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Abstract. In this paper, we introduce the notion of strictly (α,ψ, ξ) − G-contractive map-
pings in b-metric spaces endowed with a graph G. We establish a sufficient condition for ex-
istence and uniqueness of points of coincidence and common fixed points for such mappings.
Our results extend and unify many existing results in the literature. Finally, we construct
some examples to analyze and support our results.
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1. Introduction

Fixed point theory has many applications in different branches of mathematics and
applied sciences. Banach contraction principle [6] is considered to be the initial result
of the study of fixed point theory in metric spaces. It is one of the most useful tool in
solving existence and uniqueness problems of fixed points. In 1969, Nadler [27] extended
the famous Banach contraction principle to set valued form. Later on, a number of articles
have been published to the development of fixed point theory of multi-valued mappings
in metric spaces(see [1, 3]). Afterwards, hybrid fixed point theory for nonlinear single-
valued and multi-valued mappings takes a prominent place in many aspects (see [22, 23]).
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In 1989, Bakhtin [5] introduced b-metric spaces as a generalization of metric spaces and
generalized the famous Banach contraction principle in metric spaces to b-metric spaces.

The notion of α−ψ-contractive mappings was introduced and studied by Samet et. al.
[30]. Some results in this direction are given in [1, 3, 19, 24]. Recently, the study of fixed
point theory endowed with a graph is a new development in the domain of contractive
type multi-valued theory. Many important results of [1–4, 8–10, 14–17, 21, 23, 26, 28,
30, 31] have become the source of motivation for many researchers that do research in
fixed point theory. The main aim of this paper is to introduce the concept of strictly
(α, ψ, ξ) − G-contractive mappings of a hybrid pair of single-valued and multi-valued
mappings in the framework of b-metric spaces and to derive some coincidence point and
common fixed point results for such mappings. As some consequences of this study, we
obtain several related results in the setting of b-metric spaces.

2. Some Basic Concepts

First we recall some basic notations and definitions in b-metric spaces.

Definition 2.1 [12] Let X be a nonempty set and s ⩾ 1 be a given real number. A
function d : X ×X → R+ is said to be a b-metric on X if the following conditions hold:

(i) d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ⩽ s (d(x, z) + d(z, y)) for all x, y, z ∈ X.

The pair (X, d) is called a b-metric space.

It is to be noted that the class of b-metric spaces is effectively larger than that of the
ordinary metric spaces. The following example illustrates the above fact.

Example 2.2 [25] Let X = {−1, 0, 1}. Define d : X ×X → R+ by d(x, y) = d(y, x) for
all x, y ∈ X, d(x, x) = 0, x ∈ X and d(−1, 0) = 3, d(−1, 1) = d(0, 1) = 1. Then (X, d)
is a b-metric space, but not a metric space since the triangle inequality is not satisfied.
Indeed, we have that

d(−1, 1) + d(1, 0) = 1 + 1 = 2 < 3 = d(−1, 0).

It is easy to verify that s = 3
2 .

Example 2.3 [29] Let (X, d) be a metric space and ρ(x, y) = (d(x, y))p, where p > 1 is
a real number. Then ρ is a b-metric with s = 2p−1.

Definition 2.4 [11] Let (X, d) be a b-metric space, x ∈ X and (xn) be a sequence in X.
Then

(i) (xn) converges to x if and only if lim
n→∞

d(xn, x) = 0. We denote this by lim
n→∞

xn = x or

xn → x (n→ ∞).
(ii) (xn) is Cauchy if and only if lim

n,m→∞
d(xn, xm) = 0.

(iii) (X, d) is complete if and only if every Cauchy sequence in X is convergent.

Remark 1 [11] In a b-metric space (X, d), the following assertions hold:

(i) A convergent sequence has a unique limit.
(ii) Each convergent sequence is Cauchy.
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(iii) In general, a b-metric is not continuous.

Definition 2.5 [20] Let (X, d) be a b-metric space. A subset A ⊆ X is said to be open
if and only if for any a ∈ A, there exists ϵ > 0 such that the open ball B(a, ϵ) ⊆ A. The
family of all open subsets of X will be denoted by τ .

Theorem 2.6 [20] τ defines a topology on (X, d).

Theorem 2.7 [20] Let (X, d) be a b-metric space and τ be the topology defined above.
Then for any nonempty subset A ⊆ X we have

(i) A is closed if and only if for any sequence (xn) in A which converges to x, we have
x ∈ A;

(ii) if we define A to be the intersection of all closed subsets of X which contains A, then
for any x ∈ A and for any ϵ > 0, we have B(x, ϵ) ∩A ̸= ∅.

Definition 2.8 Let (X, d) be a b-metric space and A be a nonempty subset of X. The
diameter of A, denoted by δ(A), is defined by δ(A) = sup{d(x, y) : x, y ∈ A}. The subset
A is said to be bounded if δ(A) is finite.

For a b-metric space (X, d), we let CB(X) be the set of all nonempty closed bounded
subsets ofX. A point x ∈ X is called a fixed point of a multi-valued mapping T : X → 2X

if x ∈ Tx. For every A, B ∈ CB(X), let

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

where d(x,B) = inf{d(x, y) : y ∈ B}. Such a map H is called the Hausdorff b-metric on
CB(X) induced by the b-metric d.

It is easy to verify that H(A,B) ⩾ 0 for all A, B ∈ CB(X) and H(A,B) = 0 if and
only if A = B and H(A,B) = H(B,A) for all A, B ∈ CB(X). We now verify that

H(A,B) ⩽ s(H(A,C) +H(C,B)), ∀A, B, C ∈ CB(X).

We first note that,

d(x, P ) ⩽ s(d(x, y) + d(y, P )), ∀x, y ∈ X and any subset P ⊆ X.

Now, for all A, B, C ∈ CB(X) and x ∈ A, we have

d(x,B) ⩽ s(d(x, z) + d(z,B)) ⩽ s(d(x, z) + sup
z∈C

d(z,B))

for all z ∈ C, which implies that

d(x,B) ⩽ s(d(x,C) + sup
z∈C

d(z,B))

for all x ∈ A. Therefore,

sup
x∈A

d(x,B) ⩽ s(sup
x∈A

d(x,C) + sup
z∈C

d(z,B)).
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By an argument similar to that used above, we have

sup
y∈B

d(y,A) ⩽ s(sup
y∈B

d(y, C) + sup
z∈C

d(z,A)).

Again,

H(A,B) = max{sup
x∈A

d(x,B), sup
y∈B

d(y,A)}

⩽ max{s(sup
x∈A

d(x,C) + sup
z∈C

d(z,B)), s(sup
y∈B

d(y, C) + sup
z∈C

d(z,A))}

⩽ max{s sup
x∈A

d(x,C), s sup
z∈C

d(z,A)}+max{s sup
z∈C

d(z,B), s sup
y∈B

d(y, C)}

= s (H(A,C) +H(C,B)).

Thus, H is a b-metric on CB(X) with the coefficient s ⩾ 1.

Let Ψ be a class of functions ψ : [0,∞) → [0,∞) satisfying the following conditions:
(ψ1) ψ is a nondecreasing function;

(ψ2)

∞∑
n=1

ψn(t) <∞ for each t > 0, where ψn is the nth iterate of ψ.

