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Abstract. In this paper, among the other things, we prove the existence and uniqueness the-
orem of fixed point for mappings on a generalized orthogonal metric space. As a consequence
of this, we obtain the existence and uniqueness of fixed point of Cauchy problem for the first
order differential equation.
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1. Introduction

Concept of generalized metric space has been introduced in [8]. Extension of Banach
fixed point theorem in generalized metric space has been established in [8]. This has
been studied by many authors and important results has been obtained [3, 6, 7].
Recently, Eshaghi and et. [4] introduced the notion of orthogonal sets and orthogonal
metric spaces. They also proved a real extension of Banach contractive principle [4].
Generalizations of this theorem has been considered in [1, 2, 9].
Let us consider Cauchy problem for the first order differential equation{

x́(t) = f(t, x),

x(t0) = x0,
(1)
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where the function f is defined in the domain

|t− t0| ⩽ a, |x− x0| ⩽ b,

and satisfies the condition

|f(t, x1)− f(t, x2)| ⩽
K

|t− t0|
|x1 − x2|, 0 < K < 1.

In this paper, we are interested to define a new concept of generalized orthogonal metric
space. Conditions under them a function in a generalized orthogonal metric space has a
unique fixed point will be obtained. Furthermore, we apply the obtained results to show
existence and uniqueness of solution of Cauchy problem for the first order differential
equation (1). The solution of differential equation will be expressed as a fixed point of a
suitable integral operator. The paper is organized as follows:

In section 2, we state some definitions and recall extension of Banach fixed point
theorem in orthogonal metric space. In section 3, we prove main result and we show the
existence and uniqueness of fixed point for mappings on generalized orthogonal metric
space. In section 4, applying the result of section 3, we prove the existence and uniqueness
of solution of Cauchy problem for the first order differential equation (1).

2. Preliminaries

In this section, some preliminaries and notations which are necessary for later are recalled.
The extended line is the ordered space [−∞,+∞], considering of all points of the

number line R and two points, denoted by −∞, +∞ with the usual order relation for
points of R. A map d : X × X → [0,∞] is called a generalized metric on the set X, if
the following conditions are satisfied:

1. d(x, y) = d(y, x) for any points x, y ∈ X.
2. d(x, y) = 0 ⇐⇒ x = y for any points x, y ∈ X.
3. d(x, z) ⩽ d(x, y) + d(y, z) for any points x, y ∈ X considering that if d(x, y) = ∞

or d(y, z) = ∞ then d(x, y) + d(y, z) = ∞.
A set X is called a generalized metric space with a defined metric on it and denoted

by (X, d).

Definition 2.1 [4] Let X ̸= ϕ and ⊥ ⊆ X ×X be a binary relation. If ⊥ satisfies the
following condition

∃x0; ((∀y; y⊥x0) or (∀y;x0⊥y)),

it is called an orthogonal set (briefly O-set). We denote this O-set by (X,⊥).

In the following, we give some examples of orthogonal sets.

Example 2.2 Let X = Z. Define m⊥n if there exists k ∈ Z such that m = kn. It is
easy to see that 0⊥n for all n ∈ Z. Hence (X,⊥) is an O-set..

By the following example, we can see that x0 is not necessarily unique.

Example 2.3 Let X = [0,∞), we define x⊥y if xy ∈ {x, y}, then by setting x0 = 0 or
x0 = 1, (X,⊥) is an O-set.
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Let (X,⊥) be an O-set. We consider the notion of O-sequence.

Definition 2.4 [4] A sequence {xn}n∈N is called orthogonal sequence (briefly O-
sequence) if

((∀n;xn⊥xn+1) or (∀n;xn+1⊥xn)).

Let (X, d,⊥) be an orthogonal metric space ((X,⊥) is an O-set and (X, d) is a metric
space). Now, we consider following definitions.

Definition 2.5 [4] The space X is orthogonally complete (briefly O-complete) if every
cauchy O-sequence is convergent.

Let (X, d,⊥) be an orthogonal metric space and 0 < λ < 1.

Definition 2.6 [4] i) A mapping f : X → X is said to be orthogonal contraction
(⊥−contraction) with Lipchitz constant λ if

d(fx, fy) ⩽ λd(x, y) ifx⊥y. (2)

ii) A mapping f : X → X is called orthogonal preserving (⊥−preserving) if f(x)⊥f(y)
if x⊥y.

iii) A mapping f : X → X is orthogonal continuous (⊥−continuous) in a ∈ X if
for each O-sequence {an}n∈N in X such that an → a then f(an) → f(a). Also f is
⊥−continuous on X if f is ⊥−continuous in each a ∈ X.

