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Abstract. Let A be a Banach algebra with BAI and E be an introverted subspace of A’. In
this paper we study the quotient Arens regularity of .4 with respect to E and prove that the
group algebra L*(G) for a locally compact group G, is quotient Arens regular with respect
to certain introverted subspace E of L®(G). Some related result are given as well.
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1. Introduction

Let A be a Banach algebra. It is well-known, on the second dual space A” of A, there
are two multiplications, called the first and second Arens products which make A” into a
Banach algebra, see [1] and [4]. By definition, the first Arens product O on A” is induced
by the left A-module structure on A. That is, for each &, ¥ € A", f € A" and a,b € A,
we have

<‘I)D\Ilvf>: (‘I)’\Il-f>, <\Il-f,a>:<\I/,f-a>, <f'avb>:<faab>'

Similarly, the second Arens product ¢ on A” is defined by considering A as a right
A-module. The Banach algebra A is said to be Arens regular if (] and <> coincide on .A”.
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For any fixed ® € A”, the map ¥ —— V[P and ¥ — ®OV are w*-w™* continuous on
A”. Thus, with the w*-topology, (A”,0) is a right topological semigroup and (A”, <) is
a left topological semigroup. The following sets

ZHA) ={® c A" : ¥+ OV is w* — w* continuous on A"},

Z2AN) ={®c A" : U +— UOD is w* — w* continuous on A"},

are called the first and the second topological centres of A", respectively. One can verify
that A is Arens regular if and only if Z}(A") = Z?(A”) = A”. For example, each C*-
algebra is Arens regular and for locally compact group G, the group algebra L(G) is
Arens regular if and only if G is finite. This was proved for abelian groups GG by Civin
and Yood [3] and Young [13] extend it for non-abelian case.

A linear functional f € A’ is said to be almost periodic (weakly almost periodic) if the
map a — a- f, A — A’ is compact (weakly compact). The spaces of almost periodic
and weakly almost periodic functionals on the Banach algebra A are denoted by AP(.A)
and WAP(A), respectively. Both AP(A) and WAP(A) are norm closed .A-submodule of
A’ and it was shown [5] that A is Arens regular if and only if WAP(A) = A'.

For a detailed account of Arens product and topological centres, we refer the reader
to Memoire [5] and [6].

We denote by LUC(G) (RUC(Q)), the C*-algebra of bounded left (right) uniformly
continuous functions on G. It is well-known that if A = L'(G), then A’ - A = LUC(G)
and A- A" = RUC(G), see [7] for example. If G is compact, then LUC(G) coincide with
RUC(G).

A bounded net (eq)qer in A is a bounded approximate identity (BAI for short) if, for
each a € A, ae, — a and eq,a — a. An element &y € A” is called mixed unit if it is
a right unit for (A”,0) and a left unit for (A”, ). It is well-known that ®¢ is a mixed
unit if and only if it is a weak® cluster point of some BATI in A, [3].

Let A be a Banach algebra with a BAI and let X be a Banach A-module. Then by
Cohen’s factorization theorem [7], the set

X - A={z-a: ze€X,ae A},

is a closed A-submodule of X. Az in [9] we say that X factors in the left if the equality
X = X - A holds.

Throughout the paper we identify an element of a Banach algebra A with its canonical
image in A",

2. Quotient Arens regularity

Let A be a Banach algebra and E be a closed A-submodule of A’. Then E is called left
introverted (right introverted) if ® - f € E (f-® € E), for all ® € A” and f € E, and
is introverted if it is both left and right introverted. It follows from the Hahn-Banach
theorem that E is left introverted if and only if - f € E, for all ® € E' and f € E, [5].
For example, A" - A is left introverted and A - A’ is right introverted in A’.

Let F be a left introverted Banach A-submodule of A’. Then E’ is a Banach algebra
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by the following (first Arens type) product

The Banach algebra A is said to be left quotient Arens regular with respect to E, if
Zy(E') = E', where

Zy(E)={® € E : ¥+ ®0V is w* — w* continuous on E'}.

If E = A, then the space Z;(E') coincides with Z}(A”). Similarly, if E is a right intro-
verted, the second Arens product on A” induces naturally a Banach algebra product on
E’ which is denoted by <. The topological centre and right quotient Arens regularity can
be defined analogously. The Banach algebra A is called quotient Arens regular(=QAR)
with respect to E, if ®§OW = &S for all @, ¥ € E’. It is clear that if A is Arens regular,
then A is quotient Arens regular for each introverted subspace E of A’.

