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Abstract. In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and
Rassias-type stability of the conditional of orthogonally ring ∗-n-derivation and orthogonally
ring ∗-n-homomorphism on C∗-algebras. As a consequence of this, we prove the hyperstability
of orthogonally ring ∗-n-derivation and orthogonally ring ∗-n-homomorphism on C∗-algebras.
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1. Introduction

The stability problem of functional equations had been first raised by Ulam [27]. In
1941, Hyers [12] gave a first affirmative answer to the question of Ulam for Banach
spaces. Hyers Theorem was generalized by Rassias [23] for linear mapping by considering
an unbounded Cauchy difference. For more details about the result concerning such
problems, the reader to ([8–10, 13–16, 19–22, 25]). We assume X and Y are two algebras
over the real or complex filed F . An additive mapping d : X → X is said to be a ring
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n-derivation if the functional equation

d(x1x2...xn) = d(x1)x2...xn + x1d(x2)x3...xn + ...+ x1...xn−1d(xn) (1)

for all x1, x2, ..., xn ∈ X. An additive mapping h : X → Y is said to be a ring homomor-
phism if the functional equation h(xy) = h(x)h(y) for all x, y ∈ X. In addition, h is called
a ring n-homomorphism if the functional equation h(x1x2...xn) = h(x1)h(x2)...h(xn) is
valid for all x1, x2, ...xn ∈ X.

Suppose that X is a real vector space (or an algebra) with dimX ⩾ 2 and ⊥ is a
binary relation on X with the following properties:

(O1) totality of ⊥ for zero: x ⊥ 0, 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0}, x ⊥ y, then x, y are linearly independent;
(O3) homogeneity: if x, y ∈ X, x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2−dimensional subspace (subalgebra) of X,

x ∈ P and λ ∈ R+, then there exists ux ∈ P such that x ⊥ ux and x+ ux ⊥ λx− ux.
The pair (X,⊥) is called an orthogonality space (algebra). By an orthogonality normed

space (normed algebra) we mean an orthogonality space (algebra) having a normed
structure. The orthogonal Cauchy functional equation

f(x+ y) = f(x) + f(y), x ⊥ y, (2)

in which ⊥ is an abstract orthogonality relation, was first investigated by Gudder and
Strawther [11]. Let (A,⊥) be an orthogonality normed algebra and B be an A-module.
A mapping d : A −→ B is an orthogonally ring derivation if d is an orthogonally additive
mapping satisfying

d(xy) = xd(y) + d(x)y (3)

for all x, y ∈ A with x ⊥ y.
Let f : R → R and U ∈ R2. Then we call f an orthogonally U -additive function

provided that f satisfies equation (2) for all (x, y) ∈ U . In this paper, we are interested
in a set U such that every orthogonally U -additive function f is an orthogonally additive
function. Recently, Skof [26] consider the Hyers-Ulam stability problem [27] of a condi-
tional Cauchy functional inequality. In particular, the result can be stated as follows: If
f : R → R satisfies the conditional Cauchy functional inequality

∥f(x+ y)− f(x)− f(y)∥ ⩽ ϵ (4)

for all x, y ∈ R with |x|+ |y| ⩽ d, then f satisfies inequality (4) for all x, y ∈ R. In this
paper, for a given δ we fined a set Uδ ∈ X2 satisfying m(Uδ) ⩽ δ such that if f satisfies
(4) for all (x, y) ∈ Uδ, then f satisfies (4) for all (x, y) ∈ X with φ(x, y), replaced by
3φ(x, y) and that there exists a unique additive function A : X → X satisfying

∥f(x)−A(x)∥ ⩽ 3φ(x, y) (5)

for all x ∈ X.
Let X be a normed orthogonal algebra space with countable dense subset E and Y

Banach X-module space. For j = 1, 2, 3, ..., we denote by Bj = {(x, y) ∈ X2 : ∥x− xj∥ <
1, ∥y − yj∥ < 2−j} the rectangle with center (xj , yj). let U =

∪∞
j=0Bj and E × E :=
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{(x1, y1), (x2, y2), (x3, y3), ...}. It is easy to see that the Lebegues measure m(U) of U
satisfies m(U) ⩽ 1. Now for d > 0. Let

Ud := U
∩

{(x, y) ∈ X2 : ∥x∥+ ∥y∥ > d, x ⊥ y}.