Example 2.7 Let X = [0, 1) and let the metric on X be the Euclidian metric. Define
x⊥y if xy ⩽ max{x2 ,

y
2}. X is not complete but it is O-complete. Let x⊥y and xy ⩽ x

2 .
If {xk} is an arbitrary Cauchy O-sequence in X, then there exists a subsequence {xkn}
of {xk} for which xkn = 0 for all n or there exists a subsequence {xkn} of {xk} for which
xkn ⩽ 1

2 for all n. It follows that {xkn} converges to a x ∈ [0, 1). On the other hand,
we know that every Cauchy sequence with a convergent subsequence is convergent. It
follows that {xk} is convergent. Let f : X → X be a mapping defined by

f(x) =

{
x
2 , x ⩽ 1

2 ,

0 , x > 1
2 .

Also, x⊥y and xy ⩽ x
2 . So x = 0 or y ⩽ 1

2 . We have the following cases:

case 1) x = 0 and y ⩽ 1
2 . Then f(x) = 0 and f(y) = y

2 .

case 2) x = 0 and y > 1
2 . Then f(x) = f(y) = 0.

case 3) y ⩽ 1
2 and x ⩽ 1

2 . Then f(y) = y
2 and f(x) = x

2 .

case 4) y ⩽ 1
2 and x > 1

2 . Then x− y > y, f(y) = y
2 and f(x) = 0.

These cases implies that f(x)f(y) ⩽ f(x)
2 . Hence f is ⊥-preserving.

Also, one can see that |f(x) − f(y)| ⩽ 1
2 |x − y|. Hence f is ⊥−contraction. But f is

not a contraction. Otherwise, for two points 1
2 and 2

3 and for all 0 < c < 1 we have

|f(12)− f(23)| ⩽ c|12 − 2
3 | and one can conclude that, it’s a contradiction.

Let {xn} be an arbitrary O-sequence in X such that {xn} converges to x ∈ X. Since f
is ⊥−contraction, for each n ∈ N we have

|f(xn)− f(x)| ⩽ 1

2
|xn − x|.
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As n goes to infinity, f is ⊥-continuous. But as it can be easily seen that f is not
continuous.

Now, we can state the main theoretical result of [4]. Sufficient conditions under them
will any mapping on an orthogonal metric space have a unique fixed point are given in
the following theorem.

Theorem 2.8 Let (X, d,⊥) be an O-complete metric space (not necessarily complete
metric space) and 0 < λ < 1. Let f : X → X be ⊥−continuous, ⊥−contraction (with
Lipschitz constant λ) and ⊥−preserving. Then f has a unique fixed point x∗ in X and
is a Picard operator, that is, lim fn(x) = x∗ for all x ∈ X.

On the other hand, one has the following assertion.

Theorem 2.9 Given a point (t0, x0) ∈ R × Rn and consider the differential equation
(1). Let P be a Picard mapping defined by

(Px)(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ, t ∈ R. (3)

Note that (Px)(t0) = x0 for any x. The mapping x : I → Rn is a solution to x́ = f(t, x)
with the initial condition x(t0) = x0 if and only if x = Px.

Proof. Assuming x = Px,

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ.

meaning x́ = f(t, x(t)), x(t0) = x0. Conversely, assuming x is a solution to x́ = f(t, x)
with the initial condition x(t0) = x0,

x́ = f(t, x(t)), x(t0) = x0,

meaning

x(t) = x0 +

∫ t

t0

f(τ, x(τ))dτ,

and so x = Px. ■

3. Main Results

In this section, we state and prove our existence and uniqueness result. We begin with
the following definition.

Definition 3.1 A map d : X ×X → [0,∞] is called a generalized metric on the orthog-
onal set (X,⊥). If the following condition are satisfied:

1. d(x, y) = d(y, x) for any points x, y ∈ X such that x⊥y and y⊥x;
2. d(x, y) = 0 ⇐⇒ x = y for any points x, y ∈ X such that x⊥y and y⊥x;
3. d(x, z) ⩽ d(x, y) + d(y, z) for any points x, y, z ∈ X such that x⊥y, y⊥z and x⊥z

considering that if d(x, y) = ∞ or d(y, z) = ∞ then d(x, y) + d(y, z) = ∞.
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In this case the orthogonal set X is called generalized orthogonal metric space and
is denoted by (X, d,⊥). The concept of completeness of a generalized orthogonal metric
space is defined in the usual way. Let (X, d,⊥) be a generalized orthogonal complete
metric space. We have the following fixed point theorem.

