Journal of Linear and Topological Algebra Vol. 08, No. 02, 2019, 127-131

Some topological properties of fuzzy strong b-metric spaces

T. $\ddot{\mathrm{O}}\mathrm{ner}^\mathrm{a}$

^aDepartment of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University Muğla 48000, Turkey.

Received 28 August 2018; Revised 6 December 2018; Accepted 22 January 2019. Communicated by Tatjana Dosenović

Abstract. In this study, we investigate topological properties of fuzzy strong b-metric spaces defined in [13]. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_1 \times X_2$ is a complete fuzzy strong b-metric space if and only if X_1 and X_2 are complete fuzzy strong b-metric spaces. Finally it is proven that a subspace of a separable fuzzy strong b-metric space is separable.

© 2019 IAUCTB. All rights reserved.

Keywords: Fuzzy strong b-metric space, strong b-metric space, complete, separable.

2010 AMS Subject Classification: 54A40, 54E50

1. Introduction and Preliminaries

The notion of strong b-metric space is obtained by modifying the "relaxed triangle inequality" in the definition of b-metric (or metric type) space [2, 3, 6, 8, 10].

Definition 1.1 [11] Let X be a non-empty set, $K \ge 1$ and $D: X \times X \longrightarrow [0, \infty)$ be a function such that for all $x, y, z \in X$,

1) D(x, y) = 0 if and only if x = y,

$$2) D(x,y) = D(y,x).$$

3) $D(x,z) \leq D(x,y) + KD(y,z).$

Then D is called a strong b-metric on X and (X, D, K) is called a strong b-metric space.

In these spaces, the strong b-metric D is continuous and an open ball is open set [11] where these are not true in general for b-metric spaces [1].

© 2019 IAUCTB. All rights reserved. http://jlta.iauctb.ac.ir

E-mail address: tarkanoner@mu.edu.tr (T. Öner).

After introducing the theory of fuzzy sets by Zadeh [15], fuzzy analogy of metric spaces were applied by different authors from different points of view [4, 5, 7, 9, 12].

In [13], Oner introduced and studied the notion of fuzzy strong b-metric spaces which is the fuzzy analogy of strong b-metric spaces and a generalization of fuzzy metric space introduced by George and Veeramani [7].

Definition 1.2 [14] A binary operation $* : [0, 1] \times [0, 1] \longrightarrow [0, 1]$ is a continuous *t*-norm if * satisfies the following conditions:

- 1) * is associative and commutative,
- 2) * is continuous,
- 3) a * 1 = a for all $a \in [0, 1]$,
- 4) $a * b \leq c * d$ whenever $a \leq c$ and $b \leq d$, $a, b, c, d \in [0, 1]$.

Definition 1.3 [13] Let X be a non-empty set, $K \ge 1$, * is a continuous t-norm and M be a fuzzy set on $X \times X \times (0, \infty)$ such that for all $x, y, z \in X$ and t, s > 0,

- 1) M(x, y, t) > 0,
- 2) M(x, y, t) = 1 if and only if x = y,
- 3) M(x, y, t) = M(y, x, t),
- 4) $M(x, y, t) * M(y, z, s) \leq M(x, z, t + Ks),$
- 5) $M(x, y, .) : (0, \infty) \to [0, 1]$ is continuous.

Then M is called a fuzzy strong b-metric on X and (X, M, *, K) is called a fuzzy strong b-metric space.

For t > 0, open balls and closed balls with center x and radius $r \in (0, 1)$ were defined in [13] as follows:

$$B(x, r, t) = \{ y \in X : M(x, y, t) > 1 - r \},\$$

$$B[x, r, t] = \{ y \in X : M(x, y, t) \ge 1 - r \}$$

and it was proven that every fuzzy strong b-metric spaces (X, M, *, K) induces a Hausdorff and first countable topology τ_M on X which open balls are open and closed balls are closed and the family of sets $\{B(x, r, t) : x \in X, 0 < r < 1, t > 0\}$ form a base.

Proposition 1.4 [13] $M(x, y, .) : (0, \infty) \longrightarrow [0, 1]$ is nondecreasing for all $x, y \in X$.

Definition 1.5 [13] Let (X, M, *, K) be a fuzzy strong b-metric space, $x \in X$ and $\{x_n\}$ be a sequence in X. Then

i) $\{x_n\}$ is said to converge to x if for any t > 0 and any $r \in (0,1)$ there exists a natural number n_0 such that $M(x_n, x, t) > 1 - r$ for all $n \ge n_0$. We denote this by $\lim_{n \to \infty} x_n = x$ or $x_n \to x$ as $n \to \infty$.

ii) $\{x_n\}$ is said to be a Cauchy sequence if for any $r \in (0, 1)$ and any t > 0 there exists a natural number n_0 such that $M(x_n, x_m, t) > 1 - r$ for all $n, m \ge n_0$.

iii) (X, M, *, K) is said to be a complete fuzzy strong b-metric space if every Cauchy sequence is convergent.

