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Abstract. Let A be a Banach algebra with BAI and E be an introverted subspace of A′. In
this paper we study the quotient Arens regularity of A with respect to E and prove that the
group algebra L1(G) for a locally compact group G, is quotient Arens regular with respect
to certain introverted subspace E of L∞(G). Some related result are given as well.
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1. Introduction

Let A be a Banach algebra. It is well-known, on the second dual space A′′ of A, there
are two multiplications, called the first and second Arens products which make A′′ into a
Banach algebra, see [1] and [4]. By definition, the first Arens product □ on A′′ is induced
by the left A-module structure on A. That is, for each Φ,Ψ ∈ A′′, f ∈ A′ and a, b ∈ A,
we have

⟨Φ□Ψ, f⟩ = ⟨Φ,Ψ · f⟩, ⟨Ψ · f, a⟩ = ⟨Ψ, f · a⟩, ⟨f · a, b⟩ = ⟨f, ab⟩.

Similarly, the second Arens product ♢ on A′′ is defined by considering A as a right
A-module. The Banach algebra A is said to be Arens regular if □ and ♢ coincide on A′′.
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For any fixed Φ ∈ A′′, the map Ψ 7−→ Ψ□Φ and Ψ 7−→ Φ♢Ψ are w∗-w∗ continuous on
A′′. Thus, with the w∗-topology, (A′′,□) is a right topological semigroup and (A′′,♢) is
a left topological semigroup. The following sets

Z1
t (A′′) = {Φ ∈ A′′ : Ψ 7−→ Φ□Ψ is w∗ − w∗ continuous on A′′},

Z2
t (A′′) = {Φ ∈ A′′ : Ψ 7−→ Ψ♢Φ is w∗ − w∗ continuous on A′′},

are called the first and the second topological centres of A′′, respectively. One can verify
that A is Arens regular if and only if Z1

t (A′′) = Z2
t (A′′) = A′′. For example, each C∗-

algebra is Arens regular and for locally compact group G, the group algebra L1(G) is
Arens regular if and only if G is finite. This was proved for abelian groups G by Civin
and Yood [3] and Young [13] extend it for non-abelian case.

A linear functional f ∈ A′ is said to be almost periodic (weakly almost periodic) if the
map a 7−→ a · f, A −→ A′ is compact (weakly compact). The spaces of almost periodic
and weakly almost periodic functionals on the Banach algebra A are denoted by AP(A)
and WAP(A), respectively. Both AP(A) and WAP(A) are norm closed A-submodule of
A′ and it was shown [5] that A is Arens regular if and only if WAP(A) = A′.

For a detailed account of Arens product and topological centres, we refer the reader
to Memoire [5] and [6].

We denote by LUC(G) (RUC(G)), the C∗-algebra of bounded left (right) uniformly
continuous functions on G. It is well-known that if A = L1(G), then A′ · A = LUC(G)
and A ·A′ = RUC(G), see [7] for example. If G is compact, then LUC(G) coincide with
RUC(G).

A bounded net (eα)α∈I in A is a bounded approximate identity (BAI for short) if, for
each a ∈ A, aeα −→ a and eαa −→ a. An element Φ0 ∈ A′′ is called mixed unit if it is
a right unit for (A′′,□) and a left unit for (A′′,♢). It is well-known that Φ0 is a mixed
unit if and only if it is a weak∗ cluster point of some BAI in A, [3].

Let A be a Banach algebra with a BAI and let X be a Banach A-module. Then by
Cohen’s factorization theorem [7], the set

X · A = {x · a : x ∈ X, a ∈ A},

is a closed A-submodule of X. Az in [9] we say that X factors in the left if the equality
X = X · A holds.

Throughout the paper we identify an element of a Banach algebra A with its canonical
image in A′′.

2. Quotient Arens regularity

Let A be a Banach algebra and E be a closed A-submodule of A′. Then E is called left
introverted (right introverted) if Φ · f ∈ E (f · Φ ∈ E), for all Φ ∈ A′′ and f ∈ E, and
is introverted if it is both left and right introverted. It follows from the Hahn-Banach
theorem that E is left introverted if and only if Φ · f ∈ E, for all Φ ∈ E′ and f ∈ E, [5].
For example, A′ · A is left introverted and A · A′ is right introverted in A′.