Remark 2 [23] For each ψ ∈ Ψ, we see that the following assertions hold:

(i) lim
n→∞

ψn(t) = 0, for all t > 0;

(ii) ψ(t) < t for each t > 0;
(iii) ψ(0) = 0.

Definition 2.9 [30] Let T be a self-mapping on a nonempty set X and α : X ×X →
[0,∞) be another mapping. We say that T is α-admissible if the following condition
holds:

x, y ∈ X, α(x, y) ⩾ 1 ⇒ α(Tx, Ty) ⩾ 1.

Definition 2.10 Let (X, d) be a b-metric space and α : X ×X → [0,∞) be a mapping.
A mapping T : X → CB(X) is called α∗-admissible if

x, y ∈ X, α(x, y) ⩾ 1 ⇒ α∗(Tx, Ty) ⩾ 1,

where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.

In 2014, Ali et. al.[1] introduced a family Ξ of functions ξ : [0,∞) → [0,∞) satisfying
the following conditions:

(i) ξ is continuous;
(ii) ξ is nondecreasing on [0,∞);
(iii) ξ(0) = 0 and ξ(t) > 0 for all t ∈ (0,∞);
(iv) ξ is subadditive.

Example 2.11 [1] Suppose that ϕ : [0,∞) → [0,∞) is a Lebesgue integrable mapping
which is summable on each compact subset of [0,∞), for each ϵ > 0,

∫ ϵ
0 ϕ(t)dt > 0 and
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for each a, b > 0, we have∫ a+b

0
ϕ(t)dt ⩽

∫ a

0
ϕ(t)dt+

∫ b

0
ϕ(t)dt.

Define ξ : [0,∞) → [0,∞) by ξ(t) =
∫ t
0 ϕ(w)dw for each t ∈ [0,∞). Then, ξ ∈ Ξ.

Lemma 2.12 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and let ξ ∈ Ξ be
such that ξ(st) = sξ(t) for each t ∈ [0,∞). Then (X, ξ ◦ d) is a b-metric space with the
coefficient s ⩾ 1.

Proof. Proof follows from the fact that for all x, y, z ∈ X, we have

(ξ ◦ d)(x, y) = ξ(d(x, y))

⩽ ξ (sd(x, z) + sd(z, y))

⩽ ξ(sd(x, z)) + ξ(sd(z, y))

= sξ(d(x, z)) + sξ(d(z, y))

= s[(ξ ◦ d)(x, z) + (ξ ◦ d)(z, y)].

■

Lemma 2.13 Let (X, d) be a b-metric space with the coefficient s ⩾ 1, let ξ ∈ Ξ be
such that ξ(st) = sξ(t) for each t ∈ [0,∞) and let B ∈ CB(X). Assume that there exists
x ∈ X such that ξ(d(x,B)) > 0. Then there exists y ∈ B such that

ξ(d(x, y)) < qξ(d(x,B)), where q > 1.

Proof. Proof is similar to that of Lemma 2.3[1]. ■

Definition 2.14 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and α :
X×X → [0,∞) be a mapping. A mapping T : X → CB(X) is called α∗-admissible with
respect to f(a self-mapping on X) if the following condition holds:

x, y ∈ X, α(fx, fy) ⩾ 1 ⇒ α∗(Tx, Ty) ⩾ 1,

where α∗(Tx, Ty) = inf{α(a, b) : a ∈ Tx, b ∈ Ty}.

Definition 2.15 Let (X, d) be a b-metric space with the coefficient s ⩾ 1. Then the
mappings T : X → CB(X) and f : X → X are called (α, ψ, ξ)-contractive mappings if
there exist three functions ψ ∈ Ψ, ξ ∈ Ξ and α : X ×X → [0,∞) such that

x, y ∈ X, α(fx, fy) ⩾ 1 ⇒ ξ(sH(Tx, Ty)) ⩽ ψ(ξ(Ms(fx, fy))),

where Ms(fx, fy) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)2s }. If ψ ∈ Ψ is
strictly increasing, then T and f are called strictly (α, ψ, ξ)-contractive mappings.

Definition 2.16 Let (X, d) be a b-metric space and T : X → CB(X) and f : X → X
be two mappings. If y = fx ∈ Tx for some x in X, then x is called a coincidence point
of T and f and y is called a point of coincidence of T and f .
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Definition 2.17 Let (X, d) be a b-metric space. The mappings T : X → CB(X) and
f : X → X are called compatible iff fTx ∈ CB(X) for all x ∈ X and H(Tfxn, fTxn) →
0 whenever (xn) is a sequence in X such that Txn →M ∈ CB(X) and fxn → t ∈M .

Definition 2.18 Let (X, d) be a b-metric space. The mappings T : X → CB(X) and
f : X → X are called weakly compatible if they commute at their coincidence points,
i.e., if Tfx = fTx whenever fx ∈ Tx.

Proposition 2.19 Let (X, d) be a b-metric space and T : X → CB(X) and f : X → X
be weakly compatible. If T and f have a unique point of coincidence y = fx ∈ Tx, then
y is the unique common fixed point of T and f in X.

Proof. Let y = fx ∈ Tx for some x in X. Since f and T are weakly compatible,
Tfx = fTx. This implies that fy ∈ Ty and hence fy is a point of coincidence of f and
T . As y is the unique point of coincidence of f and T , it follows that y = fy ∈ Ty. This
shows that y is a common fixed point of f and T .

Let z be another common fixed point of f and T in X i.e., z = fz ∈ Tz. Since f and
T have a unique point of coincidence in X, it follows that fy = fz and hence y = z.
This proves that y is the unique common fixed point of f and T in X. ■

We next review some basic notions in graph theory.
Let (X, d) be a b-metric space. We assume that G is a digraph with the set of vertices

V (G) = X and the set E(G) of its edges contains all the loops, i.e., ∆ ⊆ E(G) where
∆ = {(x, x) : x ∈ X}. We also assume that G has no parallel edges. So we can identify
G with the pair (V (G), E(G)). G may be considered as a weighted graph by assigning to
each edge the distance between its vertices. By G−1 we denote the graph obtained from
G by reversing the direction of edges i.e., E(G−1) = {(x, y) ∈ X ×X : (y, x) ∈ E(G)}.
Let G̃ denote the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a digraph for which the set of
its edges is symmetric. Under this convention, E(G̃) = E(G) ∪ E(G−1).

Our graph theory notations and terminology are standard and can be found in all
graph theory books, like [7, 13, 18]. If x, y are vertices of the digraph G, then a path
in G from x to y of length n (n ∈ N) is a sequence (xi)

n
i=0 of n + 1 vertices such that

x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, 2, · · · , n. A graph G is connected if
there is a path between any two vertices of G. G is weakly connected if G̃ is connected.