Then for a given δ > 0, we can choose d > 0 such that m(U) ⩽ δ. We first consider that
stability of functional inequality (4) in the restricted domain Ud (see [1]-[7],[17]-[18],[24]).

The outline of the paper is as follows: In Sec. 2 we prove stability of orthogonally ring
∗-n-derivation and orthogonally ring ∗-n-homomorphism in C∗-algebra for the functional
equation additive. In Sec. 3 we establish the hyperstability of these functional equation
additive by suitable control functions.

2. Stability

Throughout this section, assume that A is a C∗-algebra with norm ∥.∥A and that B is
a C∗-algebra with norm ∥.∥B. For a given mapping f : A→ A, we define

∆f(z1, z2, ..., zn) := f(z1z2...zn)−f(z1)z2z3...zn−z1f(z2)z3...zn−...z1z2...zn−1f(zn) (6)

for all zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal.
We prove the generalized Hyers-Ulam stability of orthogonally ring ∗-n-derivation in
C∗-algebra for the functional equation additive.

Theorem 2.1 Suppose that f : A → A be a mapping with f(0) = 0 for which there
exists a function φ : An+2 → [0,∞) such that

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥A ⩽ φ(x, y, z1, z2, ..., zn) (7)

and

∥f(x∗)− f(x)∗∥A ⩽ φ(x, x, 0, ..., 0) (8)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Suppose the
function φ satisfying

φ(x− p− t, p+ t) + φ(x− p− t, y + p+ t) + φ(−p− t, y + p+ t) ⩽ 3φ(x, y, 0, ..., 0) (9)

for all (x− p− t, p+ t), (x− p− t, y + p+ t), (−p− t, y + p+ t) ∈ Ud and

ψ(x) = 3

∞∑
k=0

2−k−1φ(2nx, 2nx, 0, ..., 0) <∞ (10)

and

lim
n→∞

2−nφ(2nx, 2ny, 2nz1, 2
nz2, ..., 2

nzn) = 0 (11)
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for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal, then there exists
a unique orthogonally ring ∗-n-derivation D : A→ A such that

∥f(x)−D(x)∥A ⩽ ψ(x). (12)

for all x ∈ A.

Proof. For given x, y ∈ A we choose p ∈ A such that

∥p∥A ⩽ d+ ∥x∥A + ∥y∥A + 1. (13)

We first choose (xi1 , yi1) ∈ E2 such that

∥ − p− xi1∥A + ∥p− yi1∥A ⩽ 1

4
, (14)

and then we choose (xi2 , yi2) ∈ E2, (xi3 , yi3) ∈ E2 and (xi4 , yi4) ∈ E2 with 1 < i1 < i2 <
i3 < i4, step by step, satisfying

∥x− yi1 − xi2∥A + ∥yi1 − yi2∥A < 2−i1−1, (15)

∥x− yi2 − xi3∥A + ∥y + yi2 − yi3∥A < 2−i2−1, (16)

∥y − yi3 − xi4∥A + ∥yi3 − yi4∥A < 2−i3−1, (17)

Let

t1 = yi1 − p, t2 = yi2 − yi1 ,

t3 = yi3 − yi2 − y, t4 = yi4 − yi3

and t = t1 + t2 + t3 + t4. Then from (14)-(17) we have

∥t1∥A <
1

4
, ∥t2∥A < 2−i1−1, ∥t3∥A < 2−i2−1, ∥t4∥A < 2−i3−1, ∥t∥A <

1

2
. (18)

Thus, from (13), (14) and (18) we get

∥ − p− t∥A + ∥p+ t∥A ⩾ 2(∥p∥A − ∥t∥A) ⩾ 2(∥p∥A − 1

2
) > 2d ⩾ d (19)

and

∥ − p− t− xi1∥A ⩽ ∥p− xi1∥A + ∥t∥A <
1

4
+

1

2
< 1 (20)

and

∥p+ t− yi1∥A = ∥t2 + t3 + t4∥A < 2−i1−1 + 2−i2−1 + 2−i3−1 < 2−i1 . (21)

