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Abstract. The principal aim of this paper is to serve the numerical solution of an integral-
algebraic equation (IAE) by using the Bernoulli polynomials and the residual correction
method. After implementation of our scheme, the main problem would be transformed into a
system of algebraic equations such that its solutions are the unknown Bernoulli coefficients.
This method gives an analytic solution when the exact solutions are polynomials. Also, an
error analysis based on the use of the Bernoulli polynomials is provided under several mild
conditions. Several examples are included to illustrate the efficiency and accuracy of the
proposed technique and also the results are compared with the different methods.
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1. Introduction

Many physical events, such as biological applications in population dynamics and genetics
where impulses arise naturally or are caused by control, can be modeled by the differential
equation, integral equation, integro-differential equation or a system of these equations.
Systems of Volterra integral equations with identically singular matrices in the principal
part are called integral algebraic equations. Such equations and systems frequently arise
in many physical and applied problems especially in the fields of dynamic processes in
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chemical reactors [13], identification of memory kernels in heat conduction [27] viscoelas-
tic materials [11, 29], the two-dimensional biharmonic equation in a semi-infinite strip
[6, 10], evolution of a chemical reaction within a small cell [12] and Kirchhoff’s laws.
The theory of IAEs appeared from early attempts by Gear in the 1990 that determined
the difficulties of these equations. He introduced the “index reduction procedure” for
IAEs system in [7] similar to that in [8] for differential algebraic equations in which if
the process is terminated, then the index is determined. This means that under suitable
conditions, there is a solution for the resulting regular system of integral equations.
In this article, we study numerical method for solving the system of Volterra integral
equations of the first and second kind. More precisely, we consider the integral algebraic
equation

V(t)G(t) = F(t) +

∫ t

0
K(t, s)G(s)ds, 0 ⩽ t ⩽ 1, (1)

where

V(t) = [vij(t)], i, j = 1, 2, . . . ,m,

G(t) = [g1(t), g2(t), . . . , gm(t)]T ,

F(t) = [f1(t), f2(t), . . . , fm(t)]T ,

K(t, s) = [kij(t, s)], i, j = 1, 2, . . . ,m,

which V(t), F(t) and K(t, s) are known functions and G(t) is the solution that should
be determined. If detV(t) = 0, then this system is called as Volterra integral-algebraic
equation. Under the condition detV(t) = 0, the system can have several solutions or no
solution at all. Several authors have investigated the existence, uniqueness and numerical
analysis of IAEs systems.

Theorem 1.1 ([1]) Assume that the system (1) with detV(t) = 0 satisfies the following
conditions:

(i) RankV(t) = deg(det[λV(t) + K(t, t)]) = k =constant ∀t ∈ [0, 1], where λ is a
scalar and deg(p(·)) is degree of the polynomial p(·).

(ii) RankV(0) = Rank[V(0)|G(0)].
(iii) V(t),G(t) ∈ C1

[0,1] and K(t, s) ∈ C1
∆, where ∆ = {0 ⩽ s ⩽ t ⩽ 1}.

Then the system (1) has a unique continuous solution.

Bulatov et al. [5], gave the existence and uniqueness results of solution for IAE sys-
tems with convolutions kernels and defined the index in analogy to Gear’s approach.
Kauthen [14], applied the polynomial spline collocation method for a semi-explicit IAEs
with index-1 and established global convergence as well as local superconvergence. Fur-
thermore, Brunner [3] defined the index-1 tractable for a semi-explicit form of IAEs and
investigated the existence of a unique solution for these types of systems.
Several researchers have adopted different techniques for solving system of integral alge-
braic equations. Rabbani et al. have used a modified Taylor series expansion method to
reduce the system of integral equations to a linear system of ordinary differential equa-
tions, which are solved by constructing appropriate boundary conditions [19]. Tahmasbi
and Fard have presented a derivative-free method based on the power series method [24].
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Mirzaee have used rationalized Haar functions with their product operational matrix
[15] and Fibonacci matrix method [16, 17]. Biazar and Eslami have proposed a modified
homotopy perturbation method using a simple modification [2].
In the present paper, we develop Bernoulli collocation method in combination with resid-
ual correction method for solving IAEs. The outline of this paper is organized as follows.
Section 2 briefly describes the definition and properties of the Bernoulli functions. In
Section 3, we apply Bernoulli collocation method for solving volterra integral algebraic
equation (1). Section 4 is concerned with the derivation of the residual correction method.
A convergence analysis is presented in Section 5. In Section 6, some numerical experi-
ments are reported which confirm the theoretical results of the paper. Section 7 concludes
the paper.