Definition 2.20 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and let
G = (V (G), E(G)) be a graph. Then the mappings T : X → CB(X) and f : X → X are
called (α, ψ, ξ)−G-contractive mappings if there exist three functions ψ ∈ Ψ, ξ ∈ Ξ and
α : X ×X → [0,∞) such that x, y ∈ X with (fx, fy) ∈ E(G̃),

α(fx, fy) ⩾ 1 ⇒ ξ(sH(Tx, Ty)) ⩽ ψ(ξ(Ms(fx, fy))),

where Ms(fx, fy) = max{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx,Ty)+d(fy,Tx)2s }. If ψ ∈ Ψ is
strictly increasing, then T and f are called strictly (α, ψ, ξ)−G-contractive mappings.

It is valuable to note that strictly (α, ψ, ξ)-contractive mappings are strictly (α, ψ, ξ)−
G0-contractive. But strictly (α,ψ, ξ) − G-contractive mappings need not be strictly
(α, ψ, ξ)-contractive mappings (see Remark 6).

Definition 2.21 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and let
f : X → X be a given mapping. We say that f is continuous at x0 ∈ X if for every
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sequence (xn) in X, we have xn → x0 as n → ∞ =⇒ fxn → fx0 as n → ∞. If f is
continuous at each point x0 ∈ X, then we say that f is continuous on X.

Definition 2.22 Let (X, d) be a b-metric space endowed with a graph G. A mapping
f : X → X is called G-continuous if given x ∈ X and a sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E(G) for n ∈ N imply fxn → fx.

Similarly, a mapping T : X → CB(X) is called G-continuous if given x ∈ X and a
sequence (xn)n∈N,

xn → x and (xn, xn+1) ∈ E(G) for n ∈ N imply Txn → Tx.

It is easy to observe that continuity ⇒ G-continuity.

3. Main results

Let (X, d) be a b-metric space with the coefficient s ⩾ 1.

Definition 3.1 The point p belongs to the lower limit Lin→∞An of a sequence (An) of
subsets of (X, d), if every open ball with center p intersects all the An from a sufficiently
great index n onward.

Definition 3.2 The point p belongs to the upper limit Lsn→∞An of a sequence (An) of
subsets of (X, d), if every open ball with center p intersects an infinite set of the terms
An.

Definition 3.3 The sequence (An) of subsets of (X, d) is said to be convergent to A, if
Lin→∞An = A = Lsn→∞An. We then write A = Limn→∞An.

Theorem 3.4 The point p ∈ Lsn→∞An is equivalent to the existence of a sequence of
points (pkn) such that k1 < k2 < · · · , p = lim

n→∞
pkn and pkn ∈ Akn .

Proof. If p ∈ Lsn→∞An and if Sm is the open ball with center p and radius 1
m , then

there exists an infinite set {Ak1 , Ak2 , · · · , Akn , · · · } of the terms An, where k1 < k2 < · · ·
such that Sm ∩ Akn ̸= ∅ for each kn. Let pkn ∈ Sm ∩ Akn . Then d(pkn , p) < 1

m for all n
and consequently it follows that p = lim

n→∞
pkn . The converse implication is obvious. ■

Theorem 3.5 Let (X, d) be a b-metric space and A1, A2, A3, · · · be a sequence of
subsets of (X, d). Then,

Lsn→∞An =
∩
n

An ∪An+1 ∪ · · ·.

Proof. Let p ∈ Lsn→∞An. Then p = lim
n→∞

pkn and pkn ∈ Akn . Since kn ⩾ n, we have

pkn ∈ (Ai∪Ai+1∪· · · ) for n > i. Consequently, p ∈ Ai ∪Ai+1 ∪ · · · for each i. Conversely,
if p is not in Lsn→∞An, then there exists an open ball Br(p) with center p and an index
m such that Br(p) ∩An = ∅ for n ⩾ m. Therefore, p ̸∈ Am ∪Am+1 ∪ · · ·. ■

Definition 3.6 Let (X, d) be a b-metric space and A be a nonempty subset of X. A
generalized open ball with radius r(> 0) and center A is defined to be the set of all points
x ∈ X such that d(x,A) < r where d(x,A) = inf{d(x, a) : a ∈ A}. The set of all points
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x ∈ X such that d(x,A) ⩽ r is called a generalized closed ball with radius r and center
A.

Theorem 3.7 If (X, d) is a complete b-metric space with the coefficient s ⩾ 1, then the
space (CB(X),H) is a complete b-metric space with the coefficient s ⩾ 1.

Proof. Let (An) be a Cauchy sequence in (CB(X),H). Then, for any ϵ > 0, there exists
an n( ϵs3 ) ∈ N such that

H(An, An( ϵ

s3
)) <

ϵ

s3
for all n > n(

ϵ

s3
). (1)

Let L = Lsn→∞An. We shall prove that

lim
n→∞

H(L,An) = 0. (2)

It is sufficient to prove that H(L,An( ϵ

s3
)) ⩽ 2ϵ

s , because then condition (1) will imply

that H(L,An) < (2 + 1
s2 )ϵ for n > n( ϵs3 ). We have to show the following propositions.

(i) If p ∈ L, then d(p,An( ϵ

s3
)) ⩽ ϵ

s .

(ii) If q ∈ An( ϵ

s3
), then d(q, L) ⩽ 2ϵ

s .

Let B be the generalized closed ball with center An( ϵ

s3
) and radius ϵ

s3 . By condition (1),

An ⊆ B for n > n( ϵs3 ). Since by applying Theorem (3.5), L ⊆ An ∪An+1 ∪ · · ·, it follows
that L ⊆ B. Therefore, if p ∈ L, then d(p,An( ϵ

s3
)) ⩽ ϵ

s3 ⩽ ϵ
s which proves proposition (i).

To prove proposition (ii), let n( ϵ
s2sk+12k ) = nk. We can assume that nk > nk−1. We

consider the sequence {qn0
, qn1

, · · · , qnk
, · · · } defined as follows. Choose a point qnk

in
Ank

so that qn0
= q and d(qnk−1

, qnk
) < ϵ

s2sk2k−1 , which is possible by condition (1). For
m > k, we have

d(qnk
, qnm

) ⩽ sd(qnk
, qnk+1

) + s2d(qnk+1
, qnk+2

) + · · ·

+ sm−k−1d(qnm−2
, qnm−1

) + sm−k−1d(qnm−1
, qnm

)

<
ϵ

s2
[

s

sk+12k
+

s2

sk+22k+1
+

s3

sk+32k+2
+ · · ·+ sm−k−1

sm−12m−2
+

sm−k

sm2m−1
]

=
ϵ

s2
[

1

sk2k
+

1

sk2k+1
+

1

sk2k+2
+ · · ·+ 1

sk2m−2
+

1

sk2m−1
]

<
ϵ

s2(2s)k
[1 +

1

2
+

1

22
+ · · · ]

=
2ϵ

s2(2s)k
→ 0 as m, k → ∞. (3)

This implies that the sequence {qn0
, qn1

, · · · , qnk
, · · · } is Cauchy in (X, d). Since X is

complete, the sequence converges to a point u of X. By Theorem (3.4), it follows that
u ∈ L. Now, by using condition (3), we obtain

d(q, u) ⩽ s[d(q, qnk
) + d(qnk

, u)] = s[d(qn0
, qnk

) + d(qnk
, u)] < s[

2ϵ

s2
+ d(qnk

, u)].