Let E be a left introverted Banach A-submodule of A′. Then E′ is a Banach algebra
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by the following (first Arens type) product

⟨Φ□Ψ, f⟩ = ⟨Φ,Ψ · f⟩ (Φ,Ψ ∈ E′, f ∈ E).

The Banach algebra A is said to be left quotient Arens regular with respect to E, if
Zt(E

′) = E′, where

Zt(E
′) = {Φ ∈ E′ : Ψ 7−→ Φ□Ψ is w∗ − w∗ continuous on E′}.

If E = A′, then the space Zt(E
′) coincides with Z1

t (A′′). Similarly, if E is a right intro-
verted, the second Arens product on A′′ induces naturally a Banach algebra product on
E′ which is denoted by ♢. The topological centre and right quotient Arens regularity can
be defined analogously. The Banach algebra A is called quotient Arens regular(=QAR)
with respect to E, if Φ□Ψ = Φ♢Ψ for all Φ,Ψ ∈ E′. It is clear that if A is Arens regular,
then A is quotient Arens regular for each introverted subspace E of A′.

The notion of the topological centre Zt(E
′) in the above sense was introduced in [8].

In the case where E = A′ · A, the space Zt(E
′) was denoted by Z̃1 in [9].

Proposition 2.1 Let A be a Banach algebra with closed subalgebra B. Let E and F
be introverted subspace of A′ and B′, respectively. If the restriction map T : A′ −→ B′

maps E onto F , and A is QAR with respect to E, then B is QAR with respect to F .

Proof. This is immediate. ■

Theorem 2.2 Let A be a Banach algebra with BAI. If A is a right ideal in A′′, then A
is left QAR with respect to A′ · A.

Proof. Let E = A′ · A, Φ,Ψ ∈ E′ and Ψα −→ Ψ in w∗-topology. Then for all f ∈ A′

and a ∈ A we have

⟨Φ□Ψα, f · a⟩ = lim
α

⟨Φ,Ψα · (f · a)⟩

= lim
α

⟨â · Φ,Ψα · f⟩

= lim
α

⟨Ψα, f · (a · Φ)⟩ = ⟨Ψ, f · (a · Φ)⟩

= ⟨â · Φ,Ψ · f⟩

= ⟨Φ,Ψ · (f · a)⟩

= ⟨Φ□Ψ, f · a⟩.

So Φ□Ψα −→ Φ□Ψ in w∗-topology of E′, thus A is left QAR with respect to E. ■

One can verify that if A is a left ideal in A′′, then A is right QAR with respect to
A · A′, hence A is QAR with respect to A′ · A = A · A′, if A is an ideal in the second
dual.

Theorem 2.3 The group algebra L1(G) for a locally compact group G is QAR with
respect to LUC(G) if and only if G is compact.

Proof. Suppose G is compact and A = L1(G). Then A is an ideal in A′′ by Lemma 4.1
of [11]. Therefore by above Theorem A is QAR with respect to LUC(G).
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Conversely, let A be QAR with respect to LUC(G). Then by Theorem 3.6 of [9] we
have

WAP (A) = A′ · A = LUC(G).

Thus, G is compact by Corollary 3.8 of [9]. ■

Let G be an infinite compact group and A = L1(G). Then by above theorem A is QAR
with respect to LUC(G), but it is not Arens regular. Now let U = A⊗̂A, the projective
tensor product of A and A. Since A is not Arens regular, it follows from Corollary 3.5
of [10] that U is not Arens regular, but it is a right ideal in the second dual by Theorem
5.3 of [11]. Therefore U is left QAR with respect to U ′ · U , by Theorem 2.2.

Theorem 2.4 Let G be a locally compact group and A = L1(G). Suppose E is a closed
A-submodule of A′ and E ⊆ Wap(G). Then A is QAR with respect to E.

