ +y) = f(@) = F)l < O(l2l” + [lylI) (1)

for some 6 > 0, for some p € R with p # 1, and for all z,y € E; — {0g, }, then there
exists a unique additive function A : E; — Es such that

20

1/ () = A(z)|| < m!\wll” (2)

for each z € By — {0p, }.

Note that Theorem 1.8 reduces to Theorem 1.6 when p = 0. For p = 1, the analogous
result is not valid. Also, Brzdgk [12] showed that estimation (2) is optimal for p > 0 in
the general case.

Recently, Brzdek [13] showed that Theorem 1.8 can be significantly improved; namely,
in the case p < 0, each f : F; — FEy satisfying (1) must actually be additive, this
result is called the hyperstability of Cauchy functional equation. However, the term of
hyperstability was introduced for the first time probably in [26], and it was developed
with fixed point theorem of Brzdek in [17].

In 2013, Brzdek [15] improved, extended and complemented several earlier classical sta-
bility results concerning the additive Cauchy equation (in particular, Theorem 1.8). Over
the last few years, many mathematicians have investigated various generalizations, ex-
tensions and applications of the Hyers-Ulam stability of a number of functional equations
(see, for instance, [1, 4, 16, 18] and references therein); in particular, the stability problem
of the radical functional equations in various spaces was proved in [7-9, 19, 20, 24, 25].

An analogue of [17, Theoreml] in 2-Banach spaces was stated and proved in [3].

Theorem 1.9 [3] Let X be a nonempty set, (Y, ||,-||) be a 2-Banach space, g: X =Y
be a surjective mapping and let f1,...,f, : X — X and Ly,...,L, : X — R, be given
mappings. Suppose that 7 : YX — YX and A : Rf X Rf *X are two operators
satisfying the conditions

|Te@) - Tu(). gl < 3 Lit)|[6(fil)) = n(fil@)), 9(2)| (3)
=1
for all ¢, u € YXandforallz,z € X, and

Ao(z, z) ::ZLi(a:)Mfi(x),z), s e RY*X 2,z € X. (4)
i=1

If there exist functions € : X x X — R, and ¢ : X — Y such that

|Te@) = e@). ()| < . 2) (5)
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and

o0

e¥(x,z) = Z (A"e)(z,2) < 00 (6)
n=0
for all z,z € X, then
Tim ((T"¢))(x) (7)

exists for each z € X. Moreover, the function ¢ : X — Y defined by

U(e) = lim ((T"¢))() (®)
is a fixed point of 7 with

for all z,z € X.

The following functional equation

flx+y)+ flx—y)=2f(x) +2f(y) =,y €R, (10)

where f: R — X, is called a quadratic functional equation. In particular, every solution
of equation (10) is said to be a quadratic function. It is well known that a function
f: E1 — E5 between two real linear spaces E1 and Fs is quadratic if and only if there
exists a unique symmetric biadditive function B : E1 x E; — FE such that f(x) = B(z, )
for all x € F1. The biadditive function B is given by

Bla,y) = {[f(e+u) + fa—y), wyeBr

In this paper, we introduce and achieve the solutions of the following general radical
cubic functional equation related to quadratic functional equation:

f <\3/ ar’ + by3) +f (\3/ ar’ — by3> = 2a*f(z) + 2b%f(z) (11)

with a,b € Q such that a # 0 and b # 0. Furthermore we investigate the generalized
Hyers-Ulam-Rassias problem stability, in the spirit of Gavrouta, in 2-Banach spaces by
using Theorem [3].

2. Solution of equation (11)

In this section, we give the general solution of functional equation (11).

Lemma 2.1 Let X be a linear space and a,b € Q \ {0}. A function f: R — X satisfies
the functional equation

flaz +by) + flaz —by) = 2a°f(z) + 26" f(y), z,y € R (12)
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if and only if

f(z)=Q(z) + f(0), z€R

with @ : R :— X is a quadratic function and f(0) satisfies f(0) = (a® + b%) £(0).