Taking limit as k → ∞, it follows that d(q, u) ⩽ 2ϵ
s . Therefore, if q ∈ An( ϵ

s3
), then
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d(q, L) ⩽ d(q, u) ⩽ 2ϵ
s and proposition (ii) follows. ■

We now assume that (X, d) is a b-metric space endowed with a reflexive digraph G
such that V (G) = X and G has no parallel edges. Let f : X → X and T : X → CB(X)
be such that T (X) ⊆ f(X). Let x0 ∈ X be arbitrary. Since T (X) ⊆ f(X), there exists
an element x1 ∈ X such that fx1 ∈ Tx0. Continuing in this way, we can construct a
sequence (fxn) such that fxn ∈ Txn−1, n = 1, 2, 3, · · ·.

Definition 3.8 Let (X, d) be a b-metric space endowed with a graph G and f : X → X
and T : X → CB(X) be such that T (X) ⊆ f(X). We define CαfT the set of all elements

x0 of X such that (fxn, fxm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and α(fxn, fxn+1) ⩾ 1 for
all n ∈ N ∪ {0}, for every sequence (fxn) such that fxn ∈ Txn−1.

Taking f = I, the identity map on X, CαfT becomes CαT which is the collection of all

elements x0 of X such that (xn, xm) ∈ E(G̃) for m, n = 0, 1, 2, · · · and α(xn, xn+1) ⩾ 1
for all n ∈ N ∪ {0}, for every sequence (xn) such that xn ∈ Txn−1.

Theorem 3.9 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and let G =
(V (G), E(G)) be a graph. Let T : X → CB(X) and f : X → X be strictly (α, ψ, ξ)−G-

contractive mappings with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for

each t > 0. Suppose that T (X) ⊆ f(X) and f(X) is a complete subspace of X with the
following property:
(∗) If (fxn) is a sequence in X such that fxn → x and (fxn, fxn+1) ∈ E(G̃) for all n ⩾ 1
and α(fxn, fxn+1) ⩾ 1 for all n ∈ N, then there exists a subsequence (fxni

) of (fxn)
such that (fxni

, x) ∈ E(G̃) and α(fxni
, x) ⩾ 1 for all i ⩾ 1.

Then f and T have a point of coincidence in X if CαfT ̸= ∅. Moreover, f and T have a
unique point of coincidence in X if the graph G has the following property:
(∗∗) If x, y are points of coincidence of f and T in X, then (x, y) ∈ E(G̃) and α(x, y) ⩾ 1.
Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.

Proof. Suppose that CαfT ̸= ∅. We choose an x0 ∈ CαfT and keep it fixed. Since

Tx0 ⊆ f(X), there exists x1 ∈ X such that fx1 ∈ Tx0 and (fx0, fx1) ∈ E(G̃) with
α(fx0, fx1) ⩾ 1. If x1 = x0, then f and T have a point of coincidence in X. So, we
assume that x1 ̸= x0. If fx1 ∈ Tx1, then we have nothing to prove. Therefore, let
fx1 ̸∈ Tx1. Since T and f are strictly (α, ψ, ξ)−G-contractive, we have

ξ(sH(Tx0, Tx1)) ⩽ ψ

ξ
max


d(fx0, fx1), d(fx0, Tx0), d(fx1, Tx1),

d(fx0,Tx1)+d(fx1,Tx0)
2s




⩽ ψ(ξ(max{d(fx0, fx1), sd(fx0, fx1), d(fx1, Tx1),
d(fx0, Tx1)

2s
}))

⩽ ψ

ξ
max


d(fx0, fx1), sd(fx0, fx1), d(fx1, Tx1),

d(fx0,fx1)+d(fx1,Tx1)
2




⩽ ψ(ξ(max{sd(fx0, fx1), sd(fx1, Tx1)}))

= ψ(ξ(smax{d(fx0, fx1), d(fx1, Tx1)})). (4)
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If max{d(fx0, fx1), d(fx1, Tx1)} = d(fx1, Tx1), then it follows from condition (4) that

0 < ξ(sd(fx1, Tx1)) ⩽ ξ(sH(Tx0, Tx1)) ⩽ ψ(ξ(sd(fx1, Tx1))), (5)

which is a contradiction, since ψ(r) < r for each r > 0. Therefore,

max{d(fx0, fx1), d(fx1, Tx1)} = d(fx0, fx1).

Thus, from condition (4), we obtain

0 < ξ(sd(fx1, Tx1)) ⩽ ξ(sH(Tx0, Tx1)) ⩽ ψ(ξ(sd(fx0, fx1))). (6)

Since ξ(st) = sξ(t), by Lemma 2.13, for q > 1, there exists fx2 ∈ Tx1 such that

0 < ξ(d(fx1, fx2)) < qξ(d(fx1, Tx1)). (7)

From conditions (6) and (7), we get

0 < ξ(sd(fx1, fx2)) < qψ(ξ(sd(fx0, fx1))).

Since ψ is strictly increasing, we have

0 < ψ(ξ(sd(fx1, fx2))) < ψ(qψ(ξ(sd(fx0, fx1)))).

Put q1 =
ψ(qψ(ξ(sd(fx0,fx1))))
ψ(ξ(sd(fx1,fx2)))

. Then, q1 > 1. If x1 = x2 or fx2 ∈ Tx2, then we have nothing

to prove. Therefore, we assume that x1 ̸= x2 and fx2 ̸∈ Tx2. Since x0 ∈ CαfT , fx1 ∈
Tx0, fx2 ∈ Tx1, it follows that (fx1, fx2) ∈ E(G̃) and α(fx1, fx2) ⩾ 1. Applying
strictly (α, ψ, ξ)−G-contractive condition, we get

ξ(sH(Tx1, Tx2)) ⩽ ψ(ξ(smax{d(fx1, fx2), d(fx2, Tx2)})). (8)

If max{d(fx1, fx2), d(fx2, Tx2)} = d(fx2, Tx2), then it follows from condition (8) that

0 < ξ(sd(fx2, Tx2)) ⩽ ξ(sH(Tx1, Tx2)) ⩽ ψ(ξ(sd(fx2, Tx2))),

which is a contradiction. Therefore, max{d(fx1, fx2), d(fx2, Tx2)} = d(fx1, fx2). Now,
by using condition (8), we obtain

0 < ξ(sd(fx2, Tx2)) ⩽ ξ(sH(Tx1, Tx2)) ⩽ ψ(ξ(sd(fx1, fx2))). (9)

By Lemma 2.13, for q1 > 1, there exists fx3 ∈ Tx2 such that

0 < ξ(d(fx2, fx3)) < q1ξ(d(fx2, Tx2)). (10)

From conditions (9) and (10), we get

0 < ξ(sd(fx2, fx3)) < q1ψ(ξ(sd(fx1, fx2))) = ψ(qψ(ξ(sd(fx0, fx1)))).
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ψ being strictly increasing, it follows that

0 < ψ(ξ(sd(fx2, fx3))) < ψ2(qψ(ξ(sd(fx0, fx1)))).