Theorem 3.2 Let f : X → X be a ⊥-preserving and ⊥-continuous map such that
1) d(fx, fy) ⩽ λd(x, y) for any points x and y in X such that x⊥y and 0 ⩽ λ < 1;
2) For any point x ∈ X there exists n0 such that for (f,⊥)-orbit {fnx}∞n=0 we have

d(fn0x, fn0+1x) < ∞;
3) If x⊥y, fx = x and fy = y then d(x, y) < ∞;
Then there exists a unique fixed point x∗ of the map f and limn→∞ fnx = x∗ for any

point x ∈ X.

Proof. We consider the (f,⊥)-orbit {fnx}∞n=0 of an arbitrary point x ∈ X. Suppose
that

x⊥fx, fx⊥f2x, f2x⊥f3x, · · · , fnx⊥fn+1x, · · · .

By virtue of 2, one can find an n0 such that d(fn0x, fn0+1x) < ∞. Then for n ⩾ n0;

d(fnx, fn+1x) ⩽ λd(fn−1x, fnx)

⩽ λ2d(fn−2x, fn−1x)

⩽ λ3d(fn−3x, fn−2x)

⩽ ...

⩽ λn−n0d(fn0x, fn0+1x),

and

d(fnx, fn+mx) ⩽ d(fnx, fn+1x) + d(fn+1x, fn+2x) + · · ·+ d(fn+m−1x, fn+mx)

⩽ λn−n0d(fn0x, fn0+1x) + · · ·+ λn+m−1−n0d(fn0x, fn0+1x)

= [λn−n0 + λn+1−n0 + · · ·+ λn+m−1−n0 ]d(fn0x, fn0+1x)

⩽ λn−n0

1− λ
d(fn0x, fn0+1x).

So, the (f,⊥)-orbit {fnx}∞n=0 is Cauchy and by completeness of X, it converges in
(X, d,⊥) to some point x∗ ∈ X. By virtue of the ⊥-continuity of f , x∗ is a fixed point of
the map f . Suppose x⊥y, fx = x and fy = y then by 3 we have d(x, y) < ∞ and 1 says
that

d(x, y) = d(fx, fy) ⩽ λd(x, y).

It’s a contradiction. So the fixed point is unique and the theorem is proved. ■

Now we show how the fixed point theorem on generalized metric space [8] is a conse-
quence of previous theorem.

Theorem 3.3 Let (X, d) be a generalized complete metric space, f : X → X be a map
such that
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1) d(fx, fy) ⩽ λd(x, y) for any points x and y in X and 0 ⩽ λ < 1;
2) For any point x ∈ X there exists n0 such that d(fn0x, fn0+1x) < ∞;
3) If fx = x and fy = y then d(x, y) < ∞;
Then there exists a unique fixed point x∗ of the map f and limn→∞ fnx = x∗ for any

point x ∈ X.

Proof. For x, y ∈ X define x⊥y if d(fx, fy) ⩽ d(x, y). Fix x0 ∈ X. Since f satisfies the
condition 1 then for each y ∈ X, d(fx0, fy) ⩽ λd(x0, y) ⩽ d(x0, y). So x0⊥y. This means
that ⊥ is an orthogonal relation. Hence (X,⊥) is an O-set and (X, d,⊥) is a generalized
orthogonal complete metric space. Mapping f satisfies condition 1 so for x⊥y can be easily
seen that f(x)⊥f(y). Hence f is ⊥-preserving. Let {xn} be an arbitrary O-sequence in
X such that {xn} converges to x ∈ X. Since f satisfies 1, for each n ∈ N we have

d(fxn, fx) ⩽ λd(xn, x).

As n goes to infinity, f is ⊥-continuous. It is obvious that f satisfies all the hypotheses
of the previous theorem. Applying previous theorem, there exists a unique fixed point x∗

of the map f and limn→∞ fnx = x∗ for any point x ∈ X. ■

4. An application to differential equation

In this section, we apply results in the previous section to show the existence and unique-
ness of solution of Cauchy problem for the first order differential equation (1), where the
function f is defined in the domain D = {(t, x); |t − t0| ⩽ a, |x − x0| ⩽ b} and satisfied
the condition

|f(t, x1)− f(t, x2)| ⩽
K

|t− t0|
|x1 − x2|, 0 < K < 1. (4)

Let M = max(t,x)∈D |f(t, x)|. There exists c = min{a, b
M } such that

D0 = {(t, x); |t− t0| ⩽ c, |x− x0| ⩽ M |t− t0|},

lies in D. Since |x− x0| ⩽ M |t− t0| ⩽ Mc then c = min{a, b
M } exists.