Proof. See Theorem 8.13 of [6]. ■

As an consequence of above Theorem we have the next result.

Corollary 2.5 Let E denotes one of the space C0(G), AP (A) or WAP (A), where
A = L1(G). Then A is QAR with respect to E.

Proposition 2.6 Suppose A is a Banach algebra with BAI and E is an introverted
subspace of A′. If A is a right ideal in E′ and E = E · A, then A is QAR with respect to
E.

Proof. Let Φ,Ψ ∈ E′ and Ψα −→ Ψ in w∗-topology of E′. Let f ∈ E, since E = E · A,
there exist g ∈ E and a ∈ A such that f = g · a. Then we get

⟨Φ□Ψα, f⟩ = lim
α

⟨Φ□Ψα, g · a⟩

= lim
α

⟨â · Φ,Ψα · g⟩

= lim
α

⟨Ψα, g · (a · Φ)⟩ = ⟨Ψ, g · (a · Φ)⟩

= ⟨â · Φ,Ψ · g⟩

= ⟨Φ,Ψ · (g · a)⟩

= ⟨Φ□Ψ, f⟩.

Thus A is QAR with respect to E. ■

Let A be a Banach algebra. We recall that a bounded linear operator T : A −→ A is
said to be a right multiplier if, for all a, b ∈ A, T (ab) = aT (b). We denote by RM(A)
the set of all right multipliers of A. In [12], Wong proved that M(A), the multiplier
algebra of A, is isometrically isometric with (A′′,□) if and only if A is Arens regular,
have a BAI and is an ideal in the second dual. Now let A = L1(G) for an infinite com-
pact groupG. SinceA is not regular, thusM(A) dose not isometrically isometric withA′′.

The following result generalized Wong’s Theorem on introverted subspace.

Theorem 2.7 Let A be a Banach algebra with BAI bounded by 1 and let E be an
introverted subspace of A′. Then RM(A) is isometrically isometric with (E′,□) if and
only if E factors on the left and A · E′ ⊂ A.
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Proof. Suppose RM(A) is isometrically isometric with (E′,□). Then (E′,□) is unital
and so E factors on the left. Since A is an ideal in RM(A), the inclusion A · E′ ⊂ A
follows.

For the converse let (eα)α∈I be a BAI in A bounded by one and let Φ0 be a corre-
sponding mixed unit of it in E′ such that ∥Φ0∥ = 1. Define

θ : RM(A) −→ E′, θ(T ) = T ′′(Φ0).

Then θ is a continuous homomorphism. Since E factors on the left, we have

∥θ(T )∥ ⩽ ∥T∥, (T ∈ RM(A)).

On the other hand for all a ∈ A and f ∈ E, we have

⟨â · θ(T ), f⟩ = ⟨θ(T ), f · a⟩

= ⟨T ′′(Φ0), f · a⟩

= ⟨Φ0, (f · a)T ⟩

= lim
α

⟨f, T (aeα)⟩ = ⟨f, T (a)⟩

= ⟨T̂ (a), f⟩.

Thus, â · θ(T ) = T̂ (a). So

∥T (a)∥ = ∥â · θ(T )∥ ⩽ ∥a∥∥θ(T )∥,

hence ∥T∥ ⩽ ∥θ(T )∥ and θ is isometry. Now for all Φ ∈ E′, define

T (a) = â · Φ, (a ∈ A).

Then T ∈ RM(A) and we deduce

⟨θ(T ), f · a⟩ = ⟨T ′′(Φ0), f · a⟩

= lim
α

⟨f · a, T (eα)⟩

= lim
α

⟨f, âeα · Φ⟩

= ⟨â · Φ, f⟩

= ⟨Φ, f · a⟩.

Thus, θ(T ) = Φ and θ is onto. This complete the proof. ■

Let A = L1(G) and E = C0(G). Then all conditions of Theorem 2.7 are valid, so we
deduce the following corollary which is due to J. Wendel [4].