Since x0 ∈ CαfT , fx1 ∈ Tx0, fx2 ∈ Tx1, fx3 ∈ Tx2, it follows that (fxn, fxm) ∈ E(G̃)

for m,n = 0, 1, 2, 3 and α(fxn, fxn+1) ⩾ 1 for n = 0, 1, 2. Continuing this process, we
can construct a sequence (fxn) in X such that fxn ∈ Txn−1, (fxn, fxm) ∈ E(G̃) for
m,n = 0, 1, 2, · · · and α(fxn, fxn+1) ⩾ 1 for all n ∈ N ∪ {0} and

0 < ξ(sd(fxn+1, fxn+2)) < ψn(qψ(ξ(sd(fx0, fx1)))) = ψn(k), ∀n ∈ N ∪ {0},

where k = qψ(ξ(sd(fx0, fx1))). We now show that (fxn) is a Cauchy sequence in f(X).
For m,n ∈ N with m > n, we have

d(fxn, fxm) ⩽ sd(fxn, fxn+1) + s2d(fxn+1, fxn+2) + · · ·

+ sm−n−1d(fxm−2, fxm−1) + sm−n−1d(fxm−1, fxm).

Therefore,

ξ(d(fxn, fxm)) ⩽ ξ(sd(fxn, fxn+1)) + sξ(sd(fxn+1, fxn+2)) + · · ·

+ sm−n−2ξ(sd(fxm−2, fxm−1)) + sm−n−1ξ(sd(fxm−1, fxm))

< ψn−1(k) + sψn(k) + · · ·+ sm−n−2ψm−3(k) + sm−n−1ψm−2(k)

=
1

sn−1

m−1∑
i=n

si−1ψi−1(k).

Since

∞∑
n=1

snψn(t) <∞, it follows that

lim
n,m→∞

ξ(d(fxn, fxm)) = 0.

By using (ξ1) and (ξ3), we get

lim
n,m→∞

d(fxn, fxm) = 0.

This gives that (fxn) is a Cauchy sequence in f(X). As f(X) is complete, there exists
an t ∈ f(X) such that fxn → t = fu for some u ∈ X.

As (fxn, fxn+1) ∈ E(G̃) and α(fxn, fxn+1) ⩾ 1 for all n ⩾ 1, by property (∗), there
exists a subsequence (fxni

) of (fxn) such that (fxni
, fu) ∈ E(G̃) and α(fxni

, fu) ⩾ 1
for all i ⩾ 1. Then by applying strictly (α, ψ, ξ)−G-contractivity, we have

ξ(sH(Txni
, Tu)) ⩽ ψ

ξ
max


d(fxni

, fu), d(fxni
, Txni

), d(fu, Tu),

d(fxni
,Tu)+d(fu,Txni

)
2s


 . (11)
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Suppose that d(fu, Tu) ̸= 0. Let ϵ = d(fu,Tu)
2s > 0. Since fxni

→ fu, there exists k1 ∈ N
such that

d(fxni
, fu) <

d(fu, Tu)

2s
, for each i ⩾ k1. (12)

As fxn → fu, there exists k2 ∈ N such that

d(fxni+1, fu) <
d(fu, Tu)

2s
, for each i ⩾ k2. (13)

So, it must be the case that

d(fu, Txni
) ⩽ d(fu, fxni+1) <

d(fu, Tu)

2s
, for each i ⩾ k2. (14)

As d(fxni
, Tu) ⩽ sd(fxni

, fu) + sd(fu, Tu), it follows that

d(fxni
, Tu) <

d(fu, Tu)

2
+ sd(fu, Tu) ⩽ 3s

2
d(fu, Tu), for each i ⩾ k1. (15)

Put k = max{k1, k2}. Then, for i ⩾ k, we have

d(fxni
, Txni

) ⩽ d(fxni
, fxni+1)

⩽ s[d(fxni
, fu) + d(fu, fxni+1)]

< d(fu, Tu). (16)

Thus, for i ⩾ k, it follows from conditions (12), (14), (15) and (16) that

max


d(fxni

, fu), d(fxni
, Txni

), d(fu, Tu),

d(fxni
,Tu)+d(fu,Txni

)
2s

 = d(fu, Tu).

Therefore, for i ⩾ k, we obtain from (11) that

ξ(sH(Txni
, Tu)) ⩽ ψ(ξ(d(fu, Tu))). (17)

By using condition (17), for i ⩾ k, we have

ξ(d(fu, Tu)) ⩽ ξ(sd(fu, fxni+1)) + ξ(sd(fxni+1, Tu))

⩽ ξ(sd(fu, fxni+1)) + ξ(sH(Txni
, Tu))

⩽ ξ(sd(fu, fxni+1)) + ψ(ξ(d(fu, Tu))).

Taking limit as i→ ∞, we get ξ(d(fu, Tu)) ⩽ ψ(ξ(d(fu, Tu))), which is a contradiction,
since ξ(d(fu, Tu)) > 0. Therefore, d(fu, Tu) = 0 and so, t = fu ∈ Tu, i.e., t is a point
of coincidence of f and T .

For uniqueness, assume that there is another point of coincidence s( ̸= t) in X such
that s = fv ∈ Tv for some v ∈ X. By property (∗∗), we have (fu, fv) ∈ E(G̃) and
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α(fu, fv) ⩾ 1. Then, ξ(sH(Tu, Tv)) ⩽ ψ(ξ(Ms(fu, fv))), where

Ms(fu, fv) = max{d(fu, fv), d(fu, Tu), d(fv, Tv), d(fu, Tv) + d(fv, Tu)

2s
}

= max{d(fu, fv), d(fu, Tv) + d(fv, Tu)

2s
}

⩽ max{d(fu, fv), d(fu, fv) + d(fv, fu)

2
}

⩽ sd(fu, fv).

Thus,

0 < ξ(sd(fu, fv)) ⩽ ξ(sH(Tu, Tv)) ⩽ ψ(ξ(sd(fu, fv))),

which is a contradiction, since ψ(r) < r for each r > 0.
So, it must be the case that, d(fu, fv) = 0 and hence, fu = fv. Therefore, f and

T have a unique point of coincidence in X. If f and T are weakly compatible, then by
Proposition 2.19, f and T have a unique common fixed point in X. ■

Corollary 3.10 Let (X, d) be a complete b-metric space endowed with a graph G and
the coefficient s ⩾ 1. Let T : X → CB(X) be a strictly (α, ψ, ξ)−G-contractive mapping

with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each t > 0. Suppose

the triple (X, d,G) has the following property:

(∗)́ If (xn) is a sequence in X such that xn → x and (xn, xn+1) ∈ E(G̃), α(xn, xn+1) ⩾ 1
for all n ⩾ 1, then there exists a subsequence (xni

) of (xn) such that (xni
, x) ∈ E(G̃)

and α(xni
, x) ⩾ 1 for all i ⩾ 1.

Then T has a fixed point in X if CαT ̸= ∅. Moreover, T has a unique fixed point in X
if the graph G has the following property:

(∗ ∗ )́ If x, y are fixed points of T in X, then (x, y) ∈ E(G̃) and α(x, y) ⩾ 1.

