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Abstract. In this paper, we prove some properties of algebraic cone metric spaces and in-
troduce the notion of algebraic distance in an algebraic cone metric space. As an application,
we obtain some famous fixed point results in the framework of this algebraic distance
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1. Introduction and preliminaries

Ordered normed spaces and cones have many applications in optimization theory.
Hence, fixed point theory in K-metric and K-normed spaces was developed in the mid-
20th century ([2, 13]). Huang and Zhang [5] reintroduced such spaces under the name
of cone metric spaces by considering an ordered normed space for the real numbers and
proved some fixed point results (also, see [6, 12]). Moreover, topological vector space-
valued cone metric space (tvs-cone metric space) introduced by Du [4] as a generalization
of the Banach-valued cone metric space. In 1996, Kada et al. [8] defined the concept of
w-distance in metric spaces.

Let (X, d) be a metric space. Then a function p : X×X → [0,∞) is called a w-distance
on X if the following conditions are satisfied:

a) p(x, z) ⩽ p(x, y) + p(y, z) for any x, y, z ∈ X;
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b) for each x ∈ X, p(x, ·) : X → [0,∞) is lower semi-continuous
(
i.e., if x ∈ X and

yn → y in X, then p(x, y) ⩽ lim inf
n

p(x, yn)
)
;

c) for each ϵ > 0, there exists δ > 0 such that p(x, z) ⩽ δ and p(z, y) ⩽ δ imply
d(x, y) ⩽ ϵ for all x, y, z ∈ X.

In the sequel, Cho et al. [1] defined the concept of the c-distance in a cone metric
space, which is a generalization of the w-distance and proved some fixed point theorems
under c-distance (also, see [3, 10] and references therein).

In 2014, Niknam et al. [9] defined the concept of algebraic cone metric space and
proved Banach contraction principle in this space. Consistent with the content of this
paper, the following definitions will be needed in the sequel.

Let Y be a real vector space and P be a convex subset of Y . A point x ∈ P is said
to be an algebraic interior point of P if for each y ∈ Y there exists ϵ > 0 such that
x+ ty ∈ P , for all t ∈ [0, ϵ]. This definition is equivalent to the statement:

A point x is called an algebraic interior point of the convex set P ⊆ Y if x ∈ P
and for each y ∈ Y there exists ϵ > 0 such that [x, x + ϵy] ⊂ P , where [x, x + ϵy] ={
λx + (1 − λ)(x + ϵy) : ∀λ ∈ [0, 1]

}
. The set of all algebraic interior points of P is

called algebraic interior and is denoted by aint P . Also, P is called algebraically open if
P = aint P .

Let Y be vector space with the zero vector θ. A proper nonempty and convex subset
P of Y is called an algebraic cone if P +P ⊆ P , λP ⊆ P for λ ⩾ 0 and P ∩ (−P ) = {θ}.
Given a algebraic cone P ⊆ Y , a partial ordering ⪯a with respect to P is defined by
x ⪯a y ⇔ y − x ∈ P . We shall write x ≺a y to mean x ⪯a y and x ̸= y. Also, we
write x ≪a y if and only if y − x ∈ aint P , where aint P is the algebraic interior of
P . Also, P is said to be Archimedean if for each x, y ∈ P there exists n ∈ N such that
x ⪯a ny. For example, P =

{
(x, y) ∈ R2 : x, y ⩾ 0

}
is an algebraic cone with the

Archimedean property in the real vector space R2. In the sequel we assume that (Y, P )
has the Archimedean property.

Example 1.1 P =
{
f ∈ CR[a, b] : f(x) ⩾ 0, ∀x ∈ [a, b]

}
is an algebraic cone with the

Archimedean property in the real vector space CR[a, b]. But P =
{
f ∈ CR(0, 1) : f(x) ⩾

0, ∀x ∈ (0,∞)
}
in the real vector space CR(0,∞) that does not have the Archimedean

property.

Lemma 1.2 [9] Let Y be a real vector space and P be an algebraic cone in Y with
non-empty algebraic interior.

