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Abstract. In this paper, we first present the new concept of 2-normed algebra. We investigate
the structure of this algebra and give some examples. Then we apply a fixed point theorem
to prove the stability and hyperstability of (α, β, γ)-derivations in 2-Banach algebras.
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1. Introduction and preliminaries

One of the essential questions in the theory of functional equations giving the notion of
stability is when is it true that the solution of an equation differing slightly from a given
one, must be close to the solution of the given equation?

Such a problem was formulated by Ulam [1] in 1940 and solved in the next year for
the Cauchy functional equation by Hyers [2]. Since Hyers, many authors have studied
the stability theory (now named the Hyers-Ulam stability) for functional equations (see
e.g. [3–17]).

S. Gähler [18, 19] in 1963-1964, introduced the concept of linear 2-normed spaces:
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Definition 1.1 Let X be a real linear space with dim X > 1 and let ∥·, ·∥ : X2 −→ R
be a mapping. Then (X, ∥·, ·∥) is called a linear 2-normed space if

(1) ∥x, z∥ = 0, if and only if x, z are linearly dependent,
(2) ∥x, z∥ = ∥z, x∥,
(3) ∥αx, z∥ = |α|∥x, z∥, for any α ∈ R,
(4) ∥x+ y, z∥ ⩽ ∥x, z∥+ ∥y, z∥,

for all x, y, z ∈ X. Sometimes the condition (4) is called the triangle inequality.

In the recent years, 2-normed spaces have been considered by several authors (cf., e.g.,
[20, 21]). The concept of 2-normed algebra was introduced by Srivastava et al. [22, 23].
They also gave some examples satisfying their definition and showed that there exist 2-
normed algebras (with or without unity) which are not normable and a 2-Banach algebra
need not be a 2-Banach space.

Definition 1.2 (Srivastava et al. [22]) Let E be subalgebra of an algebra B with dim
E > 1, ∥·, ·∥ be a 2-norm in B and a1, a2 ∈ B be linearly independent, non-invertible
and be such that for all x, y ∈ E, ∥xy, ai∥ ⩽ ∥x, ai∥ ∥y, ai∥, i = 1, 2. Then E is called a
2-normed algebra with respect to a1, a2.

The concept of 2-normed spaces was developed by Park [24]. Now, we are going to
develop the concept of 2-normed algebra with the help of Park’s definitions.

Lemma 1.3 Let (X, ∥·, ·∥) be a linear 2-normed algebra. If x ∈ X and ∥x, y∥ = 0 for all
y ∈ X, then x = 0.

For a linear 2-normed algebra (X, ∥·, ·∥), the functions x 7→ ∥x, y∥ are continuous
functions of X into R for each fixed y ∈ X as follows.

Remark 1 Let (X, ∥·, ·∥) be a linear 2-normed algebra. Then, by the conditions (2) and
(4), we have

| ∥x, z∥ − ∥y, z∥ | ⩽ ∥x− y, z∥ (1)

for all x, y, z ∈ X. Hence the functions x 7→ ∥x, y∥ are continuous functions of X into R
for each fixed y ∈ X.

Lemma 1.4 For a convergent sequence {xn} in a linear 2-normed algebra X,

lim
n→∞

∥xn, y∥ = ∥ lim
n→∞

xn, y∥

for all y ∈ X.

Definition 1.5 A sequence {xn} in a linear 2-normed algebra X is called a Cauchy
sequence if there are two points y, z ∈ X such that y and z are linearly independent and

lim
m,n→∞

∥xn − xm, y∥ = 0 , lim
m,n→∞

∥xn − xm, z∥ = 0.

Definition 1.6 Let (X, ∥·, ·∥) be a linear 2-normed algebra. A sequence {xn} is said to
be convergent in X, if there exists x ∈ X such that

lim
n→∞

∥xn − x, y∥ = 0
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for all y ∈ X. In this case, x is called the limit of the sequence {xn} and we denote it by
limn→∞ xn = x.

Every convergent sequence in 2-normed algebra is Cauchy. If each Cauchy sequence be
convergent, then the 2-normed algebra is called 2-Banach algebra.

