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Probability of having n'’-roots and n-centrality
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Abstract. In this paper, we consider the finitely 2-generated groups K(s,l) and G, as
follows;

K(s,1) = (a,blab® = b'a, ba® = a'b),

Gm = (a,bla™ =b™ =1, [a,b]* = [a,b], [a, b]b = [a, b])

and find the explicit formulas for the probability of having n‘"-roots for them. Also we
investigate integers n for which, these groups are n-central.
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1. Introduction

Let n > 1 be an integer. An element a of group G is said to have an n*’-root b in G, if
a = b". The probability that a randomly chosen element in G has an n**-root, is given
by

G"|
P, n(G> =
G|
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where G" = {a € Gla = b", for some b e G} = {2"|z € G}. In [5], the probability
P, (G) for Dihedral groups Da,, and Quaternion groups Qo= for every integer m > 3 have
been computed. Also, in [4] the probability that Hamiltonian groups may have nt"-roots
have been calculated. For n > 1, a group G is said to be n-central if [z",y] = 1 for all
x,y € G. In [6], some aspects of n-central groups have been investigated.

First, we state the following Lemma without proof.

Lemma 1.1 If G is a group and G’ C Z(G), then the following hold for every integer k
and u,v,w € G :

(ii) [u®,v] = [u,v ;
(i) (uv)¥ = uboklv, u]sE-1/2,

Now, we state some lemmas which can be found in [1, 2].

Lemma 1.2 The groups K(s,) = (a,blab® = b'a, ba® = a'b) where (s,1) = 1, have the
following properties:

(i) |K(s,1)| = |l — s, if (s,1) = 1 and is infinite otherwise;

(ii) if (s,1) = 1 then |a| = |b] = (I — 5)%;

(iii) if (s,1) = 1, then o'~ = b*~.

Lemma 1.3 (i) For every | > 3, K(s,]) = K(1,2 —1).
(ii) For every i > 2 and (s,7) =1, K(s,s+1) = K(1,i + 1).

Note that if (s,1) = 1, then K(s,l) =2 K(1,l — s+ 1) which we can write as K, where
m=1—s+1.
Lemma 1.4 Every element of K, can be uniquely presented by = = a®?b7a(m—1)9
1<8,v,6d<m—1.

Lemma 1.5 In K, [a,b] = 0" € Z(K,,).

, where

The following lemma can be seen in [3].

Lemma 1.6 Let G,, = {(a,bla™ = b™ =1, [a,b]* = [a,b], [a,b]® = [a,b]) where m > 2,
then we have

(i) every element of G, can be uniquely presented by a'b’[a, b]!, where

1<i,j.t <m.

(ii) |G| = m3.

In this paper, we consider the groups K,, and G,, which are nilpotent groups of
nilpotency class two. In section 2, we compute the probability of having n**-root of K,
and G,,. Section 3 is devoted to finding integers n for which, K, and G, are n-central.

2. The probability of having nt*-roots

In this section we consider groups K,, and G,, and find the probability of having n'"-
roots. Here for m € Z, by m* we mean the arithmetic inverse of m.

Proposition 2.1 For integers m,n > 2;

(1) If G = K, and = € G, then we have

2" — anﬂbma(m—l)(nH%ﬁv);
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(2) If G = Gy, and x € G, then we have
. . n(n—1) . -
= gVipv [a7 b]nth’L].

Proof. We use an induction method on n. By Lemma 1.4, the assertion holds for n = 1.
Now, let

2" = By g (m—D)(nd+ 25 8y)

Then

2L — By o (m=1)8 By o (m=1)(né+ 1 By)

By Lemma 1.2, a(m~1% = p(1=m)é gq
ﬂjn+1 — aﬁb'yanﬂbnya(mfl)((n+1)5+w57)

= (MFDB[p, BT (m=1)((nF1)5+ 25 67),

Since K,, is a group of nilpotency class two, G’ C Z(G). Hence by Lemma 1.1 we have

L (DB (1) o (m—1) (net )5+ 20D )

The second part can be proved similarly. [ ]

Theorem 2.2 Let G = K,;,, where m > 2. Then

P.(G) = % if n be even, (§,m—1) = g and mTfl be odd;
" n % otherwise,

where (n,m — 1) =d.

Proof. Let a?b7a(™~1% be an element of G™ where 1 < 8,7,6 < m — 1. If z = (21)"
when a®1b7a(m=D% ¢ G 1< B1,v1,6 < m— 1, then by Proposition 2.1 we have

aBpram—196 — (aﬁl b’yla(m—l)él)n

— g™ b”%a(mfl)("‘sﬁrwﬁﬂl) )

By uniqueness of presentation of G, we obtain

nfr =0 (modm—1)
ny =7 (modm—1) (1)
noi + @Bwl =J (modm—1).

Now let (n,m — 1) = d. The first congruence of the system (1) has the solution

fr= (G (moa ™)
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if and only if d | 5. Then

m—1
d

gedd2d, ..., X d}.

This means that § has mT_l choices. Similarly, by second equation of System (1) we get

m—1

d,2d, . ..
’Ye{? Y ’ d

X d}.

So v admits mTfl values.
Now for finding the number of values of &, we consider two cases, where n is odd or even.