Proof. Indeed, it’s easy to check that if f(x) = Q(x) + f(0) with f(0) = (a® + b?)£(0)
then f satisfies the equation (12).

On the other hand, let f : R — X a solution of the equation (12) and @ : R — X a
function such that Q(x) = f(z) — f(0) for z € R with £(0) = (a® +b?) f(0). If we replace
y by 0 and z by ax, then we get Q(az) = a®?Q(z). Furthermore, replacing x by 0 in the
equation (12) we get f(by) + f(—by) = 2f(0) 4+ 2b2Q(y) and replacing = by 0 and y by
—y we get f(—by) + f(by) = 2f(0) + 20°Q(—y), then g is even. Finely, from (12), we get
Q(az + by) + Q(ax — by) = Q(az) + Q(by) for all z,y € R. This complete the proof. W

The proof of the following theorem has been patterned on the reasoning in [14].

Theorem 2.2 Let X be a linear space. A function f : R — X satisfies the functional
equation (11) if and only if f(x) = Q(z?) for all x € R such that @ is solution of the
functional equation (12)

Proof. It’s not hard to see that if f(z) = Q(x3) then f is solution of the equation (11).
On the other hand, if f is solution of (11), then

3

Q(azx + by) + Q(ax — by) :f(3 a@—i—bf'/gﬁ) +f(
=2a%f (Va3) + 20° £ (/43)
—202Q(z) + 20°Q(y)

a3m3—b3y3)

for all z,y € R. [ ]

3. Stability results of the radical cubic functional equation (11)

In the following two theorems and by using the Theorem 1.9, we investigate the gen-
eralized Hyers-Ulam stability of the functional equation (11) in 2-Banach spaces.
Hereafter, we assume that (X, |-, ||) is a 2-Banach space and a,b € Q\{0}.

Theorem 3.1 Let hy, hy : RZ2 — R, be two functions such that

1 1
U={neN: q,= 2a2)\1(n: ))\z(n: ) + 202\ (

—nNn

b

—n

;)

)A2(

+ A2+ 1)A2n+1) <1} # ¢
for a,b € Q\{0} be an infinite set, where
Ai(pn) = inf {t € Ry : hi(pnz?,z) <t hi(x3,2), z,z € R}, peR

for all n € N, where ¢ = 1,2. Assume that f: R — X satisfies the inequality

1 (VaaZ 07+ £ (Vaa® = 07 ~20° £ () -2 £ (), 9(2)]| < (™, 2ol 2) (13)
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for all z,y,2 € Rp and £(0) = (a® + b?)f(0) where g : R — X is a surjective mapping

with ¢(0) = 0. Then there exists a unique function 7y, : Ry — X satisfies the equation
(11) such that

Hf(a:) — Tm(x),g(z)H < Bhi(2?, 2)ha (23, 2), z,2 € Ry, (14)

where

5 i {&(T)Ag(?)}‘

neu 1—ao,

Proof. Replace = by ¢ mT'Hx and y by {/ ="z in inequality (14), where z,y € Rq and
m € N. Then we get

(|2a% f <\3/ m:1x> + 20 f <f’/ _;nx> — [ (V2m +1z) — f(2),9(2)|
< <m;— 1x3,z> ho (_gnx?’,z)

<M <ma+1> Ao (‘;”) hy (27, 2) hy (27, 2) (15)

for all z, z € Rg. For each m € N, we define operators 7 : X®o — XRo by

Te(x) = 2a%¢ (f/ m:1x> 1 oop%e ( : _bmx) —¢(Vam+1z), Ee X, 2R

and € : Ry x Ry — R, by

1 — .
e(z,z) = <m:$3,z> ho <bmx5,z> , meN z, z e R,

Observe that

m—+1

e(z,2) < A (a) Ao (‘2”) hi (23, 2)ha (23, 2) (16)

for all x,z € Ry and all m € N. Then the inequality (15) become as

|Tf(z) - f(z),9(2)|| < elx,2), =,z € Ry.
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Furthermore, for every z,z € Ry, &, u € X%, we obtain

|Te@) — Tu@), o(2)|

_ H2a2g (Wx) +2b%¢ (ﬁx) — € (V2m+ 1)
— 22y (Wx> — 2b%u (ﬁx) + 1 (V2m + 1z) 79(2)H
< 20?6 - ) (W% 9(2)|| + 2626 - ( ;"z> 9(2)