Corollary 2.8 Let G be a locally compact group. Then

RM(L1(G)) = M(G).
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Theorem 2.9 Let A be a Banach algebra and E be an introverted subspace of A′. Then
A is QAR with respect to E if and only if the map Tf : A −→ E, a 7−→ f · a is weakly
compact.

Proof. Suppose A is QAR with respect to E, Φ ∈ E′ and aα −→ Φ in w∗-topology of
E′. Then for all Ψ ∈ E′ and f ∈ E we get

⟨Ψ, f · aα⟩ = ⟨âα,Ψ · f⟩ −→ ⟨Φ,Ψ · f⟩ = ⟨Φ□Ψ, f⟩ = ⟨Φ♢Ψ, f⟩ = ⟨Ψ, f · Φ⟩.

Thus, f · aα −→ f · Φ in w-topology of E′, that is Tf is weakly compact.
Conversely, let Φ ∈ E′ and aα −→ Φ in w∗-topology of E′. Then f · aα tend to f · Φ

in w-topology, and so for all Ψ ∈ E′ we have

⟨Ψ, f · aα⟩ −→ ⟨Ψ, f · Φ⟩.

Therefore âα□Ψ −→ Φ♢Ψ. It follows that Φ□Ψ = Φ♢Ψ and A is QAR with respect to
E. ■

As an consequence of above Theorem we have the next result.

Corollary 2.10 Let G be a locally compact group. Then G is compact if and only if
Tf : L1(G) −→ LUC(G), g 7−→ f ⋆ g is weakly compact.

Theorem 2.11 Let A be a Banach algebra and E be a closed A-submodule of A′. Then
E ⊆ WAP (A) if and only if A is QAR with respect to E.

Proof. Suppose E ⊆ WAP (A), then E is introverted by Proposition 5.7 of [5]. Let
f ∈ E, take

K = {f · a : ∥a∥ ⩽ 1}.

Then the w-closure K in A′ is weakly compact, because f is weakly almost periodic.
Since K is Hausdorff in w∗-topology, the weak and w∗-topologies agree on K and both of
them coincide with the norm topology on K, by the Mazur’s Theorem. Now let Ψα −→ Ψ
in w∗-topology of E′, then

⟨Ψα · f, a⟩ = ⟨Ψα, f · a⟩ −→ ⟨Ψ, f · a⟩ = ⟨Ψ · f, a⟩.

Since Ψα·f −→ Ψ·f , for all a ∈ A, thus Ψα·f −→ Ψ·f in w-topology. So Φ□Ψα −→ Φ□Ψ
for each Φ ∈ E′ and A is QAR with respect to E.

Conversely, assume that A is QAR with respect to E and let f ∈ E, then the map

T : E′ −→ E, Φ 7−→ f · Φ

is w∗-w continuous. Thus, the set S = {f ·Φ : ∥Φ∥ ⩽ 1} is relatively weakly compact in
E. Since K ⊂ S, it follows that K is relatively weakly compact and hence f is almost
periodic, as required. ■

The proof of the next result is immediate and we omit it.

Proposition 2.12 Let A be a Banach ∗-algebra and E be a introverted subspace of A′.
If the involution of A can be extend to (E′,□), then A is QAR with respect to E.
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A locally compact group G is said an SIN-group if the identity e of G has a basis
consisting of compact sets invariant under inner automorphisms. It was shown that G is
SIN-group if and only if LUC(G) = RUC(G).

Remark 1 1) Let G be a locally compact SIN-group, and A = L1(G). Let (LUC(G)′,□)
has an involution extending the natural involution of A, then by proposition 2.12, we
have Zt(LUC(G)′,□) = LUC(G)′. Therefore G is compact by Theorem 2.3.
2) Let G be any totally bounded topological group. Then by Corollary 4.11 of [2] we have
LUC(G) = Wap(G). Since the multiplication on Wap(G)′ is w∗-w∗ continuous, hence
Zt(LUC(G)′,□) = LUC(G)′.
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[8] N. Isik, J. Pym and A. Ü lger, The second dual of the group algebra of a compact group, J. London Math.
Soc. 35 (1987), 135-158.
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