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Abstract 

Traffic prediction systems can play an essential role in intelligent transportation systems (ITS). Prediction and patterns 

comprehensibility of traffic characteristic parameters such as average speed, flow, and travel time could be beneficiary both 

in advanced traveler information systems (ATIS) and in ITS traffic control systems. However, due to their complex nonlinear 

patterns, these systems are burdensome. In this paper, we have applied some supervised data mining techniques (i.e. 

Classification Tree, Random Forest, Naïve Bayesian and CN2) to predict the next state of Traffic by a categorical traffic 

variable (level of service (LOS)) in different short-time intervals and also produce simple and easy handling if-then rules to 

reveal road facility characteristic. The analytical results show prediction accuracy of 80% on average by using methods. 
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1. Introduction 

Traffic state prediction has an important role in 

intelligent transportation systems (ITS).  It can be 

classified into short-term prediction which predict 

traffic state changes in short periods (e.g. 15 min or 

30 min) and long-term prediction for monthly or 

yearly traffic state information [1]. Short-term 

predictions either may be used directly by traffic 

experts to take relevant actions or could be injected 

as inputs to proactive congestion management 

approaches. These approaches could include route 

guidance, dynamic congestion pricing, variable speed 

limit systems. The long-term predictions can be used 

for transportation planning. Although traffic 

prediction method studies usually use a measure of 

algorithm performance based only on predictive 

accuracy, it is accepted by many researchers and 

practitioners that, in many application domains, the 

comprehensibility of the knowledge (or patterns) 

discovered by an algorithm is another important 

evaluation criterion. For example, the pattern 

discovered by this algorithm is used to support a 

decision that will be made by a human user, rather 

than for automated decision-making. Therefore, an 

ideal method is one that covers both application 

aspects. 

Lili et al [28] specify three factors that affect 

the quality of the predicted real-time traffic 

information. These factors include: (1) Variability in 

the quality of real-time data from different sources 

(sensors or other road facilities). (2) Dynamic nature 

of real-time traffic conditions, which cause delay 

between the time data, is collected and is used. (3) 

Randomness and stochastic inherent of traffic 

networks which appear in supply, demand, and 

performance of the traffic network. For these 

reasons, they conclude that predicting short-term 

traffic conditions is more meaningful. 

Besides short-term and long-term predictions 

classes, there exist various classification standards 

that categorize traffic prediction methods such as 

pp.181:193 
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single link or transportation network, freeways or 

urban streets, univariate or multivariate, physical 

models or mathematical methodologies, etc [49]. 

Applying statistical methodology, prediction 

methods are divided into two main categories: 

(1) Parametric method which includes linear and 

nonlinear regression ([48], [45], [44]) filtering 

techniques ([43], [46) autoregressive moving average 

family (ARMA/ARIMA/SARIMA) [32]. These 

techniques try to detect a function between the past 

information and the predicted state. However, they 

are typically sensitive to errors and data quality. 

(2) Non-parametric method such as Neural Networks 

(Feed-Forward Neural Network (FFNN) [50], Radial 

Basis Function Neural Networks (RBF-NN) ([34], 

etc.), Bayesian networks [20], K-Nearest Neighbor 

(KNN) Algorithms [41], Support Vector Regression 

(SVR) ([10], [24]).  This kind of techniques can 

generally handle imprecise data and as a result, 

usually perform well in treating the nondeterministic, 

complex and nonlinear systems. 

Up to now, several approaches (usually by 

utilizing unsupervised algorithms) consider 

prediction of continuous traffic parameters: flow, 

travel time, etc. ([13], [28], [12], [41]). In this paper, 

we predict short-term level of service (LOS) of a 

highway section by using supervised learning 

algorithms and also propose representations of 

classification models in terms of if-then rule sets 

which can give the comprehensibility of the 

knowledge (or patterns) discovered by a 

classification algorithm. In following, we describe 

some motivations for prediction of this traffic state 

categorical variable: 

Traffic patterns and driver behavior in different 

times and traffic states (e.g. free-flow, stable or 

synchronized flow, congested flow and flow near to 

jam density) is quite different [9]. This phenomena 

cause some problem for traffic simulation models to 

capture characteristics of traffic flow. For example 

analytical functions that is used to describe the 

relationship between flow and density (fundamental 

diagram) fails to satisfy all of the desirable properties 

so that the traffic simulation models that use these 

functions as input model parameters will deteriorate 

and only make a reasonable prediction in relatively 

short time scale  [27]. One of the key applications of 

categorically traffic state prediction can be setting 

specific boundary conditions and calibration 

parameters for simulation models, or fitting separate 

functions (to describe fundamental diagrams) for 

each LOS, and then using them according to the 

predicted LOS in advance. This method can increase 

accuracy of macroscopic simulation models which 

has broad usage in ITS proactive controller ([33],  

[22], [19]). 

Classification prediction methods which have 

been used in this study for prediction, also produce 

simple and easy handling if-then rules that can be 

used in designing expert systems, scheming decision 

tree of a traffic controller system with very light 

computation (such as Variable Speed Limit system 

[2]). However, in addition to controller system traffic 

experts also could mine these simple produced IF-

THEN rules to find performance quality of road, 

facility characteristics and propose optimal speed for 

that section or detect any failure in the specified 

state.  