+ (€ = (V2m 1) g (2|

This brings us to define the operator A : R{o*® — REo*Fo by

Ad(x, 2) = 2a%5 <\3/ mTHx, z) + 2b%6 <13/ %x, z) + 0 (V2m + 1z, 2) (17)

for all z,z € Ry, where § € ]R]EOXRO. Then, For each m € N, the above operator has the

form described in (4) with fi(z) = ¢/ ™z, fo(z) = ¢/ L=, f3(z) = ¥/2m + 1z and
Li(z) = 2a® , La(z) = 2b% , Ly = 1 for all z € Ry. By induction, we will show that for
each z,z € Ryp, n € N and m € U, we have

m—+1 m

Ale(z,2) < M\ <a> A2 <_b> ol hy (22, 2)ho (a2, 2) (18)

for n = 0, inequality (18) is exactly (16). Next we will assume that (18) holds for n = k,
where k£ € N. Then we have

(AR +e)(z, 2) = A((Aks)(x, z))

1 —
= 2a%(A*e) (¢ ﬂx, 2) + 2% (A*e) ({ me, 2) + (A*e)(V2m + 1z, 2)
a
m+1 -m\ i 9 m+1 4 m+1 4
<\ Ao | — am<2a hy x°,z | ho z°, z
a b a a

+20%h, (_bmx3 z) hy (_;nxi‘ z) + i (2m + 1)2%,2) b ((2m + 12, 2) )
(

for all =,z € Rg, m € U. This shows that (18) holds for n = k + 1. We conclude that
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the inequality (18) holds for all n € N. Since o, < 1 for each m € U, we get

ez, 2) = f: (A") (2, 2) < M <ma+ 1) A2 (‘bm> hl(x?’,z)hQ(xS,z)iag

n=0

_ M (L) Ng (Z2) by (23, 2)ha (23, 2)

a

< 00
1—ay,

for all z,z € Ry, m € U. Therefore, according to Theorem 1.9 with ¢ = f and X = Rg
and by using the surjectivity of g, we get that the limit 77,,(z) = li_}rn (T™f)(z) exists
for each x € Ry and m € U, and

A (ZEEL) Ny () ha (23, 2)ho (a3, 2)

a

| f(2) = T'm(x),9(2)| < z,z € Ry, meU. (19)

1— o
We define Ty, : R — X by Tou(x) = T'im(x) for all z € Ry and T,,,(0) = (a? + b) T, (0).

To prove that 7, satisfies the functional equation (11), we should prove the following
inequality

HTnf (\3/ axd + by3) +T"f (\3/ axd — by3) —2a%T" f(z) — 26>T " f (), g(z)H
< aph (m3, z)hg(y3, 2) (20)

for every z,y,2z € Rg, n € N, and m € U. We proceed by induction, so, since the case
n = 01is just (13), take k£ € N and assume that (22) holds for n = k and every z,y, z € Ry,
m € U. Then, for each z,y,z € Ry and m € U, we get

oot (Vo) + 0 (Yo =) 274405 <287 .|

= 2027 <€/@W> +22Th (ﬁW) -T"f (WW)
—4atThy (,SImTHx> —4a%p27 ¢ (f’/?x) +2a%T"f (Wﬂﬂ)
(e R (0 R

< 2a?||7" 5 (?/T"T“ i‘/m) +TRf (@W) —2a%Tk (3 %“z) — 227 <$/’"T“y> el
+20%|| 70 s (@W) + TR (@W) - 2227 ¢ (‘\3/?90> — 2T (\3/?10 Yol