2. The properties of Bernoulli polynomials

In this section, we recall some properties of the Bernoulli polynomials which will be of
fundamental importance in the sequel. Bernoulli polynomials [18] and also Bernoulli func-
tions [20], have received considerable attention in numerical analysis. They appear in the
integral representation of the differentiable periodic functions, since they are employed
for approximating such functions in terms of polynomials. They are also used for repre-
senting the remainder term of the composite Euler-Maclaurin quadrature rule [20]. The
classical Bernoulli polynomials Bn(x) are usually defined by means of the exponential
generating functions

ωetω

eω − 1
=

∞∑
k=0

Bk(t)
ωk

k!
, (|ω| < 2π).

The following familiar expansion

n∑
k=0

(
n+ 1

k

)
Bk(t) = (n+ 1)tn,

is the most primary property of the Bernoulli polynomials. Also, the sequence of Bernoulli
polynomials (Bn)n∈N is uniquely defined by the conditions

(1) B0(t) = 1.
(2) ∀ k ∈ N, Bk(t+ 1)−Bk(t) = ktk−1.

(3) ∀ k ∈ N,
∫ 1
0 Bk(t)dt = 0.

For instance, it is straightforward to see that

B1(t) = t− 1

2
,

B2(t) = t2 − t+
1

6
,

B3(t) = t3 − 3

2
t2 +

1

2
,

...
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Moreover, for every nonnegative integer n we have

Bn(t) =

n∑
k=0

(
n

k

)
bn−kt

k,

where (bn)n∈N is the sequence of Bernoulli numbers that is defined by

bn = Bn(0), for n ⩾ 0.

Also, for every positive integer n we have

bn = − 1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
bk.

According to the discussions in [26], the Bernoulli polynomials form a complete basis
over the interval [0, 1]. We introduce the Bernoulli vector B(t) in the following form

B(t) = [B0(t), B1(t), . . . , Bn(t)]
T . (2)

Now, suppose that H = L2[0, 1] and {B0(t), B1(t), . . . , Bn(t)} ⊂ H is the set of the
Bernoulli polynomials and

Y = span{B0(t), B1(t), . . . , Bn(t)},

and u is an arbitrary element in H. Since Y is a finite dimensional vector space, u has
the unique best approximation belongs to Y such as ũ, that is,

∀y ∈ Y, ∥u− ũ∥ ⩽ ∥u− y∥.

Since ũ ∈ Y , there exist the unique coefficients u0, u1, . . . , un such that

u ≃ ũ =

n∑
i=0

uiBi(t) = UTB(t),

where U = [u0, u1, . . . , un]
T .

Moreover, we can write B(t) in the matrix form as

B(t) = DX(t), (3)

that D is an (n+ 1)× (n+ 1) lower triangular matrix with rows

Di+1 =

(i
i

)
bi,

(
i

i− 1

)
bi−1, . . . ,

(
i

0

)
b0,

n−i times︷ ︸︸ ︷
0, 0, . . . , 0

 , i = 0, 1, . . . , n,

and X(t) = [1, t, t2, . . . , tn]T .
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3. Method of the solution

We consider the system of linear Volterra integral algebraic equations with variable co-
efficients (1). The system also can be written as

m∑
j=1

vij(t)gj(t) = fi(t) +

m∑
j=1

∫ t

0
kij(t, s)gj(s)ds, 0 ⩽ t ⩽ 1, (4)

where i = 1, 2, . . . ,m. Bernoulli expansion for the functions gj , can be written as

gj(t) ≃ GT
j B(t) = BT (t)Gj , (5)

where Gj = [gj0, gj1, . . . , gjn]
T . Now, the ith equation, from the system (4), can be

expanded in terms of Bernoulli expansion as follows

m∑
j=1

vij(t)B
T (t)Gj = fi(t) +

m∑
j=1

∫ t

0
kij(t, s)B

T (s)Gjds, 0 ⩽ t ⩽ 1. (6)

By substituting the collocation points tl =
2l+1

2(n+1) , l = 0, 1, . . . , n into (4), we have

m∑
j=1

vij(tl)B
T (tl)Gj = fi(tl) +

m∑
j=1

∫ tl

0
kij(tl, s)B

T (s)Gjds,

So, the associated matrix-vector form of (1) has the following form

VG = F +KG, (7)

where

V =



v11(t0)B
T (t0) v12(t0)B

T (t0) · · · v1m(t0)B
T (t0)

v11(t1)B
T (t1) v12(t1)B

T (t1) · · · v1m(t1)B
T (t1)

...
...

