Journal of Linear and Topological Algebra Vol. 04*, No.* 04*,* 2015*,* 283*-* 288

Some results on higher numerical ranges and radii of quaternion matrices

Gh. Aghamollaei^{a∗}, N. Haj Aboutalebi^b

^a*Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.* ^b*Department of Mathematics, Shahrood Branch, Islamic Azad University, Shahrood, Iran.*

Received 20 December 2015; Revised 5 February 2016; Accepted 11 March 2016.

Abstract. Let *n* and *k* be two positive integers, $k \le n$ and *A* be an *n*-square quaternion matrix. In this paper, some results on the *k−*numerical range of *A* are investigated. Moreover, the notions of *k*-numerical radius, right *k*-spectral radius and *k*-norm of *A* are introduced, and some of their algebraic properties are studied.

 $©$ 2015 IAUCTB. All rights reserved.

Keywords: *k*-Numerical radius; right *k*-spectral radius; *k*-norm, quaternion matrices.

2010 AMS Subject Classification: 15A60; 15B33; 15A18.

1. Introduction and preliminaries

As usual, let $\mathbb R$ and $\mathbb C$ denote the field of the real and complex numbers, respectively. Moreover, let $\mathbb H$ be the four-dimensional algebra of quaternions over $\mathbb R$ with the standard basis $\{1, i, j, k\}$ and multiplication rules:

$$
i^2 = j^2 = k^2 = -1,
$$

\n
$$
ij = k = -ji, jk = i = -kj, ki = j = -ik, and
$$

\n
$$
1q = q1 = q \text{ for all } q \in \{1, i, j, k\}.
$$

*∗*Corresponding author.

Print ISSN: 2252-0201 [©] 2015 IAUCTB. All rights reserved.

Online ISSN: 2345-5934 *b*ttp://ilta.iauctb.ac.ir http://jlta.iauctb.ac.ir

E-mail address: aghamollaei@uk.ac.ir ; aghamollaei1976@gmail.com (Gh. Aghamollaei).

If $q \in \mathbb{H}$, then there are $\alpha_0, \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$ such that

$$
q = \alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k.
$$

This representation of *q* is called the canonical form of *q*. We define $Re\ q = \alpha_0$, the real part of *q*; *Co* $q = \alpha_0 + \alpha_1 i$, the complex part of *q*; *Im q* = $\alpha_1 i + \alpha_2 j + \alpha_3 k$, the imaginary part of q ; $\bar{q} = \alpha_0 - \alpha_1 i - \alpha_2 j - \alpha_3 k$, the conjugate of q ; $|q| = \sqrt{\alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2} =$ $(q\bar{q})^{\frac{1}{2}} = (\bar{q}q)^{\frac{1}{2}}$, the norm of *q*. Moreover, the set of all $q \in \mathbb{H}$ with $Re\ q = 0$ is denoted by P, and *q* ∈ H is called a unit quaternion if $|q| = 1$.

Two quaternions *x* and *y* are said to be similar, denoted by $x \sim y$, if there exists a nonzero quaternion $q \in \mathbb{H}$ such that $x = q^{-1}yq$. It is known, e.g., see [4, Theorem 2.2], that $x \in \mathbb{H}$ is similar to $y \in \mathbb{H}$ if and only if $Re\ x = Re\ y$ and $|Im\ x| = |Im\ y|$. Obviously, *∼* is an equivalence relation on the quaternions. The equivalence class containing *x* is denoted by [*x*].

Let \mathbb{H}^n be the collection of all *n*-column vectors with entries in \mathbb{H} , and $M_{m \times n}(\mathbb{H})$ (for the case $m = n$, $M_n(\mathbb{H})$ be the set of all $m \times n$ quaternion matrices. For any $m \times n$ quaternion matrix $A = (a_{ij}) \in M_{m \times n}(\mathbb{H})$, we define $\overline{A} = (\overline{a}_{ij}) \in M_{m \times n}(\mathbb{H})$, the conjugate of $A; A^T = (a_{ji}) \in M_{n \times m}(\mathbb{H})$, the transpose of $A; A^* = (\overline{A})^T \in M_{n \times m}(\mathbb{H})$, the conjugate transpose of *A*.

