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Abstract. The annihilating-ideal graph of a commutative ring R is denoted by AG(R), whose
vertices are all nonzero ideals of R with nonzero annihilators and two distinct vertices I and
J are adjacent if and only if IJ = 0. In this article, we completely characterize rings R when
er(AG(R)) # 3.
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1. Introduction

Throughout this paper all rings are assumed to be commutative with identity 1 # 0.
The notion of a zero divisor graph was first introduced by I. Beck in [7], who let all the
elements of R be vertices and two distinct vertices x and y are adjacent if and only if
xy = 0. He mainly discussed the coloring of the zero divisor graph. After that many
authors studied the zero divisor graph with some slight different in their definitions. For
a fairly complete survey on the topic see [3]. Some years later, experts generalized results
of the classic zero divisor graph theory to noncommutative rings ([10]) and recently to
module theory ([6]). Some authors assigned other graphs to rings such as co-maximal
ideal graph, total graph, unit graph, etc. (see, for example, [2, 4, 5]).
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For a commutative ring R, let A(R) be the set of all ideals with nonzero annihilators
and A(R)* = A(R)\{0}. In [8], the concept of the annihilating-ideal graph for a commu-
tative ring R was introduced. It is a simple undirected graph, denoted by AG(R) with
the vertex set A(R)* and two distinct vertices I and J are adjacent in case I.J = 0.

A graph G is said to be connected if there exists a path between any two distinct
vertices of G. For distinct vertices z and y of G, let d(x,y) be the length of a shortest
path from z to y, if there is no such path, we put d(z,y) = co and let d(z,z) = 0. The
diameter of G is

diam(G) = sup{d(z,y) | « and y are distinct vertices of G}.

The girth of G, denoted by gr(G), is the length of the shortest cycle in G and if G contains
no cycles then gr(G) = oo. In [8, Theorem 2.1], it was shown that for a commutative
ring R, the annihilating-ideal graph AG(R) is always connected with diam(AG(R)) < 3
and gr(AG(R)) = 3,4 or oco.

A graph G is bipartite if the vertex set of G can be partitioned into two subsets A and
B such that no edge has both ends in any one subset. A bipartite graph G is said to be
complete in case every vertex is adjacent to every other vertices that are not in the same
subset. A complete bipartite graph with parts A and B such that |[A| = m and |B| =n
is denoted by K, .. A star graph is a complete bipartite graph K ,. Let K, be the
graph formed by joining the complete bipartite graph G = K, » (with vertex set AU B,
|A| = n and |B| = 2) to the star graph Gy = K, by identifying the center of G2 and a
point of B.

In Section 2, we investigate when gr(AG(R)) = 4. We prove that for a commutative
reduced ring R, gr(AG(R)) = 4 if and only if AG(R) = K, for some infinite cardinals
m and n. Next we show that for a commutative ring R with Nil(R) # 0, gr(AG(R)) = 4
if and only if AG(R) = K2 for some infinite cardinal n. Moreover, R has nontrivial
idempotents.

Section 3 concerns with the case when gr(AG(R)) = co. For a commutative ring R, it
turns out that gr(AG(R)) = oo if and only if AG(R) is a star graph or AG(R) = Ko
depending on whether or not R is a reduced ring. Finally we determine the girth of the
annihilating-ideal graph of polynomial ring R[z] and power series ring R[[z]] in term of
gr(AG(R)).

For a commutative ring R, let Nil(R) be the set of all nilpotent elements of R. If I is
an ideal of R, we denote the annihilator of I in R by anng([).

2. Rings with gr(AG(R)) =4

In this section we characterize rings R for which gr(AG(R)) = 4. First we prove the
following useful lemma about cycles of odd length in the annihilating-ideal graphs.

Lemma 2.1 For a commutative ring R, if gr(AG(R)) = 4, then AG(R) contains no
cycle of odd length.