Example 1.7 (Srivastava et al. [22]). Let X be a finite dimensional (dimX = n ⩾ 2)
algebra over the fieldK, whereK is the field of real or complex numbers and let {e1, ..., en}
be a basis for X. Let a, b be two symbols (not in X) and define B := {x+ αa+ βb : x ∈
X,α, β ∈ K}, with the agreement that x+ αa+ βb = 0, if and only if x = 0, α = β = 0,
for x ∈ X, α, β ∈ K. For yi = xi + αia+ βib ∈ B, i = 1, 2, α ∈ K, define

y1 + y2 = (x1 + x2) + (α1 + α2)a+ (β1 + β2)b,

αy1 = αx1 + (αα1)a+ (αβ1)b,

y1y2 = x1x2 + α1α2a+ β1β2b.

Then B is an algebra over K and if X has unit e, then ẽ = e+ a+ b is the unit of B. For
x =

∑n
i=1 αiei + s1a+ s2b, y =

∑n
i=1 βiei + t1a+ t2b ∈ B, define ∥x, y∥ by

∥x, y∥2 =

(
n∑

i=1

|αi|2 + |s1|2 + |s2|2
)(

n∑
i=1

|βi|2 + |t1|2 + |t2|2
)
−

∣∣∣∣∣
n∑

i=1

αiβ̄i + s1t̄1 + s2t̄2

∣∣∣∣∣
2

.

Then ∥·, ·∥ defines a 2-norm in B.
On X, define ∥ · ∥1 by ∥x∥1 = ∥x, a∥ for x ∈ X. Note that ∥ · ∥1 is an 1−norm on

X. Let ∥ · ∥ be an 1−norm on X so that (X, ∥ · ∥) is an 1−normed algebra. Then X
becomes finite dimensional, both 1−norms ∥ · ∥1 and ∥ · ∥ on X become equivalent and
hence there exist k1, k2 > 0 such that for every x ∈ X, ∥x∥1 ⩽ k1∥x∥ and ∥x∥ ⩽ k2∥x∥1.
For x, y ∈ X, we have

∥xy, a∥ = ∥x.y∥1 ⩽ k1∥x.y∥ ⩽ k1∥x∥ ∥y∥ ⩽ k1k2∥x∥1k2∥y∥1 = k1k
2
2∥x, a∥ ∥y, a∥

and so for a1 = k1k
2
2a, we have ∥xy, a1∥ ⩽ ∥x, a1∥ ∥y, a1∥ for all x, y ∈ X. Similarly, for

suitably chosen k3 > 0 , we have for a2 = k3b, ∥xy, a2∥ ⩽ ∥x, a2∥ ∥y, a2∥ for all x, y ∈ X,
and (X, ∥·, ·∥) becomes a 2-normed algebra over K with respect to a1, a2.

Now, we show that (X, ∥·, ·∥) is a 2-Banach algebra with respect to a1, a2. Let {xn} be a
sequence inX so that limn,m→∞ ∥xn−xm, ai∥ = 0, i = 1, 2. Then limn,m→∞ ∥xn−xm∥1 =
0. By finite dimensionality of X, (X, ∥·∥1) is a Banach space and hence there is an x ∈ X
such that limn→∞ ∥xn−x∥1 = 0 or equivalently limn→∞ ∥xn−x, a1∥1 = 0. For x ∈ X, if
we define ∥x∥2 = ∥x, a2∥, then (X, ∥·∥2) also becomes an 1−normed space. Therefore, the
norms ∥ ·∥1 and ∥ ·∥2 become equivalent on X and limn→∞ ∥xn−x∥2 = 0 or equivalently
limn→∞ ∥xn − x, a2∥ = 0. Hence, (X, ∥·, ·∥) is a 2-Banach algebra with respect to a1, a2

In 1991, J. Baker [25] used the Banach fixed point theorem for prove the Hyers-Ulam
stability. The method was generalized in [26]. We recall this fundamental result as follows.

Theorem 1.8 (Banach contraction principle) Let (X,m) be a complete generalized
metric space and consider a mapping T : X −→ X as a strictly contractive mapping,
that is

m(Tx, Ty) ⩽ Lm(x, y)
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for all x, y ∈ X and for some (Lipschitz constant) 0 < L < 1. Then
• T has one and only one fixed point x∗ = T (x∗);
• x∗ is globally attractive, that is, limn→∞ Tnx = x∗ for any starting point x ∈ X;
• One has the following estimation inequalities for all x ∈ X and n ⩾ 0

m(Tnx, x∗) ⩽ Lnm(x, x∗),
m(Tnx, x∗) ⩽ 1

1−LL
nm(Tnx, Tn+1x),

m(x, x∗) ⩽ 1
1−Lm(x, Tx).