+|7*s (W?/aws i by3) +TRf (W?/axs Z by3) —22>7f (VEm T 1a) - 22T (VEm A 1y) a2

m+ 1

a

—m

b

k

< 2a2a,k hi( xS,z)hg( y3,z)+2b2am yg,z)+a,’fnh1((2m+1)x3,z)h2((2m+ l)yS,z)

m

m 4+ 1
a

—-m 5
hl(TfE y2)ha(

+1 +1 _ _
<ot (B2 ) () #20 (57) 22 (57) tam e satem 4 )t om0

a

k+1 3 3
=altth (@3, 2)ha (v°, 2).

Thus, by induction, we have shown that (20) holds for every x,y,z € Ry, n € N, and
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m € U. Letting n — oo in (19), we obtain the equality

T (Vaa® +0) + T (Vaa® =0 ) = 22T (@) + 26°T') (1)

for x,y € Ryp and m € U. This implies that 7,, : R — X is a solution of the equation
(11). Now, we will show that 7y, is the unique solution of (11). Indeed, let F,,, : R — X
an other solution of (11) satisfying the inequality

| Fm(z) — f(z),9(2)| < th(asg,z)hg(ac3,z), z,2 € Ry (22)

and F,,(0) = (a® +b?)F,,(0) with some 6 > 0. Then, for each m € U fixed and x, z € Ry,
we get

[ F(2) = Ton (@), 9(2) || = Fin (@) = f (), 9(2) || + || T (@) — (@), 9(2)|

Ar (L) 2y (52) ha (23, 2)ha (23, 2)

1—

< 0hy (333, z)hg(x?’, z) +

< Oohy (2%, 2)ha(2®,2) Y aly, (23)
n=0

with 0y = (- am)0+)\ ( a(52)) . We exclude the case that hq (23, 2) = 0 or ho(23,2) =

0, which is trivial. Next for each j € Ny, we show that

[e.9]

HTm(x) — fm(x),g(z)H < Ohy (23, 2)ho (23, 2) Za%, z,z € Ry. (24)

n=j

The case j = 0 is exactly (23). We fix & € N and assume that (24) holds for j = k. Then,
for each z, z € Ry, we get

| Tm (z) = Fm(2), 9(2)||

1 —
= |12a*Tom (;»/&1.) + 2627, (%/%z) ~ Ton (¥2Zm + 12)
a
1 —
— 2a2.7-'m <3/&3¢> - 2b2]-'m (13/ Tm:c> + Fm (\S/Qm + 1;v) ,g(z)”
a
. 1 P 1 o — of —
< 203 || T (f/L+ z) — Fm <3 mr z) 19(2)|| + 267 || Ton (\3/ bm‘"”) —Fm <3V bmz> 9|
a a

U (9T~ (4T )

1. 1. _ Cm .
< (2&290h1 (m: z‘s,z) ho (m: zs,z) +2b290h1 (Tmzs,z) ho (Tmz‘s,z)

+00h1((2m + 1)a®, 2)ha ((2m + 1)2°, 2))

a
m

M8

n==k

§90(2a2)\1( PV G P x1(7>xg<7)+xl(2m+1)A2<2m+1))h1(z , 2)ha (2, 2) Z al,
n==k
< Ooha(a®, 2)ha(a®, 2) fj antt
n==k
:90h1(z3,z)h2(z3,z) Z ag .

I
ES

n

+1
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This shows that (24) holds for j = k+ 1. Now, letting j — oo in (24), we get T, = Fm.
This implies the uniqueness of 7,,. [ |

With an analogous proof of the above theorem, we can prove the following theorem.