...

v11(tn)B
T (tn) v12(tn)B

T (tn) · · · v1m(tn)B
T (tn)

...
...

...

vm1(t0)B
T (t0) vm2(t0)B

T (t0) · · · vmm(t0)B
T (t0)

...
...

...

vm1(tn)B
T (tn) vm2(tn)B

T (tn) · · · vmm(tn)B
T (tn)



, G =


G1

G2
...

Gm

 ,
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K =



∫ t0

0
k11(t0, s)B

T (s)ds

∫ t0

0
k12(t0, s)B

T (s)ds · · ·
∫ t0

0
k1m(t0, s)B

T (s)ds

∫ t0

0
k11(t1, s)B

T (s)ds

∫ t1

0
k12(t1, s)B

T (s)ds · · ·
∫ t1

0
k1m(t1, s)B

T (s)ds

...
...

...∫ tn

0
k11(t0, s)B

T (s)ds

∫ tn

0
k12(tn, s)B

T (s)ds · · ·
∫ tn

0
k1m(tn, s)B

T (s)ds

...
...

...∫ t0

0
km1(t0, s)B

T (s)ds

∫ t0

0
km2(t0, s)B

T (s)ds · · ·
∫ t0

0
kmm(t0, s)B

T (s)ds

...
...

...∫ tn

0
km1(t0, s)B

T (s)ds

∫ tn

0
km2(tn, s)B

T (s)ds · · ·
∫ tn

0
kmm(tn, s)B

T (s)ds



,

and F = [f1(t0), f1(t1), · · · , f1(tn), · · · , fm(t0), · · · , fm(tn)]
T . Hence, the fundamental

matrix equation corresponding to Eq. (1) can be written in the form

(V − K)G = F ,

or

AG = F . (8)

After solving this algebraic system, we obtain the approximated solutions of (1).

4. Residual correction and error estimation

In this section, we will give an error estimation for the Bernoulli collocation method and
the residual correction of the Bernoulli approximate solution. For our purpose, we can
define the vector of residual functions of the Bernoulli collocation method as

Rn(t) = L[Gn(t)]− F(t), (9)

where Gn(t), which is the Bernoulli polynomial solution defined by (5), is the approxi-
mate solution of the problem (1). Hence Gn(t) satisfies the problem

L[Gn(t)] = V(t)Gn(t)−
∫ t

0
K(t, s)Gn(s)ds = F(t) +Rn(t), (10)
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Also, the error function en(t) can be defined as

en(t) = G(t)−Gn(t), (11)

where G(t) is the exact solution of the problem (1). Substituting (11) into (1) and using
(9) and (10), we have the error integral algebraic equation

L[en(t)] = L[G(t)]− L[Gn(t)] = −Rn(t),

or

V(t)en(t)−
∫ t

0
K(t, s)en(s)ds = −Rn(t).

Solving above problem in the same way as Section 3, we get the approximation enm(t)
to en(t), (m ⩾ n) which is the vector of error functions based on the residual function
Rn(t).
Consequently, by means of Gn(t) and enm(t), (m ⩾ n), we obtain the corrected Bernoulli
polynomial solution Gnm(t) = Gn(t)+ enm(t), we construct the Bernoulli error function
en(t) = G(t)−Gn(t), the corrected Bernoulli error function Enm(t) = en(t)− enm(t) =
G(t)−Gnm(t) and the estimated error function enm(t).

5. Convergence analysis

In this section, we will try to provide an error analysis which theoretically justifies the
convergence of the proposed method.

Corollary 5.1 ([25]) Assume that u ∈ L2[0, 1] is an arbitrary function and also is
approximated by the truncated Bernoulli series

∑∞
i=0 uiBi(t), then the coefficients ui for

all i = 0, 1, . . . can be calculated from the following relation

ui =
1

i!