Let $A \in M_n(\mathbb{H})$. The matrix A is said to be normal if $A^*A = AA^*$; Hermitian if $A^* = A$; skew-Hermitian if $A^* = -A$; and unitary if $A^*A = I_n$, where I_n is the $n \times n$ identity matrix. A quaternion λ is called a (right) eigenvalue of A if $Ax = x\lambda$ for some nonzero $x \in \mathbb{H}^n$. The set of all right eigenvalues of *A* is denoted by $\sigma_r(A)$; i.e., the right spectrum of *A*. Also, the right spectral radius of *A* is defined as $\rho_r(A) = max\{|z| : z \in \sigma_r(A)\}$. If λ is an eigenvalue of *A*, then any element in $[\lambda]$ is also an eigenvalue of *A*. Moreover, it is known, e.g., see [4, Theorem 5.4], that *A* has, counting multiplicities, exactly *n* (right) eigenvalues which are complex numbers with nonnegative imaginary parts. These eigenvalues are called the standard right eigenvalues of *A*.

Throughout the paper, we assume that *k* and *n* are positive integers, and $k \leq n$. matrix $X \in M_{n \times k}(\mathbb{H})$ is called an isometry if $X^*X = I_k$, and the set of all $n \times k$ isometry matrices is denoted by $\mathcal{X}_{n \times k}$. For the case $k = n$, $\mathcal{X}_{n \times n}$ is denoted by \mathcal{U}_n which is the set of all $n \times n$ quaternionic unitary matrices. For $A \in M_n(\mathbb{H})$, the notion of *k*-numerical range of *A* which was first introduced in [1], is defined and denoted by

$$
W^{k}(A) = \left\{ \frac{1}{k} tr(X^* A X) : X \in \mathcal{X}_{n \times k} \right\}.
$$
 (1)

The sets $W^k(A)$, where $k \in \{1, 2, \ldots, n\}$, are generally called the higher numerical ranges of *A*. Let *A* have the standard right eigenvalues $\lambda_1, \ldots, \lambda_n$, counting multiplicities. The right *k−*spectrum of *A* is defined and denoted by

$$
\sigma_r^k(A) = \{\frac{1}{k}\sum_{j=1}^k \alpha_{i_j} : 1 \leq i_1 < i_2 < \cdots < i_k \leq n, \ \alpha_{i_j} \in [\lambda_{i_j}]\}.
$$

Obviously, if $\alpha \in \sigma_r^k(A)$, then $[\alpha] \subseteq \sigma_r^k(A)$. Moreover, $\sigma_r^k(A) \subseteq W^k(A)$, $\sigma_r^1(A) = \sigma_r(A)$, and

$$
W^{1}(A) = W(A) := \{x^{*}Ax : x \in \mathbb{H}^{n}, x^{*}x = 1\}
$$

is the standard quaternionic numerical range of *A*, which was first studied in 1951 by Kippenhahn [2]. The numerical radius of *A* is also defined as $r(A) = max\{|z| : z \in$ *W*(*A*)[}]. Now, in the following theorem, we list some other properties of the *k*−numerical range of quaternion matrices which can be found in [1].

Theorem 1.1 Let $A \in M_n(\mathbb{H})$. Then the following assertions are true:

(a) $W^k(\alpha I + \beta A) = \alpha + \beta W^k(A)$, where $\alpha, \beta \in \mathbb{R}$;

(b) $W^k(A + B) \subseteq W^k(A) + W^k(B)$, where $B \in M_n(\mathbb{H})$;

(c) $W^k(U^*AU) = W^k(A)$, where $U \in \mathcal{U}_n$;

 $(d) \bar{\alpha}W^k(A)\alpha = W^k(A)$, where $\alpha \in \mathbb{H}$ is such that $|\alpha| = 1$;

(e) $W^k(A^*) = W^k(A);$

 (f) $W^{k+1}(A) \subseteq conv(W^{k}(A));$

(g) $W^k(A) \subseteq \mathbb{R}$ if and only if *A* is Hermitian;

(h) $W^n(A) = \{\frac{1}{n}\}$ $\frac{1}{n}$ *trA*[}] if and only if *A* is Hermitian.

