
Journal of
Linear and Topological Algebra
Vol. 04, No. 04, 2015, 283- 288

Some results on higher numerical ranges and radii of
quaternion matrices

Gh. Aghamollaeia∗, N. Haj Aboutalebib

aDepartment of Pure Mathematics, Faculty of Mathematics and Computer,
Shahid Bahonar University of Kerman, Kerman, Iran.

bDepartment of Mathematics, Shahrood Branch, Islamic Azad University, Shahrood, Iran.

Received 20 December 2015; Revised 5 February 2016; Accepted 11 March 2016.

Abstract. Let n and k be two positive integers, k ⩽ n and A be an n−square quaternion
matrix. In this paper, some results on the k−numerical range of A are investigated. Moreover,
the notions of k-numerical radius, right k-spectral radius and k-norm of A are introduced,
and some of their algebraic properties are studied.

c⃝ 2015 IAUCTB. All rights reserved.

Keywords: k-Numerical radius; right k-spectral radius; k-norm, quaternion matrices.

2010 AMS Subject Classification: 15A60; 15B33; 15A18.

1. Introduction and preliminaries

As usual, let R and C denote the field of the real and complex numbers, respectively.
Moreover, let H be the four-dimensional algebra of quaternions over R with the standard
basis {1, i, j, k} and multiplication rules:

i2 = j2 = k2 = −1,

ij = k = −ji, jk = i = −kj, ki = j = −ik, and

1q = q1 = q for all q ∈ {1, i, j, k}.
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If q ∈ H, then there are α0, α1, α2, α3 ∈ R such that

q = α0 + α1i+ α2j + α3k.

This representation of q is called the canonical form of q. We define Re q = α0, the real
part of q; Co q = α0+α1i, the complex part of q; Im q = α1i+α2j+α3k, the imaginary
part of q; q̄ = α0 − α1i − α2j − α3k, the conjugate of q; |q| =

√
α2
0 + α2

1 + α2
2 + α2

3 =

(qq̄)
1

2 = (q̄q)
1

2 , the norm of q. Moreover, the set of all q ∈ H with Re q = 0 is denoted by
P, and q ∈ H is called a unit quaternion if |q| = 1.

Two quaternions x and y are said to be similar, denoted by x ∼ y, if there exists a
nonzero quaternion q ∈ H such that x = q−1yq. It is known, e.g., see [4, Theorem 2.2],
that x ∈ H is similar to y ∈ H if and only if Re x = Re y and |Im x| = |Im y|. Obviously,
∼ is an equivalence relation on the quaternions. The equivalence class containing x is
denoted by [x].

Let Hn be the collection of all n-column vectors with entries in H, and Mm×n(H) (for
the case m = n, Mn(H)) be the set of all m × n quaternion matrices. For any m × n
quaternion matrix A = (aij) ∈ Mm×n(H), we define Ā = (āij) ∈ Mm×n(H), the conjugate
of A; AT = (aji) ∈ Mn×m(H), the transpose of A; A∗ = (Ā)T ∈ Mn×m(H), the conjugate
transpose of A.

Let A ∈ Mn(H). The matrix A is said to be normal if A∗A = AA∗; Hermitian if A∗ = A;
skew-Hermitian if A∗ = −A; and unitary if A∗A = In, where In is the n × n identity
matrix. A quaternion λ is called a (right) eigenvalue of A if Ax = xλ for some nonzero
x ∈ Hn. The set of all right eigenvalues of A is denoted by σr(A); i.e., the right spectrum
of A. Also, the right spectral radius of A is defined as ρr(A) = max{|z| : z ∈ σr(A)}.
If λ is an eigenvalue of A, then any element in [λ] is also an eigenvalue of A. Moreover,
it is known, e.g., see [4, Theorem 5.4], that A has, counting multiplicities, exactly n
(right) eigenvalues which are complex numbers with nonnegative imaginary parts. These
eigenvalues are called the standard right eigenvalues of A.

Throughout the paper, we assume that k and n are positive integers, and k ⩽ n. A
matrix X ∈ Mn×k(H) is called an isometry if X∗X = Ik, and the set of all n×k isometry
matrices is denoted by Xn×k. For the case k = n, Xn×n is denoted by Un which is the
set of all n×n quaternionic unitary matrices. For A ∈ Mn(H), the notion of k-numerical
range of A which was first introduced in [1], is defined and denoted by

W k(A) = {1
k
tr(X∗AX) : X ∈ Xn×k}. (1)

The sets W k(A), where k ∈ {1, 2, . . . , n}, are generally called the higher numerical ranges
of A. Let A have the standard right eigenvalues λ1, . . . , λn, counting multiplicities. The
right k−spectrum of A is defined and denoted by

σk
r (A) = {1

k

k∑
j=1

αij : 1 ⩽ i1 < i2 < · · · < ik ⩽ n, αij ∈ [λij ]}.