∫ 1

0
u(i)(s)ds.

In practice one can use finite terms of the above series.

Corollary 5.2 ([25]) Assume that one approximates the function u on the interval [0, 1]
by the Bernoulli polynomials as discussed in Corollary (5.1). Then, the coefficients ui
decay as follows

ui ⩽
Ui

i!
,

where Ui denotes the maximum of u(i) in the interval [0, 1].

The above corollary implies that the Bernoulli coefficients are decayed rapidly as the
increasing of i.

Theorem 5.3 ([26]) Suppose that u(t) is an enough smooth function in the interval
[0, 1] and is approximated by the Bernoulli polynomials as done in Corollary 1. With
more details, assume that Pn[u](t) is the approximate polynomial of u(t) in terms of the
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Bernoulli polynomials and rn[u](t) is the remainder term. Then, the associated formulas
are stated as follows

u(t) = Pn[u](t) + rn[u](t), t ∈ [0, 1],

Pn[u](t) =

∫ 1

0
u(t)dt+

n∑
j=1

Bj(t)

j!

(
u(j−1)(1)− u(j−1)(0)

)
,

rn[u](t) = − 1

n!

∫ 1

0
B∗

n(t− s)u(n)(s)ds,

where B∗
n(t) = (t− [t]) and [t] denotes the largest integer not greater than t.

Trivially, the algebraic degree of exactness of the operator Pn[ · ] is n.

Theorem 5.4 ([26]) Suppose g(t) ∈ C∞[0, 1] (with bounded derivatives) and gn(t) is
the approximated polynomial using Bernoulli polynomials. Then the error bound would
be obtained as follows

∥error(g(t))∥∞ ⩽ ρM(2π)−n, t ∈ [0, 1],

where M denotes a bound for all the derivatives of function g(t) (i.e., ∥g(i)(t)∥∞, for
i = 0, 1, . . .) and ρ is a positive constant.

Theorem 5.5 ([23]) Let ∥ · ∥ : Cn×n → R be a consistent matrix norm. For any matrix,
A, of order n, if ∥A∥ ⩽ 1, then, I −A is nonsingular. Moreover

∥x(I −A)−1∥ ⩽ ∥x∥
1− ∥A∥

, ∥I − (I −A)−1∥ ⩽ ∥A∥
1− ∥A∥

.

Theorem 5.6 ([9]) If A is a nonsingular matrix and ∥δA∥ ⩽ 1
∥A−1∥ then A + δA is

nonsingular. Moreover, let b ̸= 0 and let x and x̃ = x + δx be solutions of Ax = b and
(A+ δA)x̃ = b, respectively. Then

∥δx∥ ⩽ ∥A−1∥∥δA∥∥x̃∥.

In what follows, we formulate the assumptions under which Eq. (1) will be investigated.
Namely, we assume the following hypotheses.

(H1) Let m = 1 and v(t) = vij(t), for clarity of presentation.
(H2) y = g(t) and pn(t) are the exact and approximate Bernoulli series solutions with

the mentioned assumptions.
(H3) Ā = A+ δA is the coefficient matrix of Eq. (8), where δA represents the compu-

tational error.
(H4) There exists positive constant α, such that ∥δA∥ ⩽ α.

Theorem 5.7 Under the tacit assumptions, (H1)− (H4), above, if ∥Ā−1∥∞∥δA∥∞ < 1,
then, the absolute error, ∥pn − g∥∞, of Eq. (1) has the following upper bound

∥pn − g∥∞ ⩽ α∥G∥1∥Ā−1∥∞
1− α∥Ā−1∥∞

(
n∑

i=0

(
n

i

)
|bi|

)
+ ρM(2π)−n,
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where G is the solution of Eq. (8), M denotes a bound for all the derivatives of function
g(t) and ρ is a positive constant.

Proof. According to the assumptions, the basic Eq. (1) will be changed into the following
equation

v(t)g(t) = f(t) +

∫ t

0
k(t, s)g(s)ds, 0 ⩽ t ⩽ 1.