In this paper, we are going to study some properties of the *k−*numerical ranges and radii of quaternionic matrices. To this end, in the next section, we state some other properties of the *k−*numerical range of quaternion matrices. We also introduce and study, as in the complex case, the notions of right *k−*spectral, *k−*numerical radius and the *k−*norm of quaternion matrices. Moreover, we establish some relations among them.

2. Main results

We begin this section by a result about quaternion numbers which is important to study some properties of the *k−*numerical range of quaternion matrices.

Theorem 2.1 Let $S \subseteq \mathbb{H}$ be such that $\lambda \in S$ implies that $[\lambda] \subseteq S$. Then

$$
conv(\mathbb{C}\bigcap S) = \mathbb{C}\bigcap conv(S).
$$

Proof. It is clear that $conv(\mathbb{C} \cap S) \subseteq \mathbb{C} \cap conv(S)$. Conversely, let $\lambda = \sum_{l=1}^{m} \theta_l (a_l + b_l i + c_l j + d_l k) \in \mathbb{C} \cap conv(S)$, where $\theta_l \geq 0$, $\sum_{l=1}^{m} \theta_l = 1$, and $a_l + b_l i + c_l j + d_l k \in S$ for all $l = 1, \ldots, m$. Thus, we have

$$
\lambda = \sum_{l=1}^{m} \theta_l (a_l + b_l i), \text{ and } \sum_{l=1}^{m} \theta_l (c_l j + d_l k) = 0.
$$

Since $a_l \pm i\sqrt{b_l^2+c_l^2+d_l^2} \in [a_l + b_l i + c_l j + d_l k]$, by our assumption, we have $a_l \pm i$ $i\sqrt{b_l^2+c_l^2+d_l^2} \in \mathbb{C} \cap S$ for all $l = 1, \ldots, m$. So, for every $l \in \{1, \ldots, m\}$, we have $a_l + b_l i = t(a_l + i\sqrt{b_l^2 + c_l^2 + d_l^2}) + (1-t)(a_l - i\sqrt{b_l^2 + c_l^2 + d_l^2}) \in conv(\mathbb{C}\cap S)$, where $t = \frac{b_l + \sqrt{b_l^2 + c_l^2 + d_l^2}}{2\sqrt{b_l^2 + c_l^2 + d_l^2}}$ $\frac{1}{2\sqrt{b_l^2+c_l^2+d_l^2}}$ for the case $\sqrt{b_l^2+c_l^2+d_l^2} \neq 0$, and for the case $b_l = c_l = d_l = 0$, $t \in [0,1]$ is arbitrary. Therefore, $\lambda \in conv(\mathbb{C} \cap S)$. Hence, $\mathbb{C} \cap conv(S) \subseteq conv(\mathbb{C} \cap S)$. This completes the proof.

By Theorem 2.1, we have the following results.

Corollary 2.2 Let $A \in M_n(\mathbb{H})$. Then

$$
conv(\mathbb{C}\bigcap W^k(A))=\mathbb{C}\bigcap conv(W^k(A)).
$$

Corollary 2.3 (see also [1, Theorem 2.4(b)]); Let $A \in M_n(\mathbb{H})$. Then

$$
conv(\mathbb{C}\bigcap\sigma_r^k(A))=\mathbb{C}\bigcap conv(\sigma_r^k(A)).
$$

Now, we introduce the notions of right *k−*spectral, *k−*numerical radius and the *k−*norm of quaternion matrices. To access more information about the similar results in the complex case, see [3].