Proof. The proof follows from Theorem 3.9 by taking f = I, the identity map on X. ■

Corollary 3.11 Let (X, d) be a b-metric space with the coefficient s ⩾ 1. Let f : X → X
and T : X → CB(X) be strictly (α, ψ, ξ)-contractive mappings with ξ(st) = sξ(t) for

each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each t > 0. Suppose that T (X) ⊆ f(X) and

f(X) is a complete subspace of X with the following property:
(†) If (fxn) is a sequence in X such that fxn → x and α(fxn, fxn+1) ⩾ 1 for all n ⩾ 1,
then there exists a subsequence (fxni

) of (fxn) such that α(fxni
, x) ⩾ 1 for all i ⩾ 1.

If there exists x0 ∈ X such that α(fxn, fxn+1) ⩾ 1 for all n ∈ N ∪ {0} and for every
sequence (fxn) such that fxn ∈ Txn−1, then f and T have a point of coincidence in
X. Moreover, f and T have a unique point of coincidence in X if the following property
holds:
(‡) If x, y are points of coincidence of f and T in X, then α(x, y) ⩾ 1.

Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.

Proof. The proof follows from Theorem 3.9 by taking G = G0, where G0 is the complete
graph (X,X ×X). ■
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Corollary 3.12 Let (X, d,⪯) be a partially ordered b-metric space with the coefficient
s ⩾ 1. Let f : X → X and T : X → CB(X) be such that T (X) ⊆ f(X) and f(X) is a
complete subspace of X. Suppose that there exist ψ ∈ Ψ, ξ ∈ Ξ and α : X ×X → [0,∞)

with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) <∞ for each t > 0 satisfying

α(fx, fy) ⩾ 1 ⇒ ξ(sH(Tx, Ty)) ⩽ ψ(ξ(Ms(fx, fy)))

for all x, y ∈ X with fx ⪯ fy or, fy ⪯ fx. Suppose the triple (X, d,⪯) has the following
property:

(†)́ If (fxn) is a sequence in X such that fxn → x and fxn, fxn+1 are comparable with
α(fxn, fxn+1) ⩾ 1 for all n ⩾ 1, then there exists a subsequence (fxni

) of (fxn) such
that fxni

, x are comparable with α(fxni
, x) ⩾ 1 for all i ⩾ 1.

If there exists x0 ∈ X such that fxn, fxm are comparable for m, n = 0, 1, 2, · · · and
α(fxn, fxn+1) ⩾ 1 for all n ∈ N∪ {0}, for every sequence (fxn) such that fxn ∈ Txn−1,
then f and T have a point of coincidence in X. Moreover, f and T have a unique point
of coincidence in X if the following property holds:

(‡)́ If x, y are points of coincidence of f and T in X, then x, y are comparable and
α(x, y) ⩾ 1.

Furthermore, if f and T are weakly compatible, then f and T have a unique common
fixed point in X.

Proof. The proof can be obtained from Theorem 3.9 by taking G = G2, where the graph
G2 is defined by E(G2) = {(x, y) ∈ X ×X : x ⪯ y or y ⪯ x}. ■

As an application of Theorem 3.9, we obtain the following theorem.

Theorem 3.13 Let (X, d) be a b-metric space with the coefficient s ⩾ 1 and let T : X →
CB(X) and f : X → X be a hybrid pair such that T (X) ⊆ f(X) and f(X) is a complete
subspace of X. Suppose that T and f are strictly (α, ψ, ξ)-contractive mappings with

ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each t > 0 satisfying the

following conditions:

(i) T is an α∗-admissible multi-valued mapping w.r.t. f ;
(ii) there exists x0 ∈ X such that α(fx0, fx1) ⩾ 1, ∀fx1 ∈ Tx0;
(iii) if (fxn) is a sequence in X with fxn → x and α(fxn, fxn+1) ⩾ 1 for each n ⩾ 1, then

there exists a subsequence (fxni
) of (fxn) such that α(fxni

, x) ⩾ 1 for all i ⩾ 1.

Then f and T have a point of coincidence in X. Moreover, f and T have a unique
point of coincidence in X if the property (‡) holds. Furthermore, if f and T are weakly
compatible, then f and T have a unique common fixed point in X.

Proof. We take G = G0 = (X,X × X). Then, T and f are strictly (α, ψ, ξ) − G0-
contractive. By hypothesis (ii), there exists x0 ∈ X such that α(fx0, fx1) ⩾ 1 for all
fx1 ∈ Tx0. By hypothesis (i), it follows that α∗(Tx0, Tx1) ⩾ 1 and hence α(fx1, fx2) ⩾ 1
for all fx1, fx2 ∈ Tx1. By repeated use of hypothesis (i), we get that α(fxn, fxn+1) ⩾ 1
for all n ∈ N ∪ {0} and for every sequence (fxn) such that fxn ∈ Txn−1. Moreover,
(fxn, fxm) ∈ E(G̃0) for m,n = 0, 1, 2, · · · . This ensures that x0 ∈ CαfT and hence CαfT ̸=
∅. Furthermore, hypothesis (iii) shows that property (∗) holds. Thus, all the conditions
of Theorem 3.9 are satisfied and the conclusion of Theorem 3.13 can be obtained from
Theorem 3.9. ■
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Theorem 3.14 Let (X, d) be a complete b-metric space with the coefficient s ⩾ 1 and
let G = (V (G), E(G)) be a graph. Let f : X → X and T : X → CB(X) be the G̃-
continuous and compatible hybrid pair such that T (X) ⊆ f(X). Suppose that T and
f are strictly (α, ψ, ξ) − G-contractive mappings with ξ(st) = sξ(t) for each t ∈ [0,∞)

and

∞∑
n=1

snψn(t) < ∞ for each t > 0. Then f and T have a point of coincidence in X if

CαfT ̸= ∅. Moreover, f and T have a unique common fixed point in X if the graph G has

the property (∗∗).

Proof. As in the proof of Theorem 3.9, we can construct a Cauchy sequence (fxn) in X
such that fxn ∈ Txn−1, (fxn, fxm) ∈ E(G̃) for m,n = 0, 1, 2, · · · and α(fxn, fxn+1) ⩾
1 for all n ∈ N ∪ {0} and

ξ(sH(Txn, Txn+1)) ⩽ ψ(ξ(sd(fxn, fxn+1))) < ψn(k), (18)

where k = qψ(ξ(sd(fx0, fx1))). (X, d) being complete, there exists t ∈ X such that
fxn → t as n→ ∞. We now show that (Txn) is a Cauchy sequence in (CB(X),H). For
m,n ∈ N with m > n, we have

H(Txn, Txm) ⩽ sH(Txn, Txn+1) + s2H(Txn+1, Txn+2) + · · ·

+ sm−n−1H(Txm−2, Txm−1) + sm−n−1H(Txm−1, Txm).

Therefore, by using condition (18), we obtain that

ξ(H(Txn, Txm)) ⩽ ξ(sH(Txn, Txn+1)) + sξ(sH(Txn+1, Txn+2)) + · · ·

+ sm−n−2ξ(sH(Txm−2, Txm−1)) + sm−n−1ξ(sH(Txm−1, Txm))

< ψn(k) + sψn+1(k) + · · ·+ sm−n−2ψm−2(k) + sm−n−1ψm−1(k)

=
1

sn

m−1∑
i=n

siψi(k).