Obviously, if α ∈ σk
r (A), then [α] ⊆ σk

r (A). Moreover, σk
r (A) ⊆ W k(A), σ1

r (A) = σr(A),
and

W 1(A) = W (A) := {x∗Ax : x ∈ Hn, x∗x = 1}
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is the standard quaternionic numerical range of A, which was first studied in 1951 by
Kippenhahn [2]. The numerical radius of A is also defined as r(A) = max{|z| : z ∈
W (A)}. Now, in the following theorem, we list some other properties of the k−numerical
range of quaternion matrices which can be found in [1].

Theorem 1.1 Let A ∈ Mn(H). Then the following assertions are true:
(a) W k(αI + βA) = α+ βW k(A), where α, β ∈ R;
(b) W k(A+B) ⊆ W k(A) +W k(B), where B ∈ Mn(H);
(c) W k(U∗AU) = W k(A), where U ∈ Un;
(d) ᾱW k(A)α = W k(A), where α ∈ H is such that |α| = 1;
(e) W k(A∗) = W k(A);
(f) W k+1(A) ⊆ conv(W k(A));
(g) W k(A) ⊆ R if and only if A is Hermitian;
(h) Wn(A) = { 1

n trA} if and only if A is Hermitian.

In this paper, we are going to study some properties of the k−numerical ranges and
radii of quaternionic matrices. To this end, in the next section, we state some other
properties of the k−numerical range of quaternion matrices. We also introduce and study,
as in the complex case, the notions of right k−spectral, k−numerical radius and the
k−norm of quaternion matrices. Moreover, we establish some relations among them.

2. Main results

We begin this section by a result about quaternion numbers which is important to study
some properties of the k−numerical range of quaternion matrices.

Theorem 2.1 Let S ⊆ H be such that λ ∈ S implies that [λ] ⊆ S. Then

conv(C
∩

S) = C
∩

conv(S).

Proof. It is clear that conv(C
∩

S) ⊆ C
∩

conv(S).
Conversely, let λ =

∑m
l=1 θl(al+bli+clj+dlk) ∈ C

∩
conv(S), where θl ⩾ 0,

∑m
l=1 θl = 1,

and al + bli+ clj + dlk ∈ S for all l = 1, . . . ,m. Thus, we have

λ =

m∑
l=1

θl(al + bli), and

m∑
l=1

θl(clj + dlk) = 0.

Since al ± i
√

b2l + c2l + d2l ∈ [al + bli + clj + dlk], by our assumption, we have al ±

i
√

b2l + c2l + d2l ∈ C
∩

S for all l = 1, . . . ,m. So, for every l ∈ {1, . . . ,m}, we have

al + bli = t(al + i
√

b2l + c2l + d2l ) + (1 − t)(al − i
√

b2l + c2l + d2l ) ∈ conv(C
∩

S), where

t =
bl+

√
b2l+c2l+d2

l

2
√

b2l+c2l+d2
l

for the case
√

b2l + c2l + d2l ̸= 0, and for the case bl = cl = dl = 0,

t ∈ [0, 1] is arbitrary. Therefore, λ ∈ conv(C
∩

S). Hence, C
∩

conv(S) ⊆ conv(C
∩

S).
This completes the proof. ■

By Theorem 2.1, we have the following results.
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Corollary 2.2 Let A ∈ Mn(H).Then

conv(C
∩

W k(A)) = C
∩

conv(W k(A)).

Corollary 2.3 (see also [1, Theorem 2.4(b)]); Let A ∈ Mn(H).Then

conv(C
∩

σk
r (A)) = C

∩
conv(σk

r (A)).

Now, we introduce the notions of right k−spectral, k−numerical radius and the
k−norm of quaternion matrices. To access more information about the similar results in
the complex case, see [3].

Definition 2.4 Let A ∈ Mn(H). The right k−spectral radius, the k−numerical radius,
and the k−norm of A are defined and denoted, respectively, by

ρ(k)r (A) = max{|z| : z ∈ σk
r (A)},

r(k)(A) = max{|z| : z ∈ W k(A)}, and

∥A∥(k) =
1

k
max{|tr(X∗AY )| : X, Y ∈ Xn×k}.

It is clear that ρ
(1)
r (A) = ρr(A) and r(1)(A) = r(A). So, the notions of right k-spectral

radius and k-numerical radius are generalizations of the calssical spectral radius and
numerical radius, respectively. In the following theorem, we state some basic properties
of r(k)(.).