The notion of the topological centre Z;(E’) in the above sense was introduced in [8].

In the case where E = A’ - A, the space Z(E') was denoted by Z; in [9].

Proposition 2.1 Let A be a Banach algebra with closed subalgebra B. Let E and F
be introverted subspace of A’ and B’, respectively. If the restriction map T : A" — B’
maps F onto F, and A is QAR with respect to E, then B is QAR with respect to F.

Proof. This is immediate. |

Theorem 2.2 Let A be a Banach algebra with BAIL If A is a right ideal in A", then A
is left QAR with respect to A’ - A.

Proof. Let E=A"- A, &,V € E' and ¥, — ¥ in w*-topology. Then for all f € A’
and a € A we have

(PO, f -a) = 1i('£n (P, Uy - (f-a))
:ligén (@ -®,9,-f)
—lim (Y. f - (a-®)) = (¥, (a- )
=(a-o,V-f)
= (B, ¥ (f-a))
= (o0, f - a).
So ®0¥, — ¥ in w*-topology of E’, thus A is left QAR with respect to E. [ |

One can verify that if A is a left ideal in A”, then A is right QAR with respect to
A- A, hence A is QAR with respect to A’ - A= A- A, if A is an ideal in the second
dual.

Theorem 2.3 The group algebra L'(G) for a locally compact group G is QAR with
respect to LUC(G) if and only if G is compact.

Proof. Suppose G is compact and A = L'(G). Then A is an ideal in A” by Lemma 4.1
of [11]. Therefore by above Theorem A is QAR with respect to LUC(G).
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Conversely, let A be QAR with respect to LUC(G). Then by Theorem 3.6 of [9] we
have

WAP(A) = A" - A= LUC(G).

Thus, G is compact by Corollary 3.8 of [9]. [ |

Let G be an infinite compact group and A = L'(G). Then by above theorem A is QAR
with respect to LUC(G), but it is not Arens regular. Now let & = A®.A, the projective
tensor product of A and A. Since A is not Arens regular, it follows from Corollary 3.5
of [10] that U is not Arens regular, but it is a right ideal in the second dual by Theorem
5.3 of [11]. Therefore U is left QAR with respect to U’ - U, by Theorem 2.2.

Theorem 2.4 Let G be a locally compact group and A = L'(G). Suppose E is a closed
A-submodule of A" and E C Wap(G). Then A is QAR with respect to E.

Proof. See Theorem 8.13 of [6]. [ |
As an consequence of above Theorem we have the next result.

Corollary 2.5 Let E denotes one of the space Cy(G), AP(A) or WAP(A), where
A = LY(G). Then A is QAR with respect to E.

Proposition 2.6 Suppose A is a Banach algebra with BAI and E is an introverted
subspace of A’. If A is a right ideal in £’ and F = E - A, then A is QAR with respect to
E.

Proof. Let ®,¥ € E' and ¥, — ¥ in w*-topology of E'. Let f € E, since E = E - A,
there exist g € F and a € A such that f = g-a. Then we get

(®0W,, f) = lim (20, g- a)
= lim (@- @, ¥ - g)
=lim (Vo,g-(a-2)) = (V,g-(a-®))
=(a-®,¥-g)

= (2, V- (9-qa))
= (209, f).

Thus A is QAR with respect to E. [ |

Let A be a Banach algebra. We recall that a bounded linear operator 7' : A — A is
said to be a right multiplier if, for all a,b € A, T'(ab) = aT'(b). We denote by RM (A)
the set of all right multipliers of A. In [12], Wong proved that M (A), the multiplier
algebra of A, is isometrically isometric with (A”,0) if and only if A is Arens regular,
have a BAI and is an ideal in the second dual. Now let A = L!(G) for an infinite com-
pact group G. Since A is not regular, thus M (A) dose not isometrically isometric with A”.

The following result generalized Wong’s Theorem on introverted subspace.

Theorem 2.7 Let A be a Banach algebra with BAI bounded by 1 and let E be an
introverted subspace of A’. Then RM (A) is isometrically isometric with (E’,0) if and
only if E factors on the left and A- E' C A.
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Proof. Suppose RM(A) is isometrically isometric with (E’,0). Then (E’,J) is unital
and so E factors on the left. Since A is an ideal in RM(A), the inclusion A- E' C A
follows.