Since

∞∑
n=1

snψn(t) <∞, it follows that

lim
n,m→∞

ξ(H(Txn, Txm)) = 0.

By using (ξ1) and (ξ3), we get

lim
n,m→∞

H(Txn, Txm) = 0.

This proves that (Txn) is a Cauchy sequence in the complete b-metric space (CB(X),H).
So, there exists M ∈ CB(X) such that Txn →M . Now,

d(t,M) ⩽ s[d(t, fxn) + d(fxn,M)]

⩽ s[d(t, fxn) +H(Txn−1,M)] → 0 as n→ ∞.
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Since M is closed, t ∈M . The compatibility of f and T gives that H(Tfxn, fTxn) → 0
as n→ ∞. By G̃-continuity of f and T , we have

d(ft, T t) ⩽ s[d(ft, ffxn+1) + d(ffxn+1, T t)]

⩽ s[d(ft, ffxn+1) +H(fTxn, T t)]

⩽ sd(ft, ffxn+1) + s2H(fTxn, T fxn) + s2H(Tfxn, T t)

→ 0 as n→ ∞,

which implies that ft ∈ Tt, since Tt is closed. Taking u = ft, it follows that u is a point
of coincidence of f and T in X. By an argument similar to that used in Theorem 3.9, it
follows that u is the unique point of coincidence of f and T in X. Since compatibility
implies weak compatibility, by Proposition 2.19, it follows that f and T have a unique
common fixed point in X. ■

Corollary 3.15 Let (X, d) be a complete b-metric space with the coefficient s ⩾ 1
and let G = (V (G), E(G)) be a graph. Let T : X → CB(X) be a G̃-continuous
strictly (α, ψ, ξ) − G-contractive mapping with ξ(st) = sξ(t) for each t ∈ [0,∞) and
∞∑
n=1

snψn(t) < ∞ for each t > 0. Then T has a fixed point in X if CαT ̸= ∅. Moreover,

T has a unique fixed point in X if the graph G has the property (∗ ∗ )́.

Proof. The proof follows from Theorem 3.14 by taking f = I. ■

Corollary 3.16 Let (X, d) be a complete b-metric space with the coefficient s ⩾ 1 and
let f : X → X and T : X → CB(X) be the continuous and compatible hybrid pair such
that T (X) ⊆ f(X). Suppose that T and f are strictly (α, ψ, ξ)-contractive mappings

with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each t > 0. If there

exists x0 ∈ X such that α(fxn, fxn+1) ⩾ 1 for all n ∈ N ∪ {0} and for every sequence
(fxn) such that fxn ∈ Txn−1, then f and T have a point of coincidence in X. Moreover,
f and T have a unique common fixed point in X if the property (‡) holds.

Proof. The proof follows from Theorem 3.14 by taking G = G0. ■

Corollary 3.17 Let (X, d,⪯) be a partially ordered complete b-metric space with the
coefficient s ⩾ 1. Let f : X → X and T : X → CB(X) be the continuous and compatible
hybrid pair such that T (X) ⊆ f(X). Suppose that there exist ψ ∈ Ψ, ξ ∈ Ξ and α :

X ×X → [0,∞) with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each

t > 0 such that

α(fx, fy) ⩾ 1 ⇒ ξ(sH(Tx, Ty)) ⩽ ψ(ξ(Ms(fx, fy)))

for all x, y ∈ X with fx ⪯ fy or, fy ⪯ fx. If there exists x0 ∈ X such that fxn, fxm are
comparable for m, n = 0, 1, 2, · · · and α(fxn, fxn+1) ⩾ 1 for all n ∈ N ∪ {0}, for every
sequence (fxn) such that fxn ∈ Txn−1, then f and T have a point of coincidence in X.

Moreover, f and T have a unique common fixed point in X if the property (‡)́ holds.

Proof. The proof can be obtained from Theorem 3.14 by taking G = G2. ■
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The following corollary is indeed a generalization of Theorem 2 of Kaneko and Sessa
[22].

Corollary 3.18 Let (X, d) be a complete b-metric space with the coefficient s ⩾ 1,
f : X → X and T : X → CB(X) be compatible continuous mappings such that T (X) ⊆
f(X) and

sH(Tx, Ty) ⩽ hmax{d(fx, fy), d(fx, Tx), d(fy, Ty), d(fx, Ty) + d(fy, Tx)

2s
}

for all x, y ∈ X, where 0 < h < 1
s . Then there exists a point t ∈ X such that ft ∈ Tt.

Proof. The proof can be obtained from Theorem 3.14 by taking G = G0, α(x, y) = 1
for all x, y ∈ X, ξ(t) = t for each t ⩾ 0 and ψ(t) = ht for each t ⩾ 0, where h ∈ (0, 1s ) is
a fixed number. ■

Remark 3 It is worth mentioning that in Corollary 3.18, f and T have a unique common
fixed point in X.

Remark 4 Several special cases of our results can be obtained by restricting T : X → X
and taking ξ(t) = t, ψ(t) = ht for each t ⩾ 0, where h ∈ (0, 1s ) is a fixed number,
α(x, y) = 1, G = G0.

As an application of Theorem 3.14, we obtain the following theorem.

Theorem 3.19 Let (X, d) be a complete b-metric space with the coefficient s ⩾ 1 and
let T : X → CB(X) and f : X → X be the continuous and compatible hybrid pair such
that T (X) ⊆ f(X). Suppose that T and f are strictly (α, ψ, ξ)-contractive mappings

with ξ(st) = sξ(t) for each t ∈ [0,∞) and

∞∑
n=1

snψn(t) < ∞ for each t > 0 satisfying

the following conditions:

(i) T is an α∗-admissible multi-valued mapping w.r.t. f ;
(ii) there exists x0 ∈ X such that α(fx0, fx1) ⩾ 1, ∀fx1 ∈ Tx0.

Then f and T have a point of coincidence in X. Moreover, f and T have a unique
common fixed point in X if the property (‡) holds.

Proof. The proof is similar to that of Theorem 3.13. ■

Finally, we furnish some examples to discuss the validity of our results.

Example 3.20 Let X = [0,∞) with d(x, y) =| x − y |2 for all x, y ∈ X. Then (X, d)
is a complete b-metric space with s = 2. Let G be a digraph such that V (G) = X and
E(G) = ∆ ∪ {(0, 1n) : n = 1, 2, 3, · · · }. Let T : X → CB(X) be defined by Tx = {0, x3}
for all x ∈ X and fx = 3x for all x ∈ X. Obviously, T (X) ⊆ f(X) = X. Let α :
X × X → [0,∞) be defined by α(x, y) = 1 if x, y ∈ [0, 1] and otherwise, α(x, y) = 1

2 .