(i) P + aint P ⊂ aint P ;
(ii) λaint P ⊂ aint P , for each λ > 0.

2. Main results

Definition 2.1 [9] Let X be a nonempty set and (Y, P ) be an algebraic cone space with
aint P ̸= ∅. Suppose that a vector valued function da : X×X → Y satisfies the following
conditions:

(ACM1) θ ⪯a da(x, y) for all x, y ∈ X and da(x, y) = θ if and only if x = y;
(ACM2) da(x, y) = da(y, x) for all x, y ∈ X;
(ACM3) da(x, z) ⪯a da(x, y) + da(y, z) for all x, y, z ∈ X.

Then da is called an algebraic cone metric and (X, da) is called an algebraic cone metric
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space.

Example 2.2 Let X be a vector space over F (R or C) and || · ||a : X → Y be a mapping
that satisfies the following conditions:

(ACN1) θ ≪a ||x|| for all x ∈ X \ {θX} and ||x||a = θ if and only if x = θX , where θX is
the zero vector in X;

(ACN2) ||αx||a = |a|||x||a for all x ∈ X and α ∈ F ;
(ACN3) ||x+ y||a ⪯a ||x||a + ||y||a.

Then || · ||a is called an algebraic cone norm on X and (X, || · ||a) is called an algebraic
cone normed space [11]. Now, if define da(x, y) = ||x− y||a, then da is called an algebraic
cone metric space obtained from algebraic cone norm.

Definition 2.3 Let (X, da) be an algebraic cone metric space, {xn} a sequence in X
and x ∈ X. Then the following statements hold:

(i) {xn} converges to x if, for every c ∈ Y with c ∈ aint P there exists an n0 ∈ N
such that da(xn, x) ≪a c for all n > n0. We denote this by da − limn→∞ xn = x

or xn
da−→ x as n → ∞;

(ii) {xn} is called a Cauchy sequence if, for every c ∈ Y with c ∈ aint P there exists
an n0 ∈ N such that da(xn, xm) ≪a c for all m,n > n0;

(iii) (X, da) is complete algebraic cone metric space if every Cauchy sequence in X is
convergent in X.

Lemma 2.4 LetX be a nonempty set, (Y, P ) be an algebraic cone space with aint P ̸= ∅
and (X, da) is call be an algebraic cone metric space. Then, for all u, v, w, c ∈ Y , the
following assertions are true:

(p1) If u ⪯a v and v ≪a w, then u ≪a w.
(p2) If u ≪a v and v ⪯a w, then u ≪a w.
(p3) If u ⪯a v and v ⪯a w, then u ⪯a w. Also, if u ≪a v and v ≪a w, then u ≪a w.
(p4) If θ ⪯a u ≪a c for each c ∈ aint P , then u = θ.
(p5) If u ⪯a λu where u ∈ P and 0 < λ < 1, then u = θ.

(p6) Let bn
a→ θ in Y , θ ⪯a bn and c ∈ aint P . Then there exists positive integer n0

such that bn ≪a c for each n > n0.
(p7) If θ ⪯a u ⪯a v and k ∈ R+, then θ ⪯a ku ⪯a kv.

(p8) If θ ⪯a un ⪯a vn for all n ∈ N and un
a→ u, vn

a→ v as n → ∞, then θ ⪯a u ⪯a v.

(p9) xn
da−→ x and xn

da−→ y implies that x = y.

(p10) Let θ ≪a c. If θ ⪯a da(xn, x) ⪯a bn and bn
a→ θ, then eventually da(xn, x) ≪a c,

where xn, x are sequence and given point in X.
(p11) If u ⪯a v + c for every c ∈ aint P , then u ⪯a v.

Proof.

(p1) If u ⪯a v and v ≪a w, then v − u ∈ P and w − v ∈ aint P . Thus, by Lemma
1.2.(i), we have

w − u = (w − v) + (v − u) ∈ aint P + P ⊂ aint P.