For the converse let (eq)aecr be a BAI in A bounded by one and let ®y be a corre-
sponding mixed unit of it in E’ such that || ®¢|| = 1. Define

0: RM(A) — E', 6(T) =T" ().
Then 6 is a continuous homomorphism. Since E factors on the left, we have
0D < ITH, (T € RM(A)).
On the other hand for all a € A and f € F, we have

(@-0(1), f) = O(T), f - a)

(
<T,/(q)0)7 >
= (o, (f - a)T)
=lim (f,T(aea)) = (f,T(a))

= (T(a), f).

IT(a)ll = lla- 6(T)I| < llalllO(T)]],
hence ||T|| < |6(T)|| and 0 is isometry. Now for all ® € E’, define
T@)=a-®, (acA).
Then T' € RM(A) and we deduce
(O(T), f-a) =(T"(Qg), f - a)

~ lim (f -0, T(ea))

~lim (f. a0 - @)

- @)

= (D, f-a).
Thus, 6(T) = ® and @ is onto. This complete the proof. [ |

Let A = LY(G) and E = Cy(G). Then all conditions of Theorem 2.7 are valid, so we
deduce the following corollary which is due to J. Wendel [4].

Corollary 2.8 Let G be a locally compact group. Then

RM(LY(@)) = M(G).
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Theorem 2.9 Let A be a Banach algebra and E be an introverted subspace of A’. Then
A is QAR with respect to F if and only if the map Ty : A — E, a — f - a is weakly
compact.

Proof. Suppose A is QAR with respect to E/, ® € E' and a, — ® in w*-topology of
E'. Then for all ¥ € E' and f € E we get
(O, fraa) = (@a, V- ) — (2, V- f) = (2O, ) = (2OV, f) = (T, f - ).

Thus, f-aq — f - ® in w-topology of E’, that is T is weakly compact.
Conversely, let ® € E' and a, — ® in w*-topology of E’. Then f - a, tend to f - ®
in w-topology, and so for all ¥ € E' we have

<\Ij7f : aoc> — <‘I,7f : q)>
Therefore an, ¥ — ®OW. It follows that PP = O and A is QAR with respect to
E. [ |

As an consequence of above Theorem we have the next result.

Corollary 2.10 Let G be a locally compact group. Then G is compact if and only if
Ty : LY(G) — LUC(G), g — [ x g is weakly compact.

Theorem 2.11 Let A be a Banach algebra and E be a closed A-submodule of A’. Then
E C WAP(A) if and only if A is QAR with respect to E.

Proof. Suppose E C WAP(A), then E is introverted by Proposition 5.7 of [5]. Let
f € E, take

K={f-a: la <1}

Then the w-closure K in A’ is weakly compact, because f is weakly almost periodic.
Since K is Hausdorff in w*-topology, the weak and w*-topologies agree on K and both of
them coincide with the norm topology on K, by the Mazur’s Theorem. Now let ¥, — ¥
in w*-topology of E’, then

<\Ija'f7a>:<\llaaf'a> —><\I/7fa>:<\11f7a>

Since ¥, -f — W-f, foralla € A, thus ¥,-f — ¥ f in w-topology. So 0¥, — ®IV
for each ® € E' and A is QAR with respect to E.
Conversely, assume that A is QAR with respect to E and let f € FE, then the map

T:E —E ®&—f-®

is w*-w continuous. Thus, the set S = {f-®: ||®| < 1} is relatively weakly compact in
E. Since K C 5, it follows that K is relatively weakly compact and hence f is almost
periodic, as required. [ |

The proof of the next result is immediate and we omit it.

Proposition 2.12 Let A be a Banach *-algebra and E be a introverted subspace of A’.
If the involution of A can be extend to (E’,[J), then A is QAR with respect to E.
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A locally compact group G is said an SIN-group if the identity e of G has a basis
consisting of compact sets invariant under inner automorphisms. It was shown that G is
SIN-group if and only if LUC(G) = RUC(G).

Remark 1 1) Let G be a locally compact SIN-group, and A = L'(G). Let (LUC(G)',D)
has an involution extending the natural involution of A, then by proposition 2.12, we
have Z,(LUC(G)',0) = LUC(G)'. Therefore G is compact by Theorem 2.3.

2) Let G be any totally bounded topological group. Then by Corollary 4.11 of [2] we have
LUC(G) = Wap(G). Since the multiplication on Wap(G)' is w*-w* continuous, hence
Z(LUC(G),0) = LUC(G)'.
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