Definition 2.4 Let $A \in M_n(\mathbb{H})$. The right *k*−spectral radius, the *k*−numerical radius, and the *k−*norm of *A* are defined and denoted, respectively, by

$$
\rho_r^{(k)}(A) = \max\{|z| \ : \ z \in \sigma_r^k(A)\},
$$

$$
r^{(k)}(A) = max\{|z| : z \in W^{k}(A)\}, and
$$

$$
||A||_{(k)} = \frac{1}{k} max\{ |tr(X^*AY)| : X, Y \in \mathcal{X}_{n \times k} \}.
$$

It is clear that $\rho_r^{(1)}(A) = \rho_r(A)$ and $r^{(1)}(A) = r(A)$. So, the notions of right *k*-spectral radius and *k*-numerical radius are generalizations of the calssical spectral radius and numerical radius, respectively. In the following theorem, we state some basic properties of $r^{(k)}(.)$.

Theorem 2.5 Let $A, B \in M_n(\mathbb{H})$ and $c \in \mathbb{R}$. Then the following assertions are true: (a) $r^{(k)}(A) \geq 0;$ (b) $r^{(k)}(cA) = |c|r^{(k)}(A);$ (c) $r^{(k)}(U^*AU) = r^{(k)}(A)$, where $U \in \mathcal{U}_n$; (d) $r^{(k)}(A) = r^{(k)}(A^*)$; (e) Let $k < n$. Then $r^{(k)}(A) = 0$ if and only if $A = 0$. For the case $k = n$, $r^{(n)}(A) = 0$ if and only if *A* is Hermitian and $trA = 0$; $(r^{(k)}(A+B)\leq r^{(k)}(A)+r^{(k)}(B);$ $(r^n)(A) \leq r^{(n-1)}(A) \leq \cdots \leq r^{(1)}(A) = r(A).$

Proof. The part (a) follows from Definition 2.4. The parts (b), (c), (d) and (f) follow easily from Theorem 1.1.

To prove (e), at first, we assume that $r^{(k)}(A) = 0$ and $k < n$. We will show that $A = 0$. Since $r^{(k)}(A) = 0$, for any $z \in W^k(A)$, $|z| = 0$. Therefore, $W^k(A) = \{0\}$, and hence, by Theorem 1.1(g), *A* is Hermitian. Now, since $k < n$, by a simple calculation we see that $A = 0$. The converse is trivial. For the case $k = n$, let A have the standard right eigenvalues $\lambda_1, \ldots, \lambda_n$, counting multiplicities, and $r^{(n)}(A) = 0$. Then $W^n(A) = \{0\}$. Since $\frac{1}{n}$ tr $A \in \sigma^n(A)$, by [1, Theorem 2.5(e)], $W^n(A) = \{0\} = {\frac{1}{n}$ $\frac{1}{n}$ *trA*[}]. So, *trA* = 0 and also by Theorem 1.1(h), *A* is Hermitian. The converse is trivial.

To prove (g), let $1 < k \leq n$ be given. Then by Theorem 1.1(f), we have $W^k(A) \subseteq$ $conv(W^{k-1}(A))$. Now, let $r^{(k)}(A) = |\mu|$ for some $\mu \in W^{k}(A)$. Hence, $\mu \in conv(W^{k-1}(A))$. Then there are nonnegative real numbers $t_1, \ldots, t_n \in \mathbb{R}$ summing to 1, and $\alpha_1, \ldots, \alpha_n \in$ $W^{k-1}(A)$ such that $\mu = \sum_{i=1}^{n} t_i \alpha_i$. Therefore,

$$
r^{(k)}(A) = |\mu| \leq \sum_{i=1}^{n} t_i |\alpha_i| \leq \sum_{i=1}^{n} t_i r^{(k-1)}(A) = r^{(k-1)}(A).
$$

This completes the proof.