Proof. We prove by induction on the length of a cycle. Obviously AG(R) contains no
cycle of length 3. Now suppose that there is no cycle of length 3, 5, 7,..., 2k —1 in AG(R).
We show that there dose not exist a cycle of length n := 2k + 1 in AG(R). By contrary,
suppose that I; — Iy — ... — I,, — I is a cycle of length n in AG(R). Note that I;I3 # 0
and consider the closed path I1I3 — Iy —I5 —...— I, — I I3 of length n — 2. If I, I3 # I; for
4 < j < n, then we would have a cycle of length n — 2 which contradicts our induction
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hypothesis. Now suppose that ;13 = I; for some 4 < j < n. We have two cases:

Case i. If j is even, then Iy — I3 — Iy —...— I; — I is a cycle of odd length less than 2k +1,
which is impossible.
Case 1. If j is odd, then I; — ;1 —... = I,, — Iy — I — I; is a cycle of odd length less than

2k 4+ 1 and this is impossible.
Therefore, in AG(R) there exist no cycle of odd length. [ |

It is known that a connected graph is bipartite if and only if it contains no cycle of
odd length.

Proposition 2.2 Let R be a commutative ring such that AG(R) has at least two ver-
tices. If gr(AG(R)) # 3, then AG(R) is a bipartite graph.

Proof. We must have gr(AG(R)) = 4 or co. Therefore, by Lemma 2.1, there exists no
cycle of odd length in AG(R). Since AG(R) is always a connected graph, it should be a
bipartite graph. [ |

In the following, we have another result considering when the annihilating-ideal graph
of a reduced ring R is a (complete) bipartite graph. Note that this result is similar to [9,
Theorem 2.3], but its proof is not the same as that one.

Proposition 2.3 Let R be a commutative reduced ring. Then AG(R) is a bipartite
graph if and only if there exist nonzero prime ideals P and @ of R with PN Q = 0.

Proof. Suppose that there exist nonzero prime ideals P and @ of R with PN @ = 0.
Let

X :={I|1 isanonzero ideal of R contained in P}
and
Y :={J|J isanonzero ideal of R contained in Q}.

We show that AG(R) is a complete bipartite graph with vertex set X UY. Let I be
an arbitrary vertex in AG(R). Since AG(R) is a connected graph, there is a vertex J
adjacent to I and so IJ = 0. As P is a prime ideal of R, I C Por J C P.If I C P
then I € X. If I ¢ P, then J C P. Since J € @, we must have I C Q and hence I € Y.
Therefore, A(R)* C X UY. Note that PN @ = 0 implies that X NY = ¢ and any vertex
in X is adjacent to any vertex in Y. Also vertices in X or vertices in Y are not adjacent
to each other. For if I1 and Iy are vertices in X with I1lo = 0, then I; I, C @ implies
that 1 CQor I C Q. Thus I; C PNQ or Is C PN Q, which is impossible. Therefore,
AG(R) is a complete bipartite graph with the vertex set X UY.

Conversely, suppose that AG(R) is a bipartite graph. Therefore, A(R)* = X UY and
XNY =9 Let P:=) ;.1 and Q:= ) ;. J. First we show that P is a prime ideal
of R. Suppose that a,b are nonzero elements of R with ab € P. Then there exist a vertex
I in X such that ab € I. Since AG(R) is a bipartite graph, there is a vertex J € Y with
1J =0, thus abJ = 0. Now we have the following two cases:

Case i. bJ = 0. Then RbJ =0 and Rb # J, observe that R is a reduced ring. As AG(R)
is a bipartite graph and J € Y, we have Rb € X and so b € P.

Case ii. bJ # 0. We claim that bJ € Y and a € P. We have IJ = 0 and so I(bJ) = 0.
Since R is reduced, I # bJ and hence bJ € Y. Also (Ra)(bJ) = 0 implies that
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Ra # bJ and Ra € X, thus a € P.

Therefore, P is a nonzero prime ideal of R. Similarly, we can prove that () is a prime
ideal of R. Now we show that PN Q = 0. Let 0 # x € PN Q. Then there is a vertex
I € X with z € I. As AG(R) is a bipartite graph, there is a vertex J € Y with I.J = 0.
Thus (Rz)J = 0 and so Rx € X. Similarly, we can show that Rx € Y. Therefore,
Rz € X NY = ¢ which is impossible. Hence PN Q = 0. |

Now we characterize rings R for which gr(AG(R)) = 4. Two cases can be happened
depending on whether or not R is a reduced ring.

Theorem 2.4 Let R be a commutative reduced ring. The following statements are
equivalent.

(a) gr(AG(R)) = 4

(b) There exist nonzero prime ideals P and @ of R which are not minimal ideals such
that PNQ = 0.