Theorem 1.6 [13] Let (X, M, *, K) be a fuzzy strong b-metric space, $x \in X$ and $\{x_n\}$ be a sequence in X. $\{x_n\}$ converges to x if and only if $M(x_n, x, t) \longrightarrow 1$ as $n \longrightarrow \infty$, for each t > 0.

In this study, we investigate the further topological properties of fuzzy strong b-metric spaces. Firstly, we prove Baire's theorem for these spaces. Then we define the product of two fuzzy strong b-metric spaces defined with same continuous t-norms and show that $X_1 \times X_2$ is a complete fuzzy strong b-metric space if and only if X_1 and X_2 are complete

fuzzy strong b-metric spaces. Finally, it is proven that a subspace of a separable fuzzy strong b-metric space is separable.

2. Main results

Theorem 2.1 (Baire's theorem). Let (X, M, *, K) be a complete fuzzy strong b-metric space. Then the intersection of a countable number of dense open sets is dense.

Proof. Let X be the given complete fuzzy strong b-metric space, B_0 be a nonempty open set and D_1, D_2, D_3, \ldots be dense open sets in X. Since D_1 is dense in X, $B_0 \cap D_1 \neq \emptyset$. Let $x_1 \in B_0 \cap D_1$. Since $B_0 \cap D_1$ is open, there exist $0 < r_1 < 1$ and $t_1 > 0$ such that $B(x_1, r_1, t_1) \subset B_0 \cap D_1$. Choose $r'_1 < r_1$ and $t'_1 = \min\{t_1, 1\}$ such that $B[x_1, r'_1, t'_1] \subset B_0 \cap D_1$. Let $B_1 = B(x_1, r'_1, t'_1)$. Since D_2 is dense in X, $B_1 \cap D_2 \neq \emptyset$. Let $x_2 \in B_1 \cap D_2$. Since $B_1 \cap D_2$ is open, there exist $0 < r_2 < 1/2$ and $t_2 > 0$ such that $B(x_2, r_2, t_2) \subset B_1 \cap D_2$. Choose $r'_2 < r_2$ and $t'_2 = \min\{t_2, 1/2\}$ such that $B[x_2, r'_2, t'_2] \subset B_1 \cap D_2$. Let $B_2 = B(x_2, r'_2, t'_2)$. Similarly, proceeding by induction, we can find a $x_n \in B_{n-1} \cap D_n$. Since $B_{n-1} \cap D_n$ is open, there exist $0 < r_n < 1/n$ and $t_n > 0$ such that $B(x_n, r_n, t_n) \subset B_{n-1} \cap D_n$. Choose $r'_n < r_n$ and $t'_n = \min\{t_n, 1/n\}$ such that $B[x_n, r'_n, t'_n] \subset B_{n-1} \cap D_n$. Let $B_n = B(x_n, r'_n, t'_n)$. Now we claim that $\{x_n\}$ is a Cauchy sequence. For a given t > 0 and $0 < \varepsilon < 1$, choose n_0 such that $1/n_0 < t, 1/n_0 < \varepsilon$. Then for $n, m \ge n_0$

$$M(x_n, x_m, t) \ge M\left(x_n, x_m, \frac{1}{n_0}\right) \ge 1 - \frac{1}{n_0} \ge 1 - \varepsilon.$$

Therefore, $\{x_n\}$ is Cauchy sequence. Since X is complete, there exists $x \in X$ such that $x_n \to x$. But $x_k \in B[x_n, r'_n, t'_n]$ for all $k \ge n$. Since $B[x_n, r'_n, t'_n]$ is closed, $x \in B[x_n, r'_n, t'_n] \subset B_{n-1} \cap D_n$ for all n. Thus, $B_0 \cap (\bigcap_{n=1}^{\infty} D_n) \ne \emptyset$. Hence, $\bigcap_{n=1}^{\infty} D_n$ is dense in X.

Proposition 2.2 Let $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ be fuzzy strong b-metric spaces. For $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$, consider

$$M((x_1, x_2), (y_1, y_2), t) = M_1(x_1, y_1, t) * M_2(x_2, y_2, t).$$

Then $(X_1 \times X_2, M, *, K)$ is a fuzzy strong b-metric space where $K = \max\{K_1, K_2\}$.

Proof. 1) Since $M_1(x_1, y_1, t) > 0$ and $M_2(x_2, y_2, t) > 0$ this implies that

$$M_1(x_1, y_1, t) * M_2(x_2, y_2, t) > 0.$$

Therefore, $M((x_1, x_2), (y_1, y_2), t) > 0$.