Theorem 2.5 Let A,B ∈ Mn(H) and c ∈ R. Then the following assertions are true:
(a) r(k)(A) ⩾ 0;
(b) r(k)(cA) = |c|r(k)(A);
(c) r(k)(U∗AU) = r(k)(A), where U ∈ Un;
(d) r(k)(A) = r(k)(A∗);
(e) Let k < n. Then r(k)(A) = 0 if and only if A = 0. For the case k = n, r(n)(A) = 0 if
and only if A is Hermitian and trA = 0;
(f) r(k)(A+B) ⩽ r(k)(A) + r(k)(B);
(g) r(n)(A) ⩽ r(n−1)(A) ⩽ · · · ⩽ r(1)(A) = r(A).

Proof. The part (a) follows from Definition 2.4. The parts (b), (c), (d) and (f) follow
easily from Theorem 1.1.
To prove (e), at first, we assume that r(k)(A) = 0 and k < n. We will show that A = 0.
Since r(k)(A) = 0, for any z ∈ W k(A), |z| = 0. Therefore, W k(A) = {0}, and hence,
by Theorem 1.1(g), A is Hermitian. Now, since k < n, by a simple calculation we see
that A = 0. The converse is trivial. For the case k = n, let A have the standard right
eigenvalues λ1, . . . , λn, counting multiplicities, and r(n)(A) = 0. Then Wn(A) = {0}.
Since 1

n trA ∈ σn(A), by [1, Theorem 2.5(e)], Wn(A) = {0} = { 1
n trA}. So, trA = 0 and

also by Theorem 1.1(h), A is Hermitian. The converse is trivial.
To prove (g), let 1 < k ⩽ n be given. Then by Theorem 1.1(f), we have W k(A) ⊆
conv(W k−1(A)). Now, let r(k)(A) = |µ| for some µ ∈ W k(A). Hence, µ ∈ conv(W k−1(A)).
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Then there are nonnegative real numbers t1, . . . , tn ∈ R summing to 1, and α1, . . . , αn ∈
W k−1(A) such that µ =

∑n
i=1 tiαi. Therefore,

r(k)(A) = |µ| ⩽
n∑

i=1

ti|αi| ⩽
n∑

i=1

tir
(k−1)(A) = r(k−1)(A).

This completes the proof. ■

Using Definition 2.4 and this fact that σk
r (A) ⊆ W k(A), we have the following result

which states the relation between ρ
(k)
r (.), r(k)(.) and ∥.∥(k).

Proposition 2.6 Let A ∈ Mn(H). Then

ρ(k)r (A) ⩽ r(k)(A) ⩽ ∥A∥(k).

The following example shows that in Proposition 2.6, the equality ρ
(k)
r (A) = r(k)(A)

does not hold in general.

Example 2.7 Let A =

1 0 0
0 0 2
0 0 0

 ∈ M3(H). Then A is a matrix with eigenvalues 1, 0, 0.

Therefore, ρ
(2)
r (A) = 1

2 . By a simple calculation, we have r(2)(A) = 1. So, ρ
(2)
r (A) = 1

2 <

1 = r(2)(A).

In the following proposition, we show that the left inequality in Proposition 2.6 is
sharp. It follows easily from [1, Theorem 2.13].

Proposition 2.8 Let A ∈ Mn(H) be a Hermitian matrix. Then

ρ(k)r (A) = r(k)(A).

In the following theorem, we state some basic properties of ∥A∥(k).

Theorem 2.9 Let A,B ∈ Mn(H) and c ∈ R. Then the following assertions are true:
(a) ∥A∥(k) ⩾ 0;
(b) ∥cA∥(k) = |c|∥A∥(k);
(c) Let k < n. Then ∥A∥(k) = 0 if and only if A = 0;
(d) ∥A+B∥(k) ⩽ ∥A∥(k) + ∥B∥(k);
(e) ∥A∥(n) ⩽ ∥A∥(n−1) ⩽ . . . ⩽ ∥A∥(1).

Proof. The assertions in (a), (b), and (d) follow easily from Definition 2.4.
To prove (c), at first, we assume that ∥A∥(k) = 0 and k < n. Then by Theorem 2.5(e)
and Proposition 2.6, we have A = 0. The converse is trivial.
For (e), let 1 < k ⩽ n. Moreover, let X = [x1, . . . , xn], Y = [y1, . . . , yn] ∈ Xn×k be given.
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Therefore, we have

1

k
|

k∑
j=1

x∗jAyj | =
1

k
|

k∑
j=1

1

k − 1

k∑
i=1
i̸=j

x∗iAyi|

⩽ 1

k

k∑
j=1

1

k − 1
|

k∑
i=1
i̸=j

x∗iAyi|

⩽ 1

k

k∑
j=1

∥A∥(k−1)

= ∥A∥(k−1).

So, ∥A∥(k) ⩽ ∥A|(k−1). This completes the proof. ■
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