(c) AG(R) = K p, for some infinite cardinals m and n.

Proof. (a)==(b) By Proposition 2.2, AG(R) is a bipartite graph. Since R is a reduced
ring, Proposition 2.3 implies that there exist nonzero prime ideals P and @ of R with
PN @ = 0. Note that as in the proof of Proposition 2.3, if one of the prime ideals P or
@ is a minimal ideal of R, then AG(R) would be a star graph which does not contain a
cycle of length 4.

(b)=(c) Let

X :={I| I is a nonzero ideal of R contained in P}
and
Y :={J | J is a nonzero ideal of R contained in Q}.

If |X| = m and |Y| = n, then as in the proof of Proposition 2.3, AG(R) = K, . We
claim that m and n are infinite cardinals. By way of contrary, suppose that m < oo.
Thus P contains finitely many nonzero ideals of R and so there exists a minimal ideal I
of R contained in P. Clearly, M := anng([) is a maximal ideal of R contained in ), and
hence M = Q. Therefore, R = P ® @ and hence P = R/Q. Thus P is a minimal ideal of
R and this is a contradiction.

(c)=(a) It is clear. [ |

Note that for the nonzero rings R; and Ra, the prime ideals of the ring R; x Ry are
of the form Ry x P, and P; X Ry where P;’s are prime ideals of R;’s.

Corollary 2.5 Let R be a commutative reduced ring with nontrivial idempotents, then
gr(AG(R)) =4 if and only if R = Ry x Ry where Ry and R are integral domains which
are not fields.

Proof. Let R = Ry X Ry where Ry and Rs are nonzero rings. Suppose that gr(AG(R)) =
4, then by Theorem 2.4, there exist nonzero prime ideals P and @ of R which are not
minimal ideals such that P N @ = 0. According to the above fact about prime ideals of
the ring R = Ry X Ry, we should have P = Ry x 0 and @Q = 0 x Ry, therefore, Ry and
Ry are integral domains which are not fields. [ |

In the following, we consider non-reduced rings R with gr(AG(R)) = 4. First we prove
the next lemma.
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Lemma 2.6 Let R be a commutative ring with Nil(R) # 0. If gr(AG(R)) = 4, then R
has a nontrivial idempotent, i.e., we have R = Ry X Ry for nonzero rings Ry and R».

Proof. Let I ba a nonzero ideal of R with I? = 0. Since any two distinct nonzero ideals
contained in I are adjacent and gr(AG(R)) # 3, there exists at most one nonzero ideal
properly contained in I. so without of generality, we can assume that I is a minimal ideal
of R. Let M := anng(I), then M is a maximal ideal of R and M # I, otherwise, (R, M)
would be a local ring and AG(R) & K. Suppose that J and K are two nonzero distinct
ideals of R such that JK =0, J # [ and K # I. Since JK C M, one of the ideals J or
K, say J must be contained in M and hence IJ = 0. Note that I K # 0, because there
does not exist any triangle in AG(R). Thus d(I, K) = 2. Therefore, for any vertex L in
AG(R), we have d(I,L) =0, 1 or 2. Now put

X :={Je€eA(R)" | d(I,J)=0 or 2}
and
Y :={JeA(R)" |d(I,J)=1}.

Then A(R)* = XUY and XNY = ¢. It is easy to observe that AG(R) is a bipartite graph
with two parts X and Y. Now let P := > ; v J and Q := ) ;. J. Clearly, Q = M
and I C PN Q. We claim that P N @ is a nil ideal of R. By the contrary, let z € PN Q
and that z is not nilpotent. Since x € P and x is not nilpotent, there exists J € X such
that z € J and d(I,J) = 2. Now the connectivity of AG(R) implies that for some ideal
K €Y, we have JK =0 and so (Rz)K = 0. As x is not nilpotent and K € Y, we have
Rr # K and Rx € X. Since x € Q = M is not nilpotent, (Rx)I = 0 and thus Rz € Y,
we conclude that Rx € X N'Y = ¢, which is a contradiction. Therefore, P N @ is a nil
ideal of R and P + @ = R. Consequently R/P x R/Q and hence the ring R/P N Q has
a nontrivial idempotent. It is known that idempotents can be lifted modulo nil ideals,
therefore, R has a nontrivial idempotent too. [ ]

Theorem 2.7 Let R be a commutative ring with Nil(R) # 0. Then the following
statements are equivalent:

(a) gr(AG(R)) = 4
(b) R= D x S, where D is an integral domain which is not a field and (S, M) is a
local ring such that M? = 0 and M is a minimal ideal of S.