2) Suppose that $(x_1, x_2) = (y_1, y_2)$. This implies that $x_1 = y_1$ and $x_2 = y_2$. Hence, for all t > 0, we have $M_1(x_1, y_1, t) = 1$ and $M_2(x_2, y_2, t) = 1$. It follows that

$$M((x_1, x_2), (y_1, y_2), t) = 1.$$

Conversely, suppose that $M((x_1, x_2), (y_1, y_2), t) = 1$. This implies that

$$M_1(x_1, y_1, t) * M_2(x_2, y_2, t) = 1.$$

Since $0 < M_1(x_1, y_1, t) \le 1$ and $0 < M_2(x_2, y_2, t) \le 1$, it follows that $M_1(x_1, y_1, t) = 1$ and $M_2(x_2, y_2, t) = 1$. Thus, $x_1 = y_1$ and $x_2 = y_2$. Therefore $(x_1, x_2) = (y_1, y_2)$. 3) To prove that $M((x_1, x_2), (y_1, y_2), t) = M((y_1, y_2), (x_1, x_2), t)$. We observe that

$$M_1(x_1, y_1, t) = M_1(y_1, x_1, t),$$

$$M_2(x_2, y_2, t) = M_2(y_2, x_2, t).$$

It follows that for all $(x_1, x_2), (y_1, y_2) \in X_1 \times X_2$ and t > 0,

$$M((x_1, x_2), (y_1, y_2), t) = M((y_1, y_2), (x_1, x_2), t).$$

4) Since $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ are fuzzy strong b-metric spaces, we have

$$M_1(x_1, z_1, t + K_1s) \ge M_1(x_1, y_1, t) * M_1(y_1, z_1, s),$$

$$M_2(x_2, z_2, t + K_2s) \ge M_2(x_2, y_2, t) * M_2(y_2, z_2, s)$$

for all $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in X_1 \times X_2$ and t, s > 0. Since $K = max\{K_1, K_2\}$, we get

$$\begin{split} M((x_1, x_2), (z_1, z_2), t + Ks) &= M_1(x_1, z_1, t + Ks) * M_2(x_2, z_2, t + Ks) \\ &\geqslant M_1(x_1, z_1, t + K_1s) * M_2(x_2, z_2, t + K_2s) \\ &\geqslant M_1(x_1, y_1, t) * M_1(y_1, z_1, s) * M_2(x_2, y_2, t) * M_2(y_2, z_2, s) \\ &\geqslant M_1(x_1, y_1, t) * M_2(x_2, y_2, t) * M_1(y_1, z_1, s) * M_2(y_2, z_2, s) \\ &\geqslant M((x_1, x_2), (y_1, y_2), t) * M((y_1, y_2), (z_1, y_2), s). \end{split}$$

5) Note that $M_1(x_1, y_1, t)$ and $M_2(x_2, y_2, t)$ are continuous with respect to t and * is continuous. It follows that

$$M((x_1, x_2), (y_1, y_2), t) = M_1(x_1, y_1, t) * M_2(x_2, y_2, t)$$

is also continuous.

Proposition 2.3 Let $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ be fuzzy strong b-metric spaces. Then $(X_1 \times X_2, M, *, K)$ is complete if and only if $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ are complete.

Proof. Suppose that $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ are complete fuzzy strong bmetric spaces. Let $\{a_n\}$ be a Cauchy sequence in $X_1 \times X_2$. Note that $a_n = (x_1^n, x_2^n)$ and $a_m = (x_1^m, x_2^m)$. Also, $M(a_n, a_m, t)$ converges to 1. Hence, $M((x_1^n, x_2^n), (x_1^m, x_2^m), t)$ converges to 1 for each t > 0. It follows that $M_1(x_1^n, x_1^m, t) * M_2(x_2^n, x_2^m, t)$ converges to 1 for each t > 0. Thus, $M_1(x_1^n, x_1^m, t)$ converges to 1 and also, $M_2(x_2^n, x_2^m, t)$ converges to 1. Therefore, $\{x_1^n\}$ is a Cauchy sequence in $(X_1, M_1, *, K_1)$ and $\{x_2^n\}$ is a Cauchy sequence in $(X_2, M_2, *, K_2)$. Since $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ are complete fuzzy strong b-metric spaces, there exists $x_1 \in X_1$ and $x_2 \in X_2$ such that $M_1(x_1^n, x_1, t)$ converges to 1 and $M_2(x_2^n, x_2, t)$ converges to 1 for each t > 0. Let $a = (x_1, x_2)$. Then $a \in X_1 \times X_2$. It follows that $M(a_n, a, t)$ converges to 1 for each t > 0. This shows that $(X_1 \times X_2, M, *, K)$ is complete.