Inequalities (19)-(21) imply that

(−p− t, p+ t) ∈ Ud. (22)
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Also from the inequalities

∥x− p− t∥A + ∥p+ t∥A ⩾ 2(∥p∥A − ∥x∥A − ∥t∥A)

> 2(∥p∥ − ∥x∥ − 1

2
) > d,

and

∥x− p− t− xi2∥A ⩽ ∥x− yi1 − xi2∥A + ∥t2∥A + ∥t3∥A + |t4∥A

<
1

8
+

1

8
+

1

16
+

1

32
<

1

2

and

∥p+ t− yi2∥A = ∥t3 + t4∥A < 2−i2−1 + 2−i3−1 < 2−i2 ,

we have

(x− p− t, p+ t) ∈ Ud. (23)

Similarly, using the followings

∥x− p− t− xi3∥A ⩽ ∥x− yi2 − xi3∥A + ∥t3∥A + ∥t4∥A < 1,

∥y + p+ t− yi3∥A = ∥t4∥A < 2−i3 ,

∥ − p− t− xi4∥A ⩽ ∥y − yi3 − xi4∥A + ∥t4∥A < 1,

∥y + p+ t− yi4∥A = 0,

we have

(x− p− t, y + p+ t), (−p− t, y + p+ t) ∈ Ud. (24)

Now, form (23), (24), (9) and putting zi = 0 for all 1 ⩽ i ⩽ n in (7) we have

∥f(x+ y)− f(x)− f(y)∥ ⩽∥ − f(x) + f(x− p− t) + f(p+ t)∥A
+ ∥f(x+ y)− f(x− p− t)− f(y + p+ t)∥A
+ ∥ − f(y) + f(−p− t) + f(y + p+ t)∥A

⩽3φ(x, y, 0, ..., 0)

(25)

for all x, y ∈ A. Setting x = y in (25) we get

∥1
2
f(2x)− f(x)∥A ⩽ 3

2
φ(x, x, ..., 0) (26)

for all x ∈ A. By induction, we can show that

∥2−nf(2nx)− f(x)∥A ⩽ 3

n−1∑
k=0

2−k−1(2kx, 2kx, 0, ..., 0) (27)
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for all x in A. Replacing x by 2mx in (27), we get

∥f (2
n+mx)

2m+n
− f(2mx)

2m
∥A ⩽ 3

n+m−1∑
k=0

2−k−1φ(2kx, 2kx, 0, ..., 0) (28)

for all n,m ∈ N and x ∈ A. Hence, {2−nf(2nx)} is a cauchy sequence in complete space
A. Now, let D defined by

D(x) := lim
n→∞

2−nf(2nx). (29)

Taking the limit in (27) as n→ ∞, we obtain the inequality

∥D(x)− f(x)∥A ⩽ ψ(x)

for all x ∈ A. It follow from (7), (11) and (29) that

∥D(x+ y)−D(x)−D(y)∥A = lim
n→∞

2−n∥f(2n(x+ y))− f(2nx)− f(2ny)∥A

⩽ lim
n→∞

2−nφ(2nx, 2ny, 0, ..., 0) = 0.

Also,

∥∆D(z1, z2, ..., zn)∥A = lim
n→∞

2−n
2∥∆f(z1, z2, ..., zn)∥A

⩽ lim
n→∞

2−n
2

φ(0, 0, 2nz1, ..., 2
nzn)

⩽ lim
n→∞

2−nφ(0, 0, 2nz1, ..., 2
nzn) = 0.

It follows from (8), (11) and (29) that

∥D(x∗)−D(x)∗∥A = lim
n→∞

2−n∥f(2nx∗)− f(2nx)∗∥A

⩽ lim
n→∞

2−nφ(2nx, 2nx, 0, ..., 0) = 0.

Now, let D́ : A → A by another orthogonally ring ∗-n-derivation satisfying ∥D́(x) −
f(x)∥ ⩽ ψ(x) for all x in A. Then, we get

∥D(x)− D́(x)∥A = lim
n→∞

2−n∥D(2nx)− D́(2nx)∥A

⩽ lim
n→∞

2−n(3

∞∑
k=0

2−kφ(2k+mx, 2k+mx, 0, ..., 0))

⩽ lim
n→∞

2−kφ(2kx, 2kx, 0, ..., 0) = 0.