(c) AG(R) = K, for some infinite cardinal n.

Proof. (a)=(b) Since gr(AG(R)) = 4 and Nil(R) # 0, Lemma 2.6 implies that R has a
nontrivial idempotent, so R = R; X Ry, for some nonzero rings R; and Ry. As Nil(R) # 0,
there is a nonzero ideal I of R with I? = 0. Let I := I; x I where I; is an ideal of R; for
1 =1,2. If I; and Is are nonzero ideals, then 1 x 0 — I; X Is — 0 x Is — I; x 0 would be
a triangle in AG(R). Therefore, we can assume that I; = 0 and Iy # 0. If there exists a
nonzero ideal I’ of Ry distinct from I5 such that I'Io = 0, then 0x Io—0xI'— Ry x0—0x Iy
is a triangle in AG(R), but gr(AG(R)) = 4. We conclude that I is a minimal ideal of Ry
and Is = annpg,(I2) is a maximal ideal of Rg, thus Rs is a local ring and I is the only
nontrivial ideal of Rs. Now we show that R; is an integral domain, otherwise if K and J
are two nonzero ideals in Ry with KJ =0, then K x 0—J x Iy — 0 x I — K x 0 would
be a triangle in AG(R). Note that R; is not a field, since there is a cycle of length 4 in
AG(R).

(b)==(c) Suppose that R = D x S, where D is an integral domain which is not a field
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and (S, M) is a local ring such that M? = 0 and M is a minimal ideal of S. Consider the
following three subsets of A(R)*.

X :={I x 0| I is a nonzero ideal of D}

Y :={0x50x M}

Z = {I x M | I is a nonzero ideal of D}.

Thus A(R)* = X UY U Z and every vertex in X is adjacent to every vertex in Y and

also every vertex in Z is adjacent to only o x M. If | X| = n, then AG(R) = K, ».
(¢)=(a) It is obvious. [ |

As a consequence of Theorem 2.4 and Theorem 2.7, the complete bipartite graph K, ,,
with m,n > 1 can be realized as an annihilating-ideal graph AG(R) if and only if m and
n are infinite cardinals. The following example exhibits such rings.

Example 2.8 Let F be a field and R = F<£fy§’] , then R is a reduced ring with two nonzero

prime ideals P = é% and Q = % such that PN @Q = 0. We have gr(AG(R)) = 4 and
AG(R) = K, , for infinite cardinals m and n.

3. Rings with gr(AG(R)) = oo

The aim of this section is to study rings whose annihilating-ideal graph have no cycles.
First we consider reduced rings.

Theorem 3.1 For a commutative reduced ring R, the following statements are equiva-
lent:

(a) gr(AG(R)) = oo
(b) R= F x D where F is a field and D is an integral domain.
(¢) AG(R) is a star graph.

Proof. (a)=-(b) Suppose that gr(AG(R)) = oo, then by Proposition 2.2, AG(R) is a
bipartite graph. Since R is a reduced ring and there is no cycle in AG(R), Proposition 2.3
implies that there are nonzero prime ideals P and @ of R with PN = 0 and one of the
ideals P or @ is a minimal ideal of R, say P. Note that M := anng(P) is a maximal ideal
of R. We have PM =0 C Q and P ¢ @, hence M = Q. Therefore, R =~ (R/P) x (R/Q),
where R/P is an integral domain and R/Q is a field.

(b)=(c)and (c)==(a) are clear. [ |

Now we characterize non-reduced rings R for which gr(AG(R)) = oco. Two cases can
be occurred depending on whether or not R has nontrivial idempotents.

Proposition 3.2 Let R be a commutative non-reduced ring with a nontrivial idempo-
tent. The following statements are equivalent:
(a) gr(AG(R)) = o0
(b) R = F x S where F is a field and (S, M) is a local ring such that M? = 0 and
M is a minimal ideal of S.
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(C) AG(R) = KLQ
Proof. It is similar to the proof of Theorem 2.7. [ |

Proposition 3.3 Let R be a commutative non-reduced ring with no nontrivial idempo-
tent, then gr(AG(R)) = oo if and only if AG(R) is a star graph or a singleton.