Using Definition 2.4 and this fact that $\sigma_r^k(A) \subseteq W^k(A)$, we have the following result which states the relation between $\rho_r^{(k)}(.)$, $r^{(k)}(.)$ and $\|\cdot\|_{(k)}$.

Proposition 2.6 Let $A \in M_n(\mathbb{H})$. Then

$$
\rho_r^{(k)}(A) \leqslant r^{(k)}(A) \leqslant \|A\|_{(k)}.
$$

The following example shows that in Proposition 2.6, the equality $\rho_r^{(k)}(A) = r^{(k)}(A)$ does not hold in general.

Example 2.7 Let
$$
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \in M_3(\mathbb{H})
$$
. Then A is a matrix with eigenvalues $1, 0, 0$. Therefore, $\rho_r^{(2)}(A) = \frac{1}{2}$. By a simple calculation, we have $r^{(2)}(A) = 1$. So, $\rho_r^{(2)}(A) = \frac{1}{2} < 1 = r^{(2)}(A)$.

In the following proposition, we show that the left inequality in Proposition 2.6 is sharp. It follows easily from [1, Theorem 2.13].

Proposition 2.8 Let $A \in M_n(\mathbb{H})$ be a Hermitian matrix. Then

$$
\rho_r^{(k)}(A) = r^{(k)}(A).
$$

In the following theorem, we state some basic properties of $||A||_{(k)}$.

Theorem 2.9 Let $A, B \in M_n(\mathbb{H})$ and $c \in \mathbb{R}$. Then the following assertions are true: (A) ||*A*||_(k) ≥ 0; $(|b)$ $||cA||_{(k)} = |c|||A||_{(k)}$; (c) Let $k < n$. Then $||A||_{(k)} = 0$ if and only if $A = 0$; (d) $||A + B||_{(k)} \leq ||A||_{(k)} + ||B||_{(k)};$ (e) $||A||_{(n)} \le ||A||_{(n-1)} \le \ldots \le ||A||_{(1)}$.

Proof. The assertions in (a), (b), and (d) follow easily from Definition 2.4. To prove (c), at first, we assume that $||A||_{(k)} = 0$ and $k < n$. Then by Theorem 2.5(e) and Proposition 2.6, we have $A = 0$. The converse is trivial. For (e), let $1 < k \le n$. Moreover, let $X = [x_1, \ldots, x_n], Y = [y_1, \ldots, y_n] \in \mathcal{X}_{n \times k}$ be given.

Therefore, we have

$$
\frac{1}{k} \left| \sum_{j=1}^{k} x_j^* A y_j \right| = \frac{1}{k} \left| \sum_{j=1}^{k} \frac{1}{k-1} \sum_{\substack{i=1 \ i \neq j}}^k x_i^* A y_i \right|
$$

$$
\leqslant \frac{1}{k} \sum_{j=1}^{k} \frac{1}{k-1} \left| \sum_{\substack{i=1 \ i \neq j}}^k x_i^* A y_i \right|
$$

$$
\leqslant \frac{1}{k} \sum_{j=1}^{k} ||A||_{(k-1)}
$$

$$
= ||A||_{(k-1)}.
$$

So, $||A||_{(k)} \le ||A|_{(k-1)}$. This completes the proof. ■

References

- [1] N. Haj Aboutalebi, Gh. Aghamollaei and H. Momenaee Kermani, *Higher numerical ranges of quaternion matrices*, Electronic J. Linear Algebra, **30** (2015), 889-904.
- [2] R. Kippenhahn, Uber die Wertvorrat einer Matrix, Math. Nachr. **6** (1951), 193-228.
- [3] C.K. Li, T.Y. Tam and N.K. Tsing, *The generalized spectral radius, numerical radius and spectral norm*, Linear Multilinear Algebra, **16** (1984), 215-237.
- [4] F. Zhang, *Quaternions and matrices of quaternions*, Linear Algebra Appl. **251** (1997), 21-57.