Take ψ(t) = t
8 and ξ(t) = t

2 for each t ⩾ 0. If x = 0 and y = 1
3n , then fx = 0 and fy = 1

n

and so (fx, fy) ∈ E(G̃) and α(fx, fy) = 1. For x = 0 and y = 1
3n , we have Tx = {0},
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Ty = {0, 1
9n} and ξ(sH(Tx, Ty)) = ξ( s

81n2 ) =
1

81n2 . Moreover,

Ms(fx, fy) = max


d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx,Ty)+d(fy,Tx)
2s


= max


d(0, 1n), d(0, {0}), d(

1
n , {0,

1
9n}),

d(0,{0, 1

9n
})+d( 1

n
,{0})

2s


= max

{
1

n2
, 0,

64

81n2
,

1

4n2

}
=

1

n2
.

So, ψ(ξ(Ms(fx, fy))) = ψ(ξ( 1
n2 )) = ψ( 1

2n2 ) = 1
16n2 . Thus, ξ(sH(Tx, Ty)) ⩽

ψ(ξ(Ms(fx, fy))) for all x, y ∈ X with (fx, fy) ∈ E(G̃) and α(fx, fy) = 1. Therefore,
T and f are strictly (α,ψ, ξ)−G-contractive mappings.

We can verify that x0 = 0 ∈ CαfT . In fact, fxn ∈ Txn−1, n = 1, 2, 3, · · · gives that

fx1 ∈ T0 = {0} ⇒ x1 = 0 and so fx2 ∈ Tx1 = {0} ⇒ x2 = 0. Proceeding in this way,
we get fxn = 0 for n = 0, 1, 2, · · · and hence (fxn, fxm) = (0, 0) ∈ E(G̃) for m, n =
0, 1, 2, · · · and α(fxn, fxn+1) = 1 for all n ∈ N∪{0}. Also, any sequence (fxn) with the
property α(fxn, fxn+1) = 1 must be a sequence in [0, 1]. Moreover, (fxn, fxn+1) ∈ E(G̃)
must be either a constant sequence or a sequence with fxn = 0 if n is odd and fxn = 1

n if
n is even, where the words ’odd’ and ’even’ are interchangeable. Consequently it follows
that property (∗) holds. Furthermore, the graph G has the property (∗∗) and f and T
are weakly compatible. Thus, we have all the conditions of Theorem 3.9 and 0 is the
unique common fixed point of f and T in X.

We now examine the necessity of property (∗∗) in Theorem 3.9 for the unique point
of coincidence.

Remark 5 In Example 3.20, if we take

Tx = {0, x
3
}, if 0 ⩽ x < 1

= {0}, if x = 1

= [x2, x2 + 5], if x > 1

instead of Tx = {0, x3} for all x ∈ X, then all the conditions of Theorem 3.9 except
property (∗∗) are satisfied. We observe that f and T have infinitely many points of
coincidence in X.

The following example shows that without property (∗∗), a unique common fixed point
of f and T may not exists.

Example 3.21 Let X = {1, 3, 5} ∪ [6,∞) with d(x, y) = |x− y|3 for all x, y ∈ X. Then
(X, d) is a complete b-metric space with the coefficient s = 4. Let G be a digraph such
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that V (G) = X and E(G) = ∆ ∪ {(1, 5)}. Let T : X → CB(X) be defined by

Tx = {3, 5}, if x = 1, 5

= {3}, if x = 3

= [x2, x2 + 2], if x ⩾ 6

and

fx = x, if x = 1, 3, 5

= x+ 1, if x ⩾ 6.

Obviously, T (X) ⊆ f(X) and f(X) is a complete subspace of (X, d). Let α : X ×X →
[0,∞) be defined by α(x, y) = 1 for all x, y ∈ X. Take ψ(t) = t

6 and ξ(t) = t
2 for each

t ⩾ 0. Then it is easy to verify that ξ(sH(Tx, Ty)) ⩽ ψ(ξ(Ms(fx, fy))) for all x, y ∈ X
with (fx, fy) ∈ E(G̃) and α(fx, fy) = 1. Therefore, T and f are strictly (α, ψ, ξ)−G-
contractive mappings. Moreover, 3 ∈ CαfT and property (∗) holds. We find that 3 and
5 are points of coincidence of f and T in X. In fact, 3 and 5 are common fixed points
of f and T in X. However, f and T are weakly compatible, there does not exist unique
common fixed point of f and T due to lack of property (∗∗) of the graph G.

Remark 6 In Example 3.21, T and f are strictly (α, ψ, ξ) − G-contractive but not
strictly (α, ψ, ξ)-contractive. In fact, for x = 1, y = 3, we have fx = 1, fy = 3, Tx =
{3, 5}, Ty = {3} and so (fx, fy) ̸∈ E(G̃). Then, ξ(sH(Tx, Ty)) = ξ(32) = 16 and

Ms(fx, fy) = max


d(fx, fy), d(fx, Tx), d(fy, Ty),

d(fx,Ty)+d(fy,Tx)
2s


= max

{
8, 8, 0,

8 + 0

4

}
= 8,

which implies that ξ(sH(Tx, Ty)) > ψ(ξ(Ms(fx, fy))). Consequently, it follows that T
and f are not strictly (α, ψ, ξ)-contractive.

The following example supports our Theorem 3.14.

Example 3.22 Let X = [1,∞) with d(x, y) =| x − y |2 for all x, y ∈ X. Then (X, d)
is a complete b-metric space with the coefficient s = 2. Let G be a digraph such that
V (G) = X and E(G) = ∆ ∪ {(n, n + 1) : n ∈ N}. Let fx = 3x2 − 2 and Tx = [1, x2]
for each x ⩾ 1. Then, T and f are G̃-continuous and T (X) = f(X) = X. It is to be
noted that fTx = [1, 3x4 − 2] ∈ CB(X) for all x ∈ X. Since fxn → 1 and Txn → {1} iff
xn → 1,

H(fTxn, T fxn) =| (9x4n − 12x2n + 4)− (3x4n − 2) |2

=| 6x4n − 12x2n + 6 |2

= 36 | x4n − 2x2n + 1 |2→ 0 iff xn → 1,
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it follows that f and T are compatible. Let α : X×X → [0,∞) be defined by α(x, y) = 1

for all x, y ∈ X. Take ψ(t) = t
4 and ξ(t) = t

2 for each t ⩾ 0. If x =
√

n+2
3 , y =

√
n+3
3 , n ∈

N, then fx = n, fy = n+ 1 and so (fx, fy) ∈ E(G̃) and α(fx, fy) = 1.Then

H(Tx, Ty) =| x2 − y2 |2=| n+ 2

3
− n+ 3

3
|2= 1

9

and d(fx, fy) = 1 ⩽Ms(fx, fy) which implies that ψ(ξ(d(fx, fy))) ⩽ ψ(ξ(Ms(fx, fy))).
Now,

ξ(sH(Tx, Ty)) = ξ(
s

9
) =

1

9
<

1

8
= ψ(ξ(d(fx, fy))) ⩽ ψ(ξ(Ms(fx, fy))).

Thus, T and f are strictly (α, ψ, ξ)−G-contractive.
It is easy to verify that property (∗∗) holds and 1 ∈ CαfT i.e., CαfT ̸= ∅. Thus, we have

all the conditions of Theorem 3.14 and 1 is the unique common fixed point of f and T
in X.
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