Since the exact solution y = g(x) is continuous on [0, 1], by using Theorem (5.4), we get

∥pn − y∥∞ = ∥pn − png + png − y∥∞
⩽ ∥pn − png∥∞ + ∥png − y∥∞
⩽ ∥pn − png∥∞ + ρM(2π)−n.

On the other hand, we have

∥pn − png∥∞ = ∥
n∑

i=0

g̃iBi −
n∑

i=0

giBi∥∞

⩽ ∥
n∑

i=0

(g̃i − gi)Bi∥∞

⩽ ∥[g̃0 − g0, g̃1 − g1, . . . , g̃n − gn]B∥∞
⩽ ∥[g̃0 − g0, g̃1 − g1, . . . , g̃n − gn]∥∞∥B∥∞
⩽ ∥A−1∥∞∥δA∥∞∥G∥1∥D∥∞∥X(1)∥∞
= ∥(Ā − δA)−1∥∞∥δA∥1∥G∥∞∥D∥∞.

Using Theorems (5.5) and (5.6), we conclude that

⩽ ∥Ā−1∥∞∥(I − Ā−1δA)−1∥∞∥δA∥∞∥G∥1∥D∥∞

⩽ ∥Ā−1∥∞∥δA∥∞∥G∥1
1− ∥Ā−1δA∥∞

∥D∥∞

⩽ ∥Ā−1∥∞∥δA∥∞∥G∥1
1− ∥Ā−1∥∞∥δA∥∞

∥D∥∞

⩽ α∥Ā−1∥∞∥G∥1
1− α∥Ā−1∥∞

∥D∥∞

⩽ α∥Ā−1∥∞∥G∥1
1− α∥Ā−1∥∞

n∑
i=0

(
n

i

)
|bi|.

■

Theorem 5.8 Let G(t) be the exact solution and Gn(t) = GTB(t) be the approximated
solution of (1) where the unknown Bernoulli coefficient vector G is determined by solving
the algebraic system of equations (8). Moreover, assume that there is positive number β
where ∥K(t, s)∥ ⩽ β and −β < ∥I −V(t)∥ < 1− β. Then Gn(t) converges to G(t).
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Proof. Assume that the terms of G(t) are approximated by Bernoulli polynomials as
described by (5). Then the obtained solution is an approximated polynomial; Gn(t) and
we have

V(t)G(t)−V(t)Gn(t) =

∫ t

0
K(t, s)G(s)ds−

∫ t

0
K(t, s)Gn(s)ds.

So

G(t)−Gn(t) = (I −V(t))[G(t)−Gn(t)] +

∫ t

0
K(t, s) [G(s)−Gn(s)] ds.

Therefore

∥G(t)−Gn(t)∥ ⩽ ∥I −V(t)∥∥G(t)−Gn(t)∥+ ∥K(t, s)∥∥G(s)−Gn(s)∥.

Hence

∥G(t)−Gn(t)∥ (1− ∥I −V(t)∥ − ∥K(t, s)∥) ⩽ 0.

From above equation and assumption ∥K(t, s)∥ ⩽ β we get −β < ∥I −V(t)∥ < 1 − β.
So by increasing n, Gn(t) converges to G(t) as n → ∞. ■

6. Illustrative examples

In this section, several numerical examples are given to illustrate the accuracy and ef-
fectiveness of the method. In this regard, we report in tables and figures, the values of
the Bernoulli error (Bern. err.), corrected Bernoulli error (Corr. Bern. err.) and the esti-
mated error (Est. err.) at the selected points of the given interval. All of the numerical
computations have been performed on computer using a program written in MATLAB.

Example 6.1 ([28]) Consider the following Volterra integral-algebraic equation

(
2t t
t −2t

)(
g1(t)
g2(t)

)
=

(
2t

t− 5
3 t

3 + 7
6 t

4

)
+

∫ t

0

(
3s 2t+ 1

2(t+ s) 2s(t+ s)

)(
g1(s)
g2(s)

)
ds, (12)

with the exact solution g1(t) = 1 + t, g2(t) = −t.