Classification methods such as Naïve Bayesian 

can also offer a valuable insight into the structure of 

the training data and effects of each attributes of 

traffic state and providing traffic engineers with a 

comprehensible explaining the system’s predictions. 

Which guide them by interpretation traffic state 

occurring, recognition important attribute and 

reasons for and using this information to off line 

network planning. 
The rest of the paper is organized as follows: 

Section 2 describes the model-learning framework, 

brief description of each classification learner and 

setting parameters and heuristic, which is used in the 

learning process. Section 3 presents the results and 

discusses the experiments performed and finally the 

conclusion is presented in section 4. 

2. Proposed Approach 

Data mining proposes varieties knowledge 

discovery methods. These methods include 

classification and prediction, and presenting the 

mining results using visualization tools. The term 

prediction denotes to both numeric prediction and 

class label prediction.  

In particular, a classification problem aims to 

generate (to learn) a model, called classifiers, which 

is able to predict the value of a categorical target 

variable (class labels) based on several input 

variables (sometimes called predictor variables, 

fields, attributes or features). This model actually is a 

function that maps an input attribute vector X from 

attributes space to output class label                        

  {          }. Before learning the model, the 

class labels and the values of the attributes for each 

record (observation, instance or example) must be 

known. Data in a labeled training set comes in 

records of the form: 

(   )  ((             )  )                        (1) 

The dependent variable (class labels) Y  is the 

target variable that we are trying to predict 

(understand, classify or generalize) and the 
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vector X  is composed of the attributes 1x , 2x , 3x ,…,

nx . 

In this study, we have tested four famous data 

mining classification algorithm, i.e. Classification 

tree, Random Forest, Naïve Bayesian and CN2, 

which are widely utilized in artificial intelligence. In 

addition to this method, we tested support vector 

machine for prediction but it did not show good 

enough accuracy so we left it out from our study, this 

result match with previous Chen and et al [12] study. 

In our application, first, the reliable data are 

gathered, then the days with missing or error record 

was omitted after that, traffic parameters of each time 

interval extracted from data. We learn the predictive 

model of extracted training set comes in the records 

include Flow (veh/15 min), Density (veh/km), Speed 

(km/h), Time Duration (start time of interval in min) 

as the attributes for different time intervals (of 10, 

15, and 30 minutes). LOS of the next time interval is 

considered as class label or the target variable of it. 

For example the record form of time interval one 

(t=1) is in the form of (2). 

(                                        ) 
(2) 

In fact, this prediction framework is 

independence of current traffic’s state. The keynote 

has laid down on learning offline prediction models 

with traffic’s history data and using it to preform 

prediction based on classification current data. This 

ability makes it robust to handle given noisy data or 

data with missing values.  

The reminder of this Section will present a brief 

description of well-known classification methods, 

their logical sequence of the prediction method and 

specific modification of them that we have used in 

this paper. 

2.1. Classification Tree 

Decision Tree is a convenient, nonparametric 

and widely used learning approach in data mining as 

a classifier. Classification and Regression tree [7] are 

two main types of Decision trees. Classification tree 

used when the value of predicted item is a class and 

Regression tree is utilized when predicted item have 

a real number. 

Decision Tree is a directed rooted tree of nodes 

and connecting branches. Nodes indicate decision 

points, chance events, or branch terminals, which 

correspond to one of the input variables. Branches 

correspond to each possible value of that input 

variable or event outcome emerging from a node. 

Each leaf represents a value of the target variable. 

When Decision Tree receives a new data, a passing 

through nodes of it, determine the next state of traffic 

and will give new instance’s target variable. Each 

path from the root of a decision tree to one of its 

leaves results a rule.  

This tree model is usually learned top-down by 

recursively partitioning [16] the instance space (The 

set of all possible observations which equals to the 

training set in learning phase). At each node, a 

predictor variable select to split the set so that the 

created partitions have similar target variable value. 

The selection criteria for choosing variable defined 

as how homogeneous the resulted partitions are. 

Different algorithms use various selection criteria 

e.g., Gini index [7], Information Gain [36], 

Likelihood-Ratio Chi Squared Statistics [4], etc. 

These selection criteria can be grouped according to 

the source of them such as information theory, 

dependence, and distance [5] or according to the 

measure structure: impurity based criteria, 

normalized impurity based criteria and binary criteria 

[39]. This process continues until no partitions gain a 

sufficient splitting criterion measure or meets one or 

more stopping criteria. For example, all cases put 

into a similar target variable partition or the tree 

reaches the specified maximum depth. This phase of 

learning the decision tree called Growing phase. 

Exploiting loosely stopping criteria tends to generate 

large decision trees. To handle this situation some 

algorithm utilized pruning phase suggested in [7]. 

This phase transforms large decision trees to smaller 

one by cutting some sub-branches that absent of 

them does not make big accuracy change and the tree 

model keep its sufficient generalization exactness. 