Theorem 3.2 Let h: R2 — R, be a function such that

U= {n eN: a, = 2a2)\(nT+1) +2b2x(%”) FA2n+1) < 1} "y

be an infinite set, where
Apn) = inf {t € Ry : h(ona®,2) <t h(x® 2), x,2¢€ Ro}, peR

for all n € N. Assume that f: R — X satisfies the inequality
£ (Vaz®+by%) +1 (Vaz® = by®) —202f (0) =22 (1), 9(2)]| < hla®, 2)+h(y", 2) (25)

for all ,y,2 € Ry and f(0) = (a® + b%)f(0) where g : R — X be a surjective mapping
with ¢g(0) = 0. Then there exists a unique function 7, : R — X satisfies the equation
(11) such that

Hf(m) - Tm(x)’g(z)“ < )\Oh(x?)’z)’ T,z € RO, (26)

where

Ao = inf {)\(n;rl) M) } .

nel 1—a,

Proof. Replacing in (25) x by ¢{ mT‘H:J: and y by ¢/ ="z, where € Rg,m € N. Then
we get
2027 (3/e) + 2627 (§/ ) - £ (V2mF Ta) = F(2),9(2)] (27)
< ()\ (mH) + A (%)) h(z3,2), x,z € Ry.

a

For each m € N, we define operators:

1 [
Te(x) = 2a2¢ ( m: ac) + 2p%¢ (f/;”x) —¢(V2mt1x), £ X™, xR,
1 L=
Ad(z) = 2426 <\3/ %x, z> + 2b%5 <f/ me, z> +4 (\3/ 2m + 1z, z) 6 € Ry RoxBo 0 c Ry

(28)
e(z,2) = <)\ (m: 1) A (‘bm)) h(z%,2), z,z € Ro.
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As in theorem 3.1, we observe that inequality (27) take the form

1 () = Tmf(2), ()| < e, 2), 2 € Ro.

|
Next, we give some following corollaries obtained from our main results.
Corollary 3.3 Let hy, ho : Rg — R, be as in Theorem 3.1 such that
(7, 2) _
lim inf sup =0, (29)

n—oo z,2€R, hl(x3,z)h2(a:3,z)

where

1 1
(2, 2) = 20°hy (Hf’,z) hy (n+ a?, >+2b2h1 <bx Z) h2< bn 3»z>
a a

+hi ((2n+1)z®,2) he (2n +1)2°,2); 2,2 € Ry, n € N.

Assume that f : R — X satisfies (11)and f(0) = (a® +b?)f(0), and g : R — X is
a surjective mapping with g(0) = 0. Then there exist a unique radical cubic function
T : R — X with 7,,(0) = (a® 4+ b*)7,»(0) and a unique constant x € R, with

Hf(w) — Tm(ac),g(z)H <k hy (23, 2)he(23,2), x,2 € Ry. (30)

Proof. By the definition of A;(n) (i = 1,2) in the th 3.1, we can see

2 2h n+1..3 h n+1 .3
20/2A1 n+]‘ /\2 n+1 = sup a ( Z Z) 2( a €z 72)
a a z,2€Ro h1($3, )h2($37z)
M (T, 2)
< su 31
z,zell?&o hl(fgvz)hQ(xSaZ) ( )
and
-n -n 20%hy (_—”x?’ z) ho (—” )
20°A1 (= | Ao (= | = - b
(T)%(F) = s, S e
nn(fﬂaz)
< 2
roneiy h1(a3, 2) (a3, 2) 3
and
hi((2n + )23, 2)ha((2n + 1)23, 2)
A(2 1A (2 1) =
1( nr ) 2( nr ) x,szlgﬂ)%o h1($3,z)h2(x3,z)
< sup n(2, 2) (33)

z.2eR, M1 (23, 2)ha(a3, 2)
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Combining inequalities (31), (32) and (33), we get

1 1 - -
242\ (”: ) A2 <”Z ) + 262\ (bn) A2 (b"> +A1(2n + DAg(2n + 1)

(2, 2)
<3 su . 34
x,ze%o hl ($3, Z>h2 ($3’ Z) ( )

Putting

= Sup N (T, 2)
" aer, M (T3, 2)ho(a3, 2)