We are trying to find a solution ϕx for the differential equation (1) with initial condition
ϕx(t0) = x0 expressed in the form ϕx(t) = x0 + h(t, x). Then the mapping ϕ defined by
ϕ(t, x) = ϕx(t) on the segment

{(t, x); |t− t0| ⩽ c, |x− x0| ⩽ b}, (5)

is the general solution of (1). One can easily verify the following lemma:

Lemma 4.1 For any solution ϕx, the point (t, ϕx(t)) lies in D0 for all t such that
|t− t0| ⩽ c .

We are interested to obtain a mapping that satisfies the properties of Theorem 3.2 and
fixed point of this mapping is the solution to differential equation (1). Let us consider
the orthogonal metric space. This space should include all the mappings which could
possibly be solutions. The space of all mappings h(t, x) which added to x0 could give us
a solution ϕx with initial condition ϕx(t0) = x0 will be considered. Denote this space by
X. Since ϕ is defined on the segment (5) so h is defined on the segment (5), too.
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Note that h(t0, x) = 0 for any h ∈ X and any solution ϕx where 0 is the zero vector in
Rn. In space X, we define a relation ⊥ by

h1⊥h2 ⇐⇒ ∥h1∥∥h2∥ ⩽ b(∥h1∥ ∨ ∥h2∥), (6)

where ∥h1∥ ∨ ∥h2∥ = ∥h1∥or∥h2∥ which is an orthogonality relation on X. It shows that
the space X is an orthogonal space.
Let d : X ×X → [0,∞] be given by

d(h1, h2) = ∥h1 − h2∥ = sup |h1(t, x)− h2(t, x)|, (7)

for all h1, h2 ∈ X. Then d is a generalized metric on X and the generalized orthogonal
metric space X will be denoted by (X, d,⊥). Since every h is a function over a closed
and bounded subset of Euclidean space, this supremum is actually attained in (X, d,⊥).
Hence the generalized orthogonal metric space (X, d,⊥) is complete.
In generalized orthogonal metric space (X, d,⊥), a mapping A : (X, d,⊥) → (X, d,⊥)
can be defined by

(Ah)(t, x) =

∫ t

t0

f(τ, x0 + h(τ, x))dτ, (8)

for |t − t0| ⩽ c and |x − x0| ⩽ b. Clearly (τ, x0 + h(τ, x)) is in the domain of f for
any (τ, x) in the appropriate region but we should be careful to check that Ah is in
fact an element of (X, d,⊥). To see this, take any h ∈ X. By construction of mapping
A, Ah is a mapping defined on the segment {(t, x); |t − t0| ⩽ c, |x − x0| ⩽ b} which
added to x0 could give a solution ϕx with initial condition ϕx(t0) = x0, meaning Ah ∈ X.

We now discuss some properties of mapping A.
i) A is ⊥-preserving mapping;
ii) d(Ah1, Ah2) ⩽ λd(h1, h2) for any h1 and h2 in X such that h1⊥h2 and 0 ⩽ λ < 1;
iii) A is ⊥-continuous mapping;
iv) For any point h ∈ X there exists n0 such that for (A,⊥)-orbit {Anh}∞n=0 we have

d(An0h,An0+1h) < ∞;
v) If h1⊥h2, Ah1 = h1 and Ah2 = h2 then d(h1, h2) < ∞.

Proof. i) We recall that A is ⊥-preserving if for h1, h2 ∈ X, h1⊥h2, we have Ah1⊥Ah2.

|(Ah1)(t, x)| =
∣∣ ∫ t

t0

f(τ, x0 + h1(τ, x))dτ
∣∣

⩽
∫ t

t0

|f(τ, x0 + h1(τ, x))|dτ

⩽
∫ t

t0

Mdτ

= M |t− t0|

⩽ M
b

M
= b.
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So,

∥Ah1∥∥Ah2∥ ⩽ b∥Ah2∥

Meaning that Ah1⊥Ah2.
ii) Let h1, h2 ∈ X and h1⊥h2 we have

|Ah1(t, x)−Ah2(t, x)| =
∣∣ ∫ t

t0

f(τ, x0 + h1(τ, x))dτ −
∫ t

t0

f(τ, x0 + h2(τ, x))dτ
∣∣

⩽
∫ t

t0

|f(τ, x0 + h1(τ, x))− f(τ, x0 + h2(τ, x))|dτ

⩽
∫ t

t0

K

|t− t0|
|x0 + h1(τ, x)− x0 − h2(τ, x)|dτ

= ∥h1 − h2∥
K

|t− t0|
|t− t0|.