First let n be an odd integers. Then

n(d1 + n(n;l)ﬂrﬂ) =0 (modm—1).
Since (n,m — 1) = d, we get
_on,0 mnnh-1 —1
5=y Mg (moa ™)
provided that d | 0. So
m—1
be{d2d, ... o= xd}.
m—1

Therefore in this case we have ™= choices for . By the above facts, we have

6" = a0 | e fd,. . ")y € {d ) e d ]

m—1

= [{(B70) [{Beld. ., "dhry e {d,.. .,mT_ld},ée (.. .,mT_ld}}\

m—1 m-—1 m—l_ m—1

3
i Ta X =g

So

16 -y 1
PO=Te1 = oy @

[\]IsH

Now suppose n be an even integer. Then (5, m —1) =d or (§,m —1) =
Case 1. Let (5, m — 1) = d. Then

2(251 +(n—1)B1m)=0 (modm—1).

So

2612 (3) 5 — (i =1 (mod "),
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Since (%,m — 1) = d, ("51,2) = 1. Hence, the above congruence holds if and only if

d | 4. Therefore

m—1

d

oed{d2d, ..., X d}.

So

m—1
d

m

(G | = {(Br0) [ {Befd. . " ayyefd. ..

m—1
p d},0 €{d,.. .,Td}}\

_ (m; 1)3

and consequently

Case 2. Let (2,m — 1) = . Then

n

d(25l +(n—1)Bim) =

Hence

26, = (%)*%5 —(n—=1p1m (mod 2(772_1)) (2)

So, we must have 2 | 817y1. Suppose 2 | 1. Now by congruence

we consider two subcases:

Subcase 2.a. Let (mgl) be an even integer. Now since
=1 (mod L_l)
d d” d 7’

both % and (%4)* are odd. Since 2 | 1, By congruence (3) we get 2 | 7. It means that

vef{2ddd,. . ., x 2d).

Hence the number of values of 7 is mQ—;l. On the other hand according to congruence (2),
41 5. Therefore

6€{g,d,...,2(m_1)x

d b

|
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So § admits 2("1,_1) values. Consequently

n.m—=1_m-1_2m-1) m—1g4
e A S E e Rl S
and
1

Case 2.b. Let % be an odd integer and v € {d,2d, . . ., " 1d}. If

=) mod "2

a3

and y; be an even integer, then we get the desired result. Otherwise, instead of vy, we
put v + mT_l. So for each

m—1

d,2d,. . .
’76{) Y ) d

x d},

the congruence holds. It means that the number of choices for « is equal to mT_l. Finally,
we get

n.m—=1_m-1_2m-1) _ m—1g4
|G == e e =2 )
and
2

Theorem 2.3 Let G = G,,,, where m > 2. Then

24 n —d m .
Pn(G)—{df’ zfnbe.even, (5,m) =5 and 7 be odd;
-5 otherwise,
where (n,m) = d.
Proof. Let a't/[a,b]’ be an element of G™ where 1 < 4,7, < m. If = (21)" when
a'¥la, b € G, 1 < i1,71,t1 < m, then by Proposition 2.1 we have
a't’[a,b)' = (a" b [a, b]"*)"

= anil bn‘h [a/, b]ntl_

n(n—=1) . -
(2 )Z1J1

By uniqueness of presentation of G, we obtain

niy =i (mod m)
nj1 =j (mod m)

nt] — @iljl =t (mod m).
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The obtained congruence system is exactly similar to System (1). So it can be solve,
similarly. [ |

3. mn-centrality

In this section, we again consider groups K,,, G, and investigate n-centrality for them.

Theorem 3.1 Let G = K,,, where m > 2. Then for n > 1, the group G is n-central if
and only if m — 1 | n.

Proof. By Proposition 2.1 and Lemma 1.1, we get

ﬂl‘ny — an,31+52 bn’)/1+’72 a(mfl)(n51+52+%51“ﬂ+n5271).

Also we obtain

yl’n — anﬁl"rﬁz bn’Yl'f"Yz a(m—1)(7151"!‘524-%,31%*‘”5172).

We know that G is n-central if and only if 2"y = yx™, for all z,y € G. Furthermore by
uniqueness of presentation of ™y and yz”, we see that "y = yz” if and only if

n(n —1 n(n —1
noy + 02 + (2)5171 + nfay1 = ndy + 62 + (2)/81’71 +nB1y2  (mod m —1).

This is equivalent to
n(f1y2 — B2v1) =0 (mod m —1).

Now since this holds for all z,y € G, m — 1 | n. [ |

Theorem 3.2 Let G = G,,,, where m > 2. Then for n > 1, the group G is n-central if
and only if m | n.

Proof. By Proposition 2.1 and Lemma 1.1, we get

gy = qniitizpriitia [a, b]ntﬁtr%iljlfm?jl'
Also we obtain

ya™ = gMiitizpniitie [a, Hntﬁ%—@iljl—nhh'

We know that G is n-central if and only if 2"y = yx™, for all z,y € G. Furthermore by
uniqueness of presentation of ™y and yz”, we see that "y = yz” if and only if

nty +to — ———=11j1 — nigjy = ntp +to —

5 i171 — ni1je  (mod m).

This is equivalent to
n(irje —i2j1) =0 (mod m).

Now since this holds for all z,y € G, m | n. [ |
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