From (29), there is a subsequence {7, } of a sequence {~,} such that limy_, vn, = 0,
that is,

lim sup M (2, 2)

k—00 7 2eR, h1(1‘3, Z)h2(:173’ Z) = 0. (35)

From (35) and (34), we obtain

1 1 — —
lim 2a%\; (nk: ) A2 <nk; ) + 202\, (:k) Ao (le) + M (2ng + 1D)Aa(2ng + 1) = 0.

k—o0 b

This implies

1 1
lim A1<”’“+ >/\2<n’“+ >:o
k—oo a a

and hence,

. M () X (54) i
k—oo 1= 2a2Ay (ZEh) Ag (22HL) — 2621 (Z72) Ag (Z2%) — M(2ng + DXo(2ng +1)

which means that 8 defined in Theorem 3.1 is equal to k. This complete the proof. R
By a similar proof we can prove the following corollary where x = 1.

Corollary 3.4 Let hl:RZ — R, be as in Theorem 3.2 such that
2a2h (a3, 2) + 2620 (223, 2) + h((2n + 1)23, 2)

lim inf su =0
n—00 a:,zEIH)EO h(ﬂ?g, Z)

for all z,2 € Ry and n € N. Assume that f : R — X satisfies (11), f£(0) = (a? + b?) £(0)
and g : R — X a surjective mapping with g(0) = 0. Then there exist a unique radical
cubic function T, : R — X with 7,,(0) = (a® + b*) 75, (0) and a unique constant xk € R,
with

Hf(x) - Tm(m)ag(Z)H <K h1($3,2)h2(l‘3,z), z,z € Ro.
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4. Applications

According to above theorems, by defining hy, ho, h : R? — (0, 00) as follows:
hi(2%,z) = ellqu(@®)[P|z]™ , ha(z®,2) = calga(a?)|7]2]™ and h(z?,2) = clq(2?)[P|z]" for
all x,z € Ry, where c1,co,¢c > 0, r1,72,7 > 0 and ¢1,¢2 and ¢ are quadratic mappings,
we derive some particular cases.

Corollary 4.1 Let X be 2-Banach space. Assume that a function f : Ry — X verify
the inequality

17 (Vazm+07) + £ (Vaz® = b) = 20*f(2) = 202 (), 9(2) | < el (@®)Plaa () 7]

(36)
for all x,y,2 € Rg and a,b € Q\ {0} withec=¢1 X2 20, p+qg<0andr=ry+ry >0,
where g : R — X is a surjective mapping. Then f is a solution of the equation (11) on
Ro.

Proof. For each m € N and a,b € Q\ {0} we define \;(m) as in Theorem 3.1

1 1
A1 <m+ > = inf {t eERy <m+x3,z> < thl(x3,z)}
a

a

= inf {t €R+ : cl‘ql (
:inf{

m—|—1’2p

m—+1

p
)|l < el
teRy:
(m+1 2
()",

for z,z € R\ {0}. Also, for m € N, we have Ay (%) = (%)Qq. It’s clear that there exists
mo € N such that for each m > mg we get

am = 2a%)\; m+1 Ao m+1 1262\ —m Ao -m
a a b b

+ M (2m+ 1)A2(2m +1)

2(p+q) 2p+
= 242 <m+1> + 262 (7 P | (om 4 1)20%9) < 1.

()P < tcl|q1<x3>|p|zr“}

a b

According to theorem 3.1, there exists a unique radical cubic function 7, : R\ {0} — X
such that :

1T (@) = f(2), 9(2)I| < eBlar(z®)Plaz(z?)|]z]",

where

melU 1—ap,

- {w:lw (::n)}: . {(m:l)?pwﬂ}
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On the other hand, since p+ ¢ < 0, one of p and ¢ must be negative. Assume that p < 0.