Therefor D́(x) = D(x) for all x ∈ A. ■

Corollary 2.2 Let ϕ : [0,∞) → [0,∞) be a function satisfying the following condition:

i) limr→∞
ϕ(r)
r = 0,
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ii) ϕ(rs) < ϕ(r)ϕ(s) for all r, s ∈ [0,∞),
iii) ϕ(r) < r for all r > 1.

If function f : A→ A with f(0) = 0 and satisfying the inequalities

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥A ⩽ θ(ϕ(∥x∥A) + ϕ(∥y∥A)

+ ϕ(∥z1∥A) + ...+ ϕ(∥zn∥A)),
(30)

and

∥f(x∗)− f(x)∗∥A ⩽ 2θ(ϕ(∥x∥A) (31)

for all θ ⩾ 0, for all (x, y) ∈ Ud and zi ∈ A for 1 ⩽ i ⩽ n that are mutually orthogonal.
Then there exists a unique orthogonally ring ∗-n-derivation function D : A → A such
that

∥f(x)−D(x)∥A ⩽ 3
2θ

2− ϕ(2)
ψ(∥x∥A) (32)

for all x in A.

Proof. It follows (7) by setting

φ(x, y, z1, z2, ..., zn) = θ(ϕ(∥x∥A) + ϕ(∥y∥A) + ϕ(∥z1∥A)...+ ϕ(∥zn)∥A))

for all (x, y) ∈ Ud, and zi ∈ A, that are mutually orthogonal. ■

For a given mapping f : A→ B, we define

∆f(z1, z2, ..., zn) := f(z1z2...zn)− f(z1)f(z2)...f(zn)

for all zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. We prove the generalized Hyers-
Ulam stability of orthogonally ring ∗-n-homomorphism in C∗-algebra for the functional
equations additive.

Theorem 2.3 Suppose that f : A → B be a mapping with f(0) = 0 for which there
exists a function φ : An+2 → [0,∞) such that

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥B ⩽ φ(x, y, z1, z2, ..., zn) (33)

and

∥f(x∗)− f(x)∗∥B ⩽ φ(x, x, 0, ..., 0) (34)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Suppose a
function φ satisfying

φ(x− p− t, p+ t) +φ(x− p− t, y+ p+ t) +φ(−p− t, y+ p+ t) ⩽ 3φ(x, y, 0, ..., 0) (35)

for all (x − p − t, p + t), (x − p − t, y + p + t), (−p − t, y + p + t) ∈ Ud. If a function φ
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satisfying

ψ(x) = 3

∞∑
k=0

2−k−1φ(2nx, 2nx, 0, ..., 0) <∞, (36)

and

lim
n→∞

2−nφ(2nx, 2ny, 2nz1, 2
nz2, ..., 2

nzn) = 0 (37)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal, then there exists
a unique orthogonally ring ∗-n-homomorphism H : A→ B such that

∥f(x)−H(x)∥B ⩽ ψ(x). (38)

for all x ∈ A.

Proof. By the reasoning as that in the proof Theorem 2.1 there exists a unique or-
thogonally ring ∗-n-homomorphism mapping H : A → B satisfying (38). The mapping
H : A→ B is given by H(x) := limn→∞ 2−nf(2nx) for all x ∈ A. It follows from (33),

∥∆H(z1, z2, ..., zn)∥B = lim
n→∞

2−n
2∥∆f(z1, z2, ..., zn)∥B

⩽ lim
n→∞

2−n
2

φ(0, 0, 2nz1, ..., 2
nzn)

⩽ lim
n→∞

2−nφ(0, 0, 2nz1, ..., 2
nzn) = 0

for all zi ∈ A, 1 ⩽ i ⩽ n. ■

Corollary 2.4 Let A and B be two C∗-algebras with norm and let ϕ : [0,∞) → [0,∞)
be a function satisfying the following condition:

i) limr→∞
ϕ(r)
r = 0,

ii) ϕ(rs) < ϕ(r)ϕ(s) for all r, s ∈ [0,∞),
iii) ϕ(r) < r for all r > 1.