Consequently, w − u ∈ aint P ; that is, u ≪a w.
(p2) If u ≪a v and v ⪯a w, then v − u ∈ aint P and w − v ∈ P . Thus, by Lemma
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1.2.(i), we have

w − u = (w − v) + (v − u) ∈ P + aint P ⊂ aint P.

Consequently, w − u ∈ aint P ; that is, u ≪a w.
(p3) If u ⪯a v and v ⪯a w, then v−u ∈ P and w− v ∈ P . Thus, by definition of cone,

we have

w − u = (w − v) + (v − u) ∈ P + P ⊆ P.

Consequently, w − u ∈ P ; that is, u ⪯a w. Similarly, by using definition aint P
and ≪a, it follows from u ≪a v and v ≪a w that u ≪a w.

(p4) The proof is the same as in the Banach case or tvs-cone metric space.
(p5) The condition u ⪯a λu means that λu − u ∈ P ; that is, −(1 − λ)u ∈ P . On the

other hand, from a ∈ P and 1 − λ > 0, we have (1 − λ)u ∈ P . Thus, we have
(1− λ)u ∈ P ∩ (−P ) = {θ}. Consequently, u = θ.

(p6) Using Lemma 1.2, the proof is similar to the version of tvs-cone metric spaces.
(p7) If θ ⪯a u ⪯a v, then v − u ⪯a P . Since k is a nonnegative real number, by

using the definition of algebraic cone, k(v − u) ∈ P ; that is, kv − ku ∈ P . Thus,
θ ⪯a ku ⪯a kv.

(p8) Using the definition of convergence and ⪯a, the proof is straightforward.

(p9) From xn
da−→ x and xn

da−→ y, we have da(xn, x) ≪a
c
2 and da(xn, x) ≪a

c
2 for

each n > n0 and c ∈ aint P . Thus, by using (ACM3), da(x, y) ⪯a da(x, xn) +
da(xn, y) ≪a

c
2+

c
2 . It follows that da(x, y) ≪a c (by (p1)) for arbitrary c ∈ aint P .

Using (p4), we have da(x, y) = θ; that is, x = y.
(p10) It follows from (p1), (p6) and convergence of a sequence in an algebraic cone

metric space that the assertion of (p10) is true.
(p11) The proof is similar to the proof of (p1), (p2) and (p3).

■

Remark 1 Huang and Zhang [5] proved that if P is a normal cone then xn ∈ X converges
to x ∈ X if and only if d(xn, x) → θ, as n → ∞, and that xn ∈ X is a Cauchy sequence if
and only if d(xn, xm) → θ, as n,m → ∞. It follows from (p6) and (p10) that the sequence

{xn} converges to x ∈ X in an algebraic cone metric space if da(xn, x)
a→ θ, as n → ∞

and {xn} is a Cauchy sequence if da(xn, xm)
a→ θ, as n → ∞. In the case when the cone

is not necessarily normal (such as tvs-cone metric spaces [4] or algebraic cone metric
spaces), we have only one half of the statements of Lemmas 1 and 4 from [5]. Also, in

this case, the fact that da(xn, yn)
a→ da(x, y) if xn

da−→ x and yn
da−→ y is not applicable.

Theorem 2.5 Let (X, da) be an algebraic cone metric space. Then the family {Na(x, c) :
x ∈ X, θ ≪a c}, where Na(x, c) = {y ∈ X : da(y, x) ≪a c}, is a subbasis for topology on
X (see [9]). We denote this algebraic cone topology by τa, and note that τa is a Hausdorff
topology.