Theorem 1.9 (The Alternative of Fixed Point [27]) Suppose that we are given a com-
plete generalized metric space (X,m) and a strictly contractive mapping T : X −→ X
with Lipschitz constant L. Then, for each given element x ∈ X, either m(Tnx, Tn+1x) =
+∞ for all nonnegative integers n or there exists a positive integer n0 such that
m(Tnx, Tn+1x) < +∞ for all n ⩾ n0. If the second alternative holds, then

⋆ The sequence (Tnx) is convergent to a fixed point y∗ of T ;
⋆ y∗ is the unique fixed point of T in the set Y = {y ∈ X,m(Tn0x, y) < +∞};
⋆ m(y, y∗) ⩽ 1

1−Lm(y, Ty) , y ∈ Y .

Fixed point theorems have already been applied in the theory of the stability of func-
tional equations by several authors (see for instance [8, 28–30]).

Let A be a normed algebra and B be an A-bimodule normed algebra. An additive
mapping f : A −→ B is called a ring (α, β, γ)-derivation if there exist α, β, γ ∈ C such
that

αf(xy) = βf(x)y + γxf(y) (2)

for all x, y ∈ A.

2. The main results

Hereafter, let A be a Banach algebra and B be an A-bimodule unital 2-Banach algebra
with unit 1 and with dim(B) > 1. Let j ∈ {−1, 1}, α, β, γ ∈ C and let φ, ϕ : A3 −→ [0,∞)
be mappings such that

lim
n→∞

φ(2njx, 2njy, z)

2nj
= 0, (3)

lim
n→∞

ϕ(2njx, y, z)

2nj
= 0 (4)

for all x, y, z ∈ A.

Theorem 2.1 Suppose that f : A −→ B is a mapping satisfying

∥f(x+ y)− f(x)− f(y), z1∥ ⩽ φ(x, y, z), (5)

∥αf(xy)− βf(x)y − γxf(y), z1∥ ⩽ ϕ(x, y, z) (6)

for all x, y, z ∈ A. If there exists 0 < L = L(j) < 1 such that

φ(x, y, z) ⩽ L2jφ
( x

2j
,
y

2j
, z
)

(7)
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for all x, y, z ∈ A, then there exists a unique ring (α, β, γ)-derivation d : A −→ B such
that

∥f(x)− d(x), z1∥ ⩽ L
1−j

2

2(1− L)
φ(x, x, z) (8)

for all x, z ∈ A.

Proof. Let E = {e : A −→ B | e(0) = 0}. For x, z ∈ A, define m : E × E −→ [0,∞] by

m(e1, e2) = inf
{
K ∈ R+ : ∥e1(x)− e2(x), z1∥ ⩽ Kφ(x, x, z)

}
.

It is easy to see that (E,m) is a complete generalized metric space. Let us consider the
linear mapping T : E −→ E, Te(x) = 1

2j e(2jx) for all x ∈ A. T is a strictly contractive
mapping with the Lipschitz constant L. Indeed, for given e1 and e2 in E such that
m(e1, e2) < ∞ and any K > 0 satisfying m(e1, e2) < K, we have

∥e1(x)− e2(x), z1∥ ⩽ Kφ(x, x, z)

⇒
∥∥∥∥ 1

2j
e1(2

jx)− 1

2j
e2(2

jx), z1

∥∥∥∥ ⩽ 1

2j
Kφ(2jx, 2jx, z)

⇒
∥∥∥∥ 1

2j
e1(2

jx)− 1

2j
e2(2

jx), z1

∥∥∥∥ ⩽ LKφ(x, x, z)

⇒ m(Te1, T e2) ⩽ LK.

Put K = m(e1, e2) +
1
n for positive integers n. Then m(Te1, T e2) ⩽ L(m(e1, e2) +

1
n).