By approximating the solution G(t) by the truncated Bernoulli series with n = 2 and
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after some operations, we obtain the following matrices

V =


0.3333 −0.1111 0.0093 0.1667 −0.0556 0.0046
1.0000 0 −0.0833 0.5000 0 −0.0417
1.6667 0.5556 0.0463 0.8333 0.2778 0.0231
0.1667 −0.0556 0.0046 −0.3333 0.1111 −0.0093
0.5000 0 −0.0417 −1.0000 0 0.0833
0.8333 0.2778 0.0231 −1.6667 −0.5556 −0.0463

 ,

K =



1
24 − 7

432
5

1728
2
9 − 5

54
5

243

3
8 − 1

16 − 1
64 1 −1

4 0

25
24

25
432 − 25

576
20
9 − 5

27 − 10
243

1
12 − 11

324
55

7776
5

648 − 23
7776

13
25920

3
4 −1

6 − 1
96

5
24 − 1

32 − 29
2880

5
12 − 25

324 − 425
7776

625
648

625
7776 − 625

15552



,

and

F = [0.3333, 1.0000, 1.6667, 0.1599, 0.3646, 0.4315]T .

Solving this system and rounding the numbers to 15 digits, the unknown Bernoulli coef-
ficient matrix is obtained as

G1 = [1.5, 1, 0]T , G2 = [−0.5, −1, 0]T .

Therefore, by substituting the Bernoulli coefficient matrix into equation (5), we obtain
the approximate solution g1(t) = 1 + t, g2(t) = −t, which is the exact solution.

Example 6.2 ([1]) Consider the following Volterra integral-algebraic equation

(
0 0
t −2t

)(
g1(t)
g2(t)

)
=

(
−t2

t− 5
3 t

3 + 7
6 t

4

)
+

∫ t

0

(
3s 2t+ 1

2(t+ s) 2s(t+ s)

)(
g1(s)
g2(s)

)
ds, (13)

with the exact solution g1(t) = 1 + t, g2(t) = −t.

In Table 1, we compare the maximum absolute error for the present method with
n = 5 and m = 10 and block pulse functions method [1]. Fig. 1 contains numerical
comparison of errors of our solutions using the present method with n = 5 and m = 10.
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Figure 1. Comparison of the error functions for Example (2) with n = 5 and m = 10.

Example 6.3 ([1, 22]) Consider the following Volterra integral-algebraic equation

(
1 t

−2t 1

)(
g1(t)
g2(t)

)
=

(
sin t+ t cos t
cos t− 2t sin t

)
+

∫ t

0

(
t2 cos s −t2 sin s
sin t cos s − sin t sin s

)(
g1(s)
g2(s)

)
ds, (14)

with the exact solution g1(t) = sin t, g2(t) = cos t.

In Table 2, we compare the maximum absolute error for the present method with
n = 5 and m = 10 , block pulse functions method [1] and Bessel polynomials method
[22]. Fig. 2 contains numerical comparison of errors of our solutions using the present
method with n = 5 and m = 10.
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Figure 2. Comparison of the error functions for Example (3) with n = 5 and m = 10
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Example 6.4 ([1, 22]) Consider the following Volterra integral-algebraic equation(
1 −t
t 1

)(
g1(t)
g2(t)

)
=

(
e2t − t cos 2t− t2 − 1

2 t sin 2t
te2t + 5

4 cos 2t−
1
4 − 3

4e
t − 3

2 te
3t + 3

4e
3t

)
+

∫ t

0

(
te−2s t
3set t− s

)(
g1(s)
g2(s)

)
ds,

(15)

with the exact solution g1(t) = e2t, g2(t) = cos 2t.

In Table 3, we compare the maximum absolute error for the present method with
n = 5 and m = 10, block pulse functions method [1] and Bessel polynomials method
[22]. Fig. 3 contains numerical comparison of errors of our solutions using the present
method with n = 5 and m = 10.
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Figure 3. Comparison of the error functions for Example (4) with n = 5 and m = 10

Example 6.5 ([1, 4]) Consider the following Volterra integral-algebraic equation

(
1 t
t t2

)(
g1(t)
g2(t)

)
=

(
te−t + et(t+ 1)

2tet + 1 + e−t(t2 − 1)

)
+

∫ t

0

(
−et−s 0
−e−2s −et+s

)(
g1(s)
g2(s)

)
ds, (16)

with the exact solution g1(t) = et, g2(t) = e−t.