Therefore

∥Ah1 −Ah2∥ ⩽ K∥h1 − h2∥.

Hence for all h1, h2 ∈ X, h1⊥h2 and λ = K we have

d(Ah1, Ah2) ⩽ λd(h1, h2).

iii) Suppose {hn} is an O-sequence in X such that {hn} converging to h ∈ X. Because
A is ⊥-preserving, {Ahn} is an O-sequence. For each n ∈ N, by ii, we have

∥Ahn(t, x)−Ah(t, x)∥ ⩽ K∥hn − h∥.

As n goes to infinity, it follows that A is ⊥-continuous.
iv) Let h ∈ X and {Anh}∞n=0 be a (A,⊥)-orbit such that h⊥Ah and ∥h∥∥Ah∥ ⩽ b∥Ah∥.

we have

|h(t, x)−Ah(t, x)| =
∣∣h(t, x)− ∫ t

t0

f(τ, x0 + h(τ, x))dτ
∣∣

⩽ |h(t, x)|+
∣∣ ∫ t

t0

f(τ, x0 + h(τ, x))dτ
∣∣

⩽ ∥h∥+
∫ t

t0

|f(τ, x0 + h(τ, x))|dτ

⩽ b+

∫ t

t0

Mdτ

⩽ b+M |t− t0|

⩽ b+M
b

M

= 2b < ∞.
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Thus ∥h−Ah∥ < ∞. Therefore there exists n0 = 0 such that d(An0h,An0+1h) < ∞.
v) Suppose h1⊥h2, Ah1 = h1 and Ah2 = h2. By part ii we have d(h1, h2) =

d(Ah1, Ah2) ⩽ λd(h1, h2). So d(h1, h2) < ∞. ■

The mapping A defined above is ⊥-preserving and ⊥-continuous on the generalized
orthogonal metric space (X, d,⊥). Mapping A satisfies the hypotheses of Theorem 3.2.
Thus, existence and uniqueness of its fixed point h0 ∈ X has been guaranteed by Theorem
3.2. The purpose is to incorporate this in a Picard mapping of potential solutions to
differential equation (1). Existence and uniqueness of h0 confirm existence and uniqueness
of fixed point of the Picard mapping, which will in turn prove existence and uniqueness
of solution of Cauchy problem for the differential equation (1).

We are looking for solutions expressed in the form ϕx(t) = x0 + h(t, x). If h is a fixed
point of A then ϕx(t) = x0 + Ah(t, x) and when the solution ϕx is a fixed point of our
Picard mapping, ϕx(t) will equal (Pϕx)(t). Hence,

(Pϕx)(t) = x0 + (Ah)(t, x)

= x0 +

∫ t

t0

f(τ, x0 + h(τ, x))dτ

= x0 +

∫ t

t0

f(τ, ϕx(τ))dτ.

By Theorem 2.9, ϕx is a solution of the differential equation x́ = f(t, x) with ϕx(t0) = x0
if and only if ϕx = Pϕx. Now, let us define the function g given by

g(t, x) = x0 + h0(t, x).

Therefore, g is always well-defined in a neighborhood of (t0, x0). Applying the Picard
mapping P, we have

(Pg)(t, x) = x0 + (Ah0)(t, x) = x0 + h0(t, x) = g(t, x),

which proves that, by Theorem 2.9, g is a solution of the differential equation (1) which
satisfies the initial condition g(t0, x) = x0. Set b = 0, which restricts the initial x under
our consideration to the specific point x0. Find the solution g(t, x0) = x0+h0(t, x0). The
uniqueness of the fixed point h0 guarantees that this is the only solution with the initial
condition x0 that can be expressed in the form x0+h0(t, x0). Now, consider any solution
ϕx0

with ϕx0
(t0) = x0. By Lemma 4.1 we have ϕx0

(t) ∈ D0 for all t such that |t− t0| ⩽ c.
Lable ϕx0

(t) − x0 by hϕ(t, x0). So hϕ ∈ X and ϕx0
(t) = x0 + hϕ(t, x0). Uniqueness of

h0 shows that all possible solutions to the differential equation with the given initial
condition are expressed in the form ϕx0

= x0+h0(t, x0) for h ∈ X. Thus, as there is only
one such function possible, the solution g is unique.
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