Letting n → ∞ gives

m(Te1, T e2) ⩽ Lm(e1, e2)

for all e1, e2 ∈ E. Putting y := x in (5), we get

∥f(2x)− 2f(x), z1∥ ⩽ φ(x, x, z) (9)

and so ∥∥∥∥f(x)− 1

2
f(2x), z1

∥∥∥∥ ⩽ 1

2
φ(x, x, z)

for all x, z ∈ A. Moreover, replacing x in (9) by x
2 implies the appropriate inequality for

j = −1 ∥∥∥f(x)− 2f
(x
2

)
, z1
∥∥∥ ⩽ φ

(x
2
,
x

2
, z
)
⩽ L

2
φ(x, x, z)

for all x, z ∈ A. Therefore m(f, Tf) ⩽ L
1−j
2

2 . By Theorem 1.9, there exists a mapping
d : A −→ B which is the fixed point of T and satisfies

d(x) = lim
n→∞

f(2njx)

2nj
, (10)
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since limn→∞m(Tnf, d) = 0. The mapping d is the unique fixed point of T in the set
M = {e ∈ E : m(f, e) < ∞}. Using Theorem 1.9 we get

m(f, d) ⩽ 1

1− L
m(f, Tf)

which yields

∥f(x)− d(x), z1∥ ⩽ L
1−j

2

2(1− L)
φ(x, x, z)

for all x, z ∈ A. By Lemma 1.4 and inequality (5), we also have

∥d(x+ y)− d(x)− d(y), z1∥ = lim
n→∞

∥∥∥∥ 1

2nj
f
(
2nj(x+ y)

)
− 1

2nj
f(2njx)− 1

2nj
f(2njy), z1

∥∥∥∥
= lim

n→∞

1

2nj
∥∥f(2njx+ 2njy)− f(2njx)− f(2njy), z1

∥∥
⩽ lim

n→∞

1

2nj
φ(2njx, 2njy, z) = 0

for all x, y, z ∈ A. By Lemma 1.3, we conclude that d is additive. Let r(x, y) = αf(xy)−
βf(x)y − γxf(y) for all x, y ∈ A. Using inequality (6), we have∥∥∥∥ 1

2nj
r(2njx, y), z1

∥∥∥∥ =
1

2nj
∥αf

(
(2njx)y

)
− βf(2njx)y − γ2njxf(y), z1∥

⩽ 1

2nj
ϕ(2njx, y, z)

for all x, y, z ∈ A and n ∈ N. By Lemma 1.3, Lemma 1.4 and (4) we obtain

lim
n→∞

1

2nj
r(2njx, y) = 0

for all x, y ∈ A. Applying (10), we get

αd(xy) = βd(x)y + γxf(y) (11)

for all x, y ∈ A. Indeed

αd(xy) = lim
n→∞

1

2nj
αf
(
2nj(xy)

)
= lim

n→∞

1

2nj
αf
(
(2njx)y

)
= lim

n→∞

βf(2njx)y + 2njγxf(y) + r(2njx, y)

2nj

= lim
n→∞

(
βf(2njx)y

2nj
+ γxf(y) +

r(2njx, y)

2nj

)
= βd(x)y + γxf(y)
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for all x, y ∈ A. Using (11) and the additivity of d, we have

2njβd(x)y + γxf(2njy) = βd(x)2njy + γxf(2njy)

= αd
(
x(2njy)

)
= αd

(
(2njx)y

)
= βd(2njx)y + 2njγxf(y)

= 2njβd(x)y + 2njγxf(y)

for all x, y ∈ A and n ∈ N. Hence,

xf(y) = x
f(2njy)

2nj
(12)

for all x, y ∈ A and n ∈ N. Tending n to infinity, we see that

xf(y) = xd(y) (13)

for all x, y ∈ A. Combining (11) and (13), we conclude that d satisfies (2). ■

Next, we are going to establish the hyperstability of ring (α, β, γ)-derivations.

Theorem 2.2 Assume that f : A −→ B is a mapping satisfying

∥f(x+ y)− f(x)− f(y), z1∥ ⩽ φ(x, y, z)

∥αf(xy)− βf(x)y − γxf(y), z1∥ ⩽ ϕ(x, y, z)

for all x, y, z ∈ A. Let B be an A-bimodule unital 2-Banach algebra without order, i.e. if
b ∈ B, then Ab = 0 or bA = 0 implies that b = 0. If there exists 0 < L = L(j) < 1 such
that the mapping φ has the property

φ(x, y, z) ⩽ L2jφ
( x

2j
,
y

2j
, z
)
,

then f is a ring (α, β, γ)-derivation.

Proof. According to Theorem 2.1, there exists a unique ring (α, β, γ)-derivation d :
A −→ B such that

d(x) = lim
n→∞

f(2njx)

2nj
(14)

for all x ∈ A. By applying (14) in (12), we conclude that x
(
f(y) − d(y)

)
= 0 for all

x, y ∈ A. Therefore f = d. ■
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