Then
1 _ 1\ 2(p+a)
lim A; <m+> Ao <m> — lim <m+ ) =0 (37)
m—00 a b m—00 a
We get the desired results. [ |

Corollary 4.2 Let X be 2-Banach space. Assume that a function f : R\ {0} — X verify
the in inequality

1 (Varm ¥ 008) + 1 (Var® —0P) — 2% () — 262 (1), 9(2)] < ela(a®)P +1aGP)P =T, (39)

for all x,y,z € R\ {0} and a,b € Q\ {0} with ¢ >0, p <0 and r € R, where g : R — X
is a surjective mapping. Then f is a solution of the equation (11) on R\ {0}.

Proof. The proof is similar to the proof of Corollary 4.2. |

In the following corollaries, we get the hyperstability results for the inhomogeneous
general radical cubic functional equation.

Corollary 4.3 Let X be a 2-banach space, G : R?> — X be a function such that
G(0,0) =0 and ¢,p,q,7 € R with ¢ > 0, p+ ¢ < 0 and 7 > 0. Assume that G : R? — X
and f : R — X satisfy the inequality:

1 (Vaa® 0y ) + £ (Vaz® = by ) — 202 (@)~ 20° F(y) ~ G2, y). 9(2)]| < clar (&%) Plaa(y?) 7] 2"

(39)
for all z,y,2 € R\{0} and a,b € Q\{0} with f(0) = (a® + b?)f(0), where g : X — X is
a surjective mapping. If the functional equation

f (\3/ az® + by3> +f <\3/ axd — by3> = 2a° f(x) + 26° f (y) + G(z,y) (40)

for all z,y € R\{0} and a,b € Q\{0} has a solution fp : R — X, then f is a solution of
(40).

Proof. Let ¢ : R — X be a function defined by ¢(z) = f(z) — fo(z) for all 2 € R. then,
o (Vaz™+ 057 ) + ¢ (Vaz® =by?) - 2a%6(x) - 226(y), 9(2)|
= |11 (Vaa® 057 ) + 1 (Vaw® = by ) — 202 (@) = 22 (y) - G(a,y)
— fo (Vaz®+by7) = fo (Vaz® —by?) + 202 fo ) + 2% fo(y) + Gla,y), 9(2)]
<If (Vaa® 057 ) + f (Vaa® =07 ) — 2% (@) = %2 (y) — G, ), 9(2)]
+ Ifo (Vaa®+07) + fo (Vaa® =07 ) — 2% fo(a) = 2% fo(y) = Gl 1). 9(2)]
= |1 (Vaz®+by®) + 1 (Vaa® = by ) - 202 f(2) - 20 (y) = G, ), 9(2)]

< clar (@) Plaa(y®)?]2]", 2,y € R\{0}.
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It follows from corollary 4.1 that ¢ is a solution of equation (11). Moreover,
f (Vaz®+b%) + £ (Vaa® = b)) = 202 f(2) = 262 (y) — Gla.y)
= o (Var® 5 057) + ¢ (Vaa® — by ) - 20%(x) — 226(y)
+ o (Var® +097) + fo (Vaa® = by ) = 202 fo(w) = 26° foly) — G, )

= O,
which means f is a solution of (40). |

Corollary 4.4 Let X be a 2-banach space, G : R?> — X be a function such that

G(0,0) =0 and ¢,p,r € R with ¢ > 0, p < 0 and 7 > 0. Assume that G : R? = X and
f iR — X satisfy the inequality:

1 (Vaz® 057 ) +f (/az® = by) 202 (2)-22 £ )~ Glw, ), 9| < e (la(@)P + la() ) =]

(41)
for all z,y,2 € R\{0} and a,b € Q\{0} with f(0) = (a® + b?)f(0), where g : X — X is
a surjective mapping. If the functional equation

f(Vaz® +by®) + f (Vaa® —by®) = 202 f () + 20°F(y) + Glay), 2.y € R\{0} (42)

has a solution fy: R — X, then f is a solution of (42).

Proof. With an analogous proof of Corollary 4.3, we find the desired result. [ |
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