In Table 4, we compare the maximum absolute error for the present method with
n = 5 and m = 10, block pulse functions method [1] and multistep Method [4]. Fig. 4
contains numerical comparison of errors of our solutions using the present method with
n = 5 and m = 10.
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Figure 4. Comparison of the error functions for Example (5) with n = 5 and m = 10

Example 6.6 ([1, 21]) Consider the following Volterra integral-algebraic equation(
1 0
0 0

)(
g1(t)
g2(t)

)
=

(
f1(t)
f2(t)

)
+

∫ t

0

(
t3 + s+ 1 cos 3s+ 1
t+ s+ 2 sin 3s+ 2

)(
g1(s)
g2(s)

)
ds, (17)

with

f1(t) = 1− (1 + t+ t3) sin t− 1

3
(3 + cos 3t)(sin2

3t

2
)

f2(t) = 1− cos t− 2(1 + t) sin t+
1

12
(−8− 6t+ 8 cos 3t+ sin 6t)

and the exact solution g1(t) = cos t, g2(t) = sin 3t.

In Table 5, we compare the maximum absolute error for the present method with n = 5
and m = 10, block pulse functions method [1] and Legendre collocation method [21]. Fig.
5 contains numerical comparison of errors of our solutions using the present method with
n = 5 and m = 10.
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Figure 5. Comparison of the error functions for Example (6) with n = 5 and m = 10
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7. Conclusion

In this study, an approximate method based on Bernoulli polynomials and collocation
points has been presented to obtain the solution of integral-algebraic equations. Moreover,
the convergence and error analysis of the proposed method were established. Numerical
examples are included to demonstrate the validity and the applicability of the technique.
The results confirm the theoretical prediction. The obtained numerical results show that
this method can solve the problem effectively. One of the considerable advantages of the
method is that the approximate solutions are found very easily by using the computer
code written in MATLAB. Another interesting feature of this method is to find the
analytical solutions if the equation has an exact solution that is a polynomial of degree n
or less than n. Shorter computation time and lower operation count results in reduction
of cumulative truncation errors and improvement of overall accuracy are some of the
advantages of our method.
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Table 1. Comparison of the maximum absolute error for Example (2)
Present method Method of [1]

Error Bern. err. |Est.err.| Corr. Bern. err. n=32 n=64
e1(t) 1.11e-015 4.90e-014 4.99e-014 2.50e - 002 9.32e - 003
e2(t) 7.77e-016 5.32e-015 6.11e-015 2.57e - 002 1.29e - 002

Table 2. Comparison of the maximum absolute error for Example (3)

Present method Method of [1] Method of [22]
Error Bern. err. |Est.err.| Corr. Bern. err. n=32 n=64 n=2 n=5
e1(t) 1.99e-006 1.99e-006 5.76e-013 1.56e - 002 7.81e - 003 2.21e-002 6.29e-003
e2(t) 4.37e-006 4.37e-005 0.24e-013 7.74e - 003 3.80e - 003 1.12e-002 5.25e-005

Table 3. Comparison of the maximum absolute error for Example (4)
Present method Method of [1] Method of [22]

Error Bern. err. |Est.err.| Corr. Bern. err. n=32 n=64 n=10
e1(t) 7.77e-004 7.77e-004 3.13e-009 1.05e - 001 4.78e - 002 1.53e-005
e2(t) 1.48e-003 1.48e-004 1.04e-009 2.55e - 002 1.29e - 002 7.92e-006

Table 4. Comparison of the maximum absolute error for Example (5)

Present method Method of [1] Method of [4]
Error Bern. err. |Est.err.| Corr. Bern. err. n=32 n=64 n=5 n=10
e1(t) 1.03e-005 1.03e-005 1.68e-012 2.83e - 002 1.31e - 002 2.30e-003 1.10e-004
e2(t) 6.05e-006 6.05e-006 1.48e-012 2.34e - 002 1.04e - 002 2.30e-003 1.10e-004

Table 5. Comparison of the maximum absolute error for Example (6)

Present method Method of [1] Method of [21]
Error Bern. err. |Est.err.| Corr. Bern. err. n=32 n=64 n=4 n=6
e1(t) 2.22e-005 2.22e-005 3.68e-011 7.91e - 003 3.85e - 003 0.25e-004 2.25e-006
e2(t) 1.20e-003 1.20e-003 2.54e-009 4.02e - 002 1.77e - 002 9.60e-004 1.53e-006
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