Algorithms that generate a decision are called 

decision tree inducers. Various decision trees 

inducers exist such as ID3 [35], C4.5 [37], CART 

[7], CHAID [25], QUEST [29]. 

In our application, we select Information Gain, 

which will be explained in following subsection, in 

the role of selection criterion for the learner. Pruning 

during induction is based on the minimal number of 

two instances in leaves i.e. the algorithm does not 

construct a split, which would put less than two of 

training examples in any of the branches. Since target 

variable (LOS) value is a class then the resulted 

decision tree is a classification tree (Fig.2). 

2.1.1. Information Gain 

This measure is based on information theory, 

which indicates required information to classify a 

given record of data.  The expected information to 

encode possible class label Y of an arbitrary record 

of a training set in bits is given by (3). 

 ( )   ∑  (    )    ( (    ))
 
             (3)

  

Where  (    ) is the nonzero probability 

that the record belongs to a class   . A log function 

to the base two is used, because the information is 

http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/CHAID
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encoded in bits.  ( ) is also known as the entropy 

of the data. This parameter gets a high value if class 

label Y has uniform distribution in training set and 

low value if its distribution varies. The conditional 

entropy  (    ) is the expected information 

required to classify a record based on some known 

attribute ax : 

 (    )   ∑  (    ) (      )     (  )  (4) 

Information gain is defined as the difference 

between the original information requirement (3) and 

the new requirement after obtaining the value of    

(4). That is 

 (  )   ( )   (    )                                       (5) 

In other words,  (  ) 
reveal how much 

information would be gained by splitting on   . We 

like to do splitting on the attribute that would 

produce partitions that are more pure and the amount 

of information still required to finish classifying their 

records is minimal. Therefore, it is sufficient to 

choose the attribute with the highest information gain 

and using it as a splitting attribute on the current 

node in Decision Tree.  

 
Fig.2. A portion of the resulted classification tree, the color of the 

node report on the probability of the majority class (Majority class 
probability) that the color intensity would be higher towards the 

leaves of the node 

2.2. Random Forest 

Random forest method, proposed firstly by Leo 

Brieman  [8], builds ensemble or committee of 

decision trees (classification or regression trees) with 

given the set of class-labeled data and aggregate 

results of them for prediction. For inducing each 

individual tree, the algorithm utilizes bagging idea 

[6] and the random selection [17] of features, 

introduced independently by Ho [23] and Amit and 

Geman [3]. 

Similar to bagging, the algorithm grows each 

individual tree from a bootstrap sample (with the 

same size, drawn randomly with replacement) or a 

subsample (with smaller size, drawn randomly 

without replacement) of the training data. Another 

technique that Random forest uses to develop trees, 

that are even more diverse, is the random variable 

selection. It draws an arbitrary subset of variable 

from which the best variable is selected for the split. 

Originally, Brieman [8] proposed to grow the trees 

without any pruning. Its final prediction is the mean 

prediction (regression) or class with maximum votes 

(classification) of the decision trees.  

Let        be the number of trees and Mtry the 

number of predictor variable drawn at each node. In 

case of traffic state application, we set           

classification trees to be included in the forest and 

Mtry =2 for splitting consideration at each node. As 

the stopping condition, minimal number five of 

instances in the node before splitting was set. 

2.3. Naïve Bayesian 

Naïve Bayesian is statistical classifier that 

determines class membership probabilities of a given 

sample for each class  (      ),   {     }. 
Naïve Bayesian classifier is based on "naive" class-

conditional independence assumption and Bayes’ 

theorem. Class-conditional independence implies that 

the probability distribution of an attribute value of a 

given class is independent of the values of the other 

attributes Naïve assumption allows us to estimate 

each distribution independently as a one-dimensional 

distribution rather than computation-intensive joint 

distribution. 

 (  |     )   (     )                                   (6) 

According to Bayes’ theorem, the posterior 

probability of class      conditioned on attribute 

vector X expresses in terms of the marginal 

(evidence) probability  ( ), the prior probability 

(probability of hypothesis      before seeing any 

data X)  (    ) and the likelihood probability 

(probability of the data X  if the hypothesis      is 

true)  (      ) as (7). 

 (      )  
 (    ) (      )

 ( )
                          (7) 

The numerator of (7) transforms to the joint 

distribution probability  (      ) which by n 

times applying chain can be described in terms of 

conditional probabilities equation (8). 

http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Bootstrap_aggregating
http://en.wikipedia.org/wiki/Decision_tree_learning
http://en.wikipedia.org/wiki/Joint_probability
http://en.wikipedia.org/wiki/Joint_probability
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 (  )   (     )   (        )  
 (           )     (                  ) (8) 

And by using Naïve assumption of (6), this equation 

expressed as 

 (  )   (     )   (     )   (     )    
 (     )   (  )  ∏  (     )

 
                       (9) 

When a new record of attribute values   (   
                      ) come, the 

classifier predicts the value of Y the class    makes 

having the highest posterior probability              

 (      ). This is known as the maximum a 

posteriori  (MAP) decision rule. Therefore, since the 

numerator of (7) does not depend on    and by 

using equation (9) the Naïve Bayesian classifier is a 

function which defined as: 