Conversely, suppose that $(X_1 \times X_2, M, *, K)$ is complete. We shall show that $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$ are complete. Let $\{x_1^n\}$ and $\{x_2^n\}$ be Cauchy sequences in $(X_1, M_1, *, K_1)$ and $(X_2, M_2, *, K_2)$, respectively. Thus, $M_1(x_1^n, x_1^m, t)$ converges to 1 and $M_2(x_2^n, x_2^m, t)$ converges to 1 for each t > 0. It follows that

$$M((x_1^n, x_2^n), (x_1^m, x_2^m), t) = M_1(x_1^n, x_1^m, t) * M_2(x_2^n, x_2^m, t)$$

converges to 1. Then (x_1^n, x_2^n) is a Cauchy sequence in $X_1 \times X_2$. Since $(X_1 \times X_2, M, *, K)$ is complete, there exists $(x_1, x_2) \in X_1 \times X_2$ such that $M((x_1^n, x_2^n), (x_1, x_2), t)$ converges to 1. Clearly, $M_1(x_1^n, x_1, t)$ converges to 1 and $M_2(x_2^n, x_2, t)$ converges to 1. Hence, $(X_1, M_1, *)$ and $(X_2, M_2, *)$ are complete. This completes the proof.

Proposition 2.4 A subspace of a separable fuzzy strong b-metric space (X, M, *, K) is separable.

Proof. Let X be the given separable fuzzy strong b-metric space and Y be a subspace of X. Let $A = \{x_n : n \in \mathbb{N}\}$ be a countable dense subset of X. For arbitrary but fixed $n, k \in \mathbb{N}$, if there are points $x \in X$ such that $M(x_n, x, 1/k) > 1 - 1/k$, choose one of them and denote it by x_{nk} . Let $B = \{x_{nk} : n, k \in \mathbb{N}\}$. Then B is countable. Now, we claim that $Y \subset \overline{B}$. Let $y \in Y$. Given r with 0 < r < 1 and t > 0 we can find a $k \in \mathbb{N}$ such that (1 - 1/k) * (1 - 1/k) > 1 - r and 1/k < t/2K. Since A is dense in X, there exists an $m \in \mathbb{N}$ such that $M(x_m, y, 1/k) > 1 - 1/k$. But, by definition of B, there exists x_{mk} such that $M(x_{mk}, x_m, 1/k) > 1 - 1/k$. Now, we have

$$M(x_{mk}, y, t) \ge M\left(x_{mk}, x_m, \frac{t}{2}\right) * M\left(x_m, y, \frac{t}{2K}\right)$$
$$\ge M\left(x_{mk}, x_m, \frac{1}{k}\right) * M\left(x_m, y, \frac{1}{k}\right)$$
$$\ge \left(1 - \frac{1}{k}\right) * \left(1 - \frac{1}{k}\right)$$
$$> 1 - r.$$

Thus, $y \in \overline{B}$. Hence, Y is separable.

Acknowledgements

This paper has been granted by the Muğla Sıtkı Koçman University Research Projects Coordination Office through Project Grant Number: (18/028).

References

- T. V. An, L. Q. Tuyen, N. V. Dung, Stone-type theorem on b-metric spaces and applications, Topology Appl. (185-186) (2015), 50–64.
- [2] I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Func An. Gos. Ped. Inst. Unianowsk. 30 (1989), 26-37.
- [3] S. Czerwik, Contraction mappings in b-metric spaces, Acta. Math. Inform. Univ. Ostra. 1 (1) (1993), 5-11.
- [4] Z. Deng, Fuzzy pseudo metric spaces, J. Math. Anal. Appl. 86 (1982), 74-95.
- [5] M. A. Erceg, Metric spaces in fuzzy set theory, J. Math. Anal. Appl. 69 (1979), 205-230.
- [6] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern matching. Int. J. Comput. Vis. 30 (3) (1998), 219-231.
- [7] A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994), 395-399.
- [8] J. Heinonen, Lectures on Analysis on Metric Spaces. Springer Science & Business Media, 2012.
- [9] O. Kaleva, S. Seikkala, On fuzzy metric spaces, Fuzzy Sets and Systems. 12 (1984), 215-229.
- [10] M. A. Khamsi, N. Hussain, KKM mappings in metric type spaces, Nonlinear Anal. 73 (2010), 3123-3129.
- [11] W. Kirk, N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, 2014.
- [12] O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
- [13] T. Öner, On topology of fuzzy strong b-metric spaces, J. New Theory. 21 (2018), 59-67.
- [14] B. Schweizer, A. Sklar, Statistical metric spaces, Pasific J. Maths. 10 (1960), 314-334.
- [15] L. A. Zadeh, Fuzzy sets, Inform. and Control. 8 (1965), 338-353.