If function f : A→ B with f(0) = 0 and satisfying the inequalities

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥B ⩽ θ(ϕ(∥x∥A) + ϕ(∥y∥A)

+ ϕ(∥z1∥A) + ...+ ϕ(∥zn∥A),
(39)

and

∥f(x∗)− f(x)∗∥B ⩽ 2θ(ψ(∥x∥A)) (40)

for all θ ⩾ 0 and for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal,
then there exists a unique orthogonally ring ∗-n-homomorphism function H : A → B
such that

∥f(x)−H(x)∥B ⩽ 3
2θ

2− ϕ(2)
ψ(∥x∥A) (41)

for all x in A.
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Proof. It follows (33) by putting

φ(x, y, z1, z2, ..., zn) = θ(ϕ(∥x∥A) + ϕ(∥y∥A) + ϕ(∥z1∥A) + ...+ ϕ(∥zn)∥A)

for all (x, y) ∈ Ud and zi ∈ A, that are mutually orthogonal. ■

3. Hyperstability

In this section, assume that A is a C∗-algebra with norm ∥.∥A and that B is a C∗-algebra
with norm ∥.∥B. Now we are going to establish the hyperstability of the orthogonally
ring ∗-n-derivation and orthogonally ring ∗-n-homomorphism in normed C∗-algebras for
the functional equation additive.

Theorem 3.1 Let A and B be two normed C∗-algebras and φ : An+2 → [0,∞) be a
function such that

φ(x, y, 0, ..., 0) = 0 (42)

lim
n→∞

2−nφ(2nx, 2ny, 2nz1, 2
nz2, ..., 2

nzn) = 0 (43)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Suppose f : A→ A
is a mapping that

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥B ⩽ φ(x, y, z1, z2, ..., zn) (44)

for all(x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Then f is a
orthogonally ring ∗-n-derivation or orthogonally ring ∗-n-homomorphism.

Proof. Because φ(x, y, 0, ..., 0) = 0 for all (x, y) ∈ Ud. Like the proof Theorem 2.3, we
have f(2x) = 2f(x) and induction we infer that f(2n) = 2nf(x). There for D(x) = f(x)
for all x ∈ A. Thus f is a orthogonally ring ∗-n-derivation or orthogonally ring ∗-n-
homomorphism between C∗-algebra with norm. The other case is similar. ■

Corollary 3.2 Let θ, p by real number such that θ > 0, P < 1
3 and X and Y be two

normed C∗-algebra. Let f : A→ A be a mapping with f(0) = 0 such that

∥f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥B ⩽ θ(∥zi∥pA + ∥x∥pA∥y∥
p
A∥zi∥

p
A

+ ∥x∥pA∥zi∥
p
A + ∥y∥pA∥zi∥

p
A)

(45)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Then f is an
orthogonally ring ∗-n-derivation.

Proof. It follows by Theorem 3.1 by putting

φ(x, y, z1, z2, ..., zn) = θ(∥zi∥pA + ∥x∥pA∥y∥
p
A∥zi∥

p
A + ∥x∥pA∥zi∥

p
A + ∥y∥pA∥zi∥

p
A).

■
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Corollary 3.3 Let θ, p by real number such that θ > 0, P < 1
3 and X and Y be two

normed C∗-algebra. Let f : A→ B be a mapping with f(0) = 0 such that

∥∆f(x+ y)− f(x)− f(y) + ∆f(z1, z2, ..., zn)∥B ⩽ θ(∥zi∥pA + ∥x∥pA∥y∥
p
A∥zi∥

p
A

+ ∥x∥pA∥zi∥
p
A + ∥y∥pA∥zi∥

p
A

(46)

for all (x, y) ∈ Ud and zi ∈ A, 1 ⩽ i ⩽ n that are mutually orthogonal. Then f is an
orthogonally ring ∗-n-homomorphism.

Proof. It follows by Theorem 3.1 by putting

φ(x, y, z1, z2, ..., zn) = θ(∥zi∥pA + ∥x∥pA∥y∥
p
A∥zi∥

p
A + ∥x∥pA∥zi∥

p
A + ∥y∥pA∥zi∥

p
A).

■
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