Proof. If AG(R) is a star graph or a singleton, clearly, gr(AG(R)) = co. Now suppose
that gr(AG(R)) = oo. There is a nonzero ideal I of R with I? = 0. As in the proof
of Lemma 2.6 , we can assume that I is a minimal ideal of R. Thus M := anng([) is
a maximal ideal of R. If I = M, then AG(R) is a singleton. So suppose that I # M,
we claim that AG(R) is a star graph with center I. By the contrary, suppose that K
and L are two distinct vertices in AG(R) such that KL = 0 and K # I # L. Since
KL=0CM, we have K C M or L C M. Assume that K C M, thus /K = 0. Now if
0+# J C K, then ] — K—L—J—1 would be a cycle of length 3 or 4 but gr(AG(R)) = oo.
So K must be a minimal ideal of R. Since R has no nontrivial idempotents, K? = 0 and
hence I — K — (K +I) — I is a cycle in AG(R). Therefore, we get a contradiction.
Consequently, AG(R) is a star graph with center I. [ |

In the sequel, we present some examples of rings R for which AG(R) is a star graph.
But first we need the following lemma.

Lemma 3.4 Let R be a commutative ring with |A(R)*| > 1. If R has a minimal ideal
P such that P is a prime ideal of R, then AG(R) is a star graph.

Proof. If I and J are nonzero ideals of R with IJ = 0, then I = P or J = P. Thus P
is the only vertex in AG(R) which is adjacent to every other vertices. [ |

Note that the converse of Lemma 3.4 is not true in general. For the counterexample,
see the following.

Example 3.5 (a) The annihilating-ideal graph of the rings Z,: where p is a prime

number and @f)] where K is a field, are isomorphic to K7 .

(b) Let R = 52[3[”2’% where F' is a field. Then <z§xiy> is a minimal ideal of R which is a

prime ideal. Then by Lemma 3.4, AG(R) is an infinite star graph.

(c) Let R = f; Lml’% where F is a field of characteristic 2. The annihilating-ideal graph
of R is a star graph. If Z = = + (22,9%) and § = y + (22,%2), then (Zy) is the vertex
which is adjacent to every other vertices. Note that (Zy) is a minimal ideal of R which

is not a prime ideal and AG(R) is a finite star graph if and only if F' is a finite field.

As an application of our results about gr(AG(R)), we can obtain gr(AG(R[z])) in
terms of gr(AG(R)).

Theorem 3.6 Let R be a commutative ring which is not an integral domain.

(a) If R is non-reduced, then gr(AG(R[z])) =3
(b) If R is reduced and gr(AG(R)) = 3, then gr(AG(R[z])) = 3.
(c) If R is reduced and gr(AG(R)) # 3, then gr(AG(R[z])) = 4.

Similar results hold for AG(R[[z]]).

Proof. (a) Suppose that R is a non-reduced ring, then there is a nonzero ideal I of R
with I? = 0. Now consider the cycle I[x] —xI[z] —2?I[z] — I[z] in AG(R[z]) which implies
that gr(AG(R[z])) = 3.
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(b)Assume that R is a reduced ring with gr(AG(R)) = 3. So there are three distinct
nonzero ideals I, J and K in R such that [ —J — K — I is a cycle in AG(R). Obviously,
I[z] — J[z] — K[x] — I[z] is a triangle in AG(R[z]) and hence gr(AG(R[z])) = 3.

(c) Suppose that R is a reduced ring with gr(AG(R)) # 3, so by Proposition 2.2,
AG(R) is a bipartite graph. Now Proposition 2.3 implies that P N @ = 0, for some
nonzero prime ideals P and @ of R. Observe that P[x] and Q[z] are two nonzero prime
ideals of R[z] with Plx] N Q[z] = 0. Again by Proposition 2.3 , AG(R]x]) is a bipartite
graph, and P[z]—Q[z]—zP[z]—2Q[z]— Plz] is a cycle of length 4 in AG(R]xz]). Therefore,
gr(AG(R[z])) = 4. [ |
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