Proof. For the proof of the last statement, suppose that Na(x, c)∩Na(y, c) ̸= ∅ for each
θ ≪a c. Then there exists z ∈ X such that da(z, x) ≪a

c
2 and da(z, y) ≪a

c
2 . Hence,

da(x, y) ⪯a da(x, z) + da(z, y) ≪a
c
2 +

c
2 = c. Clearly, for each n, we have c

n ∈ aint P , so
c
n − da(x, y) ∈ aint P ⊆ P . Now, θ − da(x, y) ∈ P ; that is, da(x, y) ∈ P ∩ (−P ) = {θ},
and we have da(x, y) = θ. Thus, x = y. ■

Now, we define algebraic distance and introduce some its properties.
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Definition 2.6 Let (X, da) be an algebraic cone metric space. A function qa : X×X → Y
is called a c-algebraic distance (or briefly, algebraic distance) on X if the following are
satisfied:

q1) θ ⪯a qa(x, y) for all x, y ∈ X;
q2) qa(x, z) ⪯a qa(x, y) + qa(y, z) for all x, y, z ∈ X;
q3) for x ∈ X, if qa(x, yn) ⪯a u for some u = ux and all n ⩾ 1, then qa(x, y) ⪯a u

whenever {yn} is a sequence in X converging to a point y ∈ X;
q4) for all c ∈ Y with θ ≪a c, there exists e ∈ Y with θ ≪a e such that qa(z, x) ≪a e

and qa(z, y) ≪a e imply da(x, y) ≪a c.

Example 2.7 Let (Y, P ) be an algebraic cone space with aint P ̸= ∅ and (X, da) be an
algebraic cone metric space such that the metric da(·, ·) is a continuous function in second
variable. Then, qa(x, y) = da(x, y) is an algebraic distance. In fact, (q1) and (q2) are
immediate. But, property (q3) is nontrivial and it follows from qa(x, yn) = da(x, yn) ⪯ u,
passing to the limit when n → ∞ and using continuity of da. Let c ∈ Y with c ∈ aint P
be given and put e = c

2 . Suppose that qa(z, x) ≪a e and qa(z, y) ≪a e. Then da(x, y) =
qa(x, y) ⪯ qa(x, z) + qa(z, y) ≪a e+ e = c. Using (p1), this shows that da(x, y) ≪a c and
thus qa satisfies (q4). Hence, qa is an algebraic distance.

Example 2.8 Let Y = R and P = {x ∈ Y : x ⩾ 0}. Let X = [0,∞) and define a
mapping d : X × X → Y by da(x, y) = |x − y|a for all x, y ∈ X. Then (X, da) is an
algebraic cone metric space. Define a mapping qa : X × X → Y by qa(x, y) = y for all
x, y ∈ X. Then, q is an algebraic distance. In fact, (q1) − (q3) are immediate. From
da(x, y) = |x− y|a ⩽a x+ y = qa(z, x) + qa(z, y), it follows that (q4) holds. Hence qa is
an algebraic distance.

In Examples 2.7 and 2.8, we introduce two known algebraic distances in an algebraic
cone metric space. There exist some of other examples about distance in [1, 10] that
reader can consider them in algebraic version. Also, similar to Example 3 of Dordević
[3], one can consider algebraic distances which are not c-distances in cone metric spaces
of [1, 10].

Remark 2 From Examples 2.7 and 2.8, we have two important results:

i) For an algebraic distance qa, qa(x, y) = θ is not necessarily equivalent to x = y
for all x, y ∈ X.

ii) For an algebraic distance qa, qa(x, y) = qa(y, x) does not necessarily hold for all
x, y ∈ X.

We will recall a sequence {un} in algebraic cone P is a c-sequence if for every c ∈ aint P
there exists n0 ∈ N such that un ≪a c for n ⩾ n0. It is easy to prove that if {un} and
{vn} are c-sequences in Y and α, β > 0, then {αun + βvn} is a c-sequence. Note that in
the case cone P is normal, a sequence in Y is a c-sequence if and only if it is a θ-sequence.
However, similar to tvs-cone metric spaces, when the cone is not normal, a c-sequence
need not be a θ-sequence in algebraic cone metric spaces.

Lemma 2.9 Let (X, da) be an algebraic cone metric space and qa be an algebraic dis-
tance on X. Also, let {xn} and {yn} be sequences in X and x, y, z ∈ X, and {un} and
{vn} be two c-sequences in algebraic cone P . Then the following hold:

qp1) f qa(xn, y) ⪯a un and qa(xn, z) ⪯a vn for n ∈ N, then y = z. Specifically, if
qa(x, y) = θ and qa(x, z) = θ, then y = z.

qp2) If qa(xn, yn) ⪯a un and qa(xn, z) ⪯a vn for n ∈ N, then {yn} converges to z.



278 K. Fallahi and G. Soleimani Rad / J. Linear. Topological. Algebra. 07(04) (2018) 273-280.

qp3) If qa(xn, xm) ⪯a un for m > n, then {xn} is a Cauchy sequence in X.
qp4) If qa(y, xn) ⪯a un for n ∈ N, then {xn} is a Cauchy sequence in X.

Proof. The proof is straightforward and left to reader. ■

Now, as an application, we prove some fixed point theorems.

Theorem 2.10 Let (X, da) be a complete algebraic cone metric space and let qa be an
algebraic distance on X. Also, let f : X → X be a continuous self-map. Suppose that
there exist mappings α, β, γ : X → [0, 1) such that the following conditions hold:

t1) α(fx) ⩽ α(x), β(fx) ⩽ β(x), γ(fx) ⩽ γ(x) and (α+β+ γ)(x) < 1 for all x ∈ X;
t2) for all x, y ∈ X,

qa(fx, fy) ⪯a α(x)qa(x, y) + β(x)qa(x, fx) + γ(x)qa(y, fy). (1)

Then f has a fixed point in X. If fx∗ = x∗, then qa(x
∗, x∗) = θ.

Proof. Let x0 ∈ X and fx0 = x0. Then x0 is a fixed point of f and the proof is
finished. Suppose that fx0 ̸= x0. Then we construct the sequence {xn} in X such that
xn = fnx0 = fxn−1. In order to prove that it is a Cauchy sequence, put x = xn−1 and
y = xn in (1) and use (t1). We have

qa(xn, xn+1) = qa(fxn−1, fxn)

⪯a α(xn−1)qa(xn−1, xn) + β(xn−1)qa(xn−1, fxn−1) + γ(xn−1)qa(xn, fxn)

= α(fxn−2)qa(xn−1, xn) + β(fxn−2)qa(xn−1, xn) + γ(fxn−2)qa(xn, xn+1)

⪯a

(
α(xn−2) + β(xn−2)

)
qa(xn−1, xn) + γ(xn−2)qa(xn, xn+1)

...

⪯a

(
α(x0) + β(x0)

)
qa(xn−1, xn) + γ(x0)qa(xn, xn+1),

which implies that

qa(xn, xn+1) ⪯a
α(x0) + β(x0)

1− γ(x0)
qa(xn−1, xn)

for all n ∈ N. Repeating this process, we get

qa(xn, xn+1) ⪯a δnqa(x0, x1) (2)

for all n ∈ N, where 0 ⩽ δ = α(x0)+β(x0)
1−γ(x0)

< 1 (by (t1)). Let m > n. In the usual way, it

follows from (2) that

qa(xn, xm) ⪯a qa(xn, xn+1) + · · ·+ qa(xm−1, xm)

⪯a
δn

1− δ
qa(x0, x1) = vn,

where {vn} is a c-sequence. Lemma 2.9.(qp3) implies that {xn} is a Cauchy sequence in

algebraic cone metric space X. Since X is complete, xn
da−→ z ∈ X as n → ∞. Continuity
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of f implies that xn+1 = fxn
da−→ fz, and since the limit of a sequence in an algebraic

cone metric space is unique, we get fz = z; that is, z is a fixed point of f . Now, we
suppose that fx∗ = x∗. It follows from (1) that

qa(x
∗, x∗) = qa(fx

∗, fx∗) ⪯a (α(x∗) + β(x∗) + γ(x∗))qa(x
∗, x∗),

which is, by property (p5) and (t1), possible only if qa(x
∗, x∗) = θ. ■

Question 2.11 Can you the continuity condition of mapping f replace by another condi-
tion?

Let α(x) = α, β(x) = β and γ(x) = γ in Theorem 2.10, we have the following theorem.

Theorem 2.12 Let (X, da) be a complete algebraic cone metric space and let qa be an
algebraic distance on X. Suppose that a continuous self-map f : X → X satisfies the
following condition

qa(fx, fy) ⪯a αqa(x, y) + βqa(x, fx) + γqa(y, fy) (3)

for all x, y ∈ X, where α, β and γ are nonnegative constants such that α + β + γ < 1.
Then f has a fixed point in X. If fx∗ = x∗, then qa(x

∗, x∗) = θ.

Sometimes the constant numbers α, β, γ which satisfy Theorem 2.12 is difficult to find.
Thus, it is the better to define such control functions α(x), β(x), γ(x) as another auxiliary
tool of the algebraic cone metric.

Definition 2.13 [7]If a map f : X → X satisfies Fix(f) = Fix(fn) for each n ∈ N,
where Fix(f) stands for the set of fixed points of f , then f is said to have property (P ).

Theorem 2.14 Let (X, da) be a complete algebraic cone metric space and qa : X×X →
Y be an algebraic distance on X. Suppose that a continuous self-map f : X → X satisfies
the contractive condition

qa(fx, f
2x) ⪯a αqa(x, fx), (4)

for each x ∈ X, where α ∈ (0, 1). Then

i) f has a fixed point and if fx∗ = x∗, then qa(x
∗, x∗) = θ;

ii) f has property (P ).

Proof. The proof of (i) is similar to tvs-cone metric version and left to the reader. We
only prove (ii). Obviously, Fix(f) ⊆ Fix(fn) for each n ∈ N. Let z ∈ Fix(fn); that is,
fnz = z. Using (4), we have

qa(z, fz) = qa(f
nz, ffnz) = qa(ff

n−1z, f2fn−1z)

⪯a αqa(f
n−1z, ffn−1z) = αqa(f

n−1z, fnz) = αqa(ff
n−2z, f2fn−2z)

⪯ α2qa(f
n−2z, ffn−2z) = α2qa(f

n−2z, fn−1z) ⪯a · · · ⪯a αnqa(z, fz).

It follows from (p5) that qa(z, fz) = θ. Moreover, qa(f
mz, fm+1z) ⪯a qa(z, fz) for each

integer number 1 ⩽ m ⩽ n. Therefore, qa(f
mz, fm+1z) = θ. Now, by applying (q2), we

obtain qa(z, fz) = qa(z, f
2z) = · · · = qa(z, f

nz) = θ. Using Lemma 2.9.(qp1), we have
z = fz; that is, z ∈ Fix(f). Therefore, Fix(fn) ⊆ Fix(f). This completes the proof. ■
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3. Conclusion

In this paper we proved other properties of algebraic cone metric spaces, defined al-
gebraic distance in an algebraic cone metric space and studied some of its elementary
properties. Also, we obtained some well-known fixed point results under algebraic dis-
tance in an algebraic cone metric space. As a new work, one can be discussed on the
validity these results in algebraic cone b-metric spaces introduced by Rahimi et al. [11].
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[6] S. Janković, Z. Kadelburg, S. Radenović, On cone metric spaces, a survey, Nonlinear Anal. 74 (2011), 2591-

2601.
[7] G. S. Jeong, B. E. Rhoades, Maps for which F (T ) = F (Tn), Fixed Point Theory Appl. 6 (2005), 87-131.
[8] O. Kada, T. Suzuki, W. Takahashi, Nonconvex minimization theorems and fixed point theorems in complete

metric spaces, Math. Japon. 44 (1996), 381-391.
[9] A. Niknam, S. Shamsi Gamchi, M. Janfada, Some results on TVS-cone normed spaces and algebraic cone

metric spaces, Iranian J. Math. Sci. Inf. 9 (1) (2014), 71-80.
[10] H. Rahimi, G. Soleimani Rad, Common fixed-point theorems and c-distance in ordered cone metric spaces,

Ukrain. Math. J. 65 (12) (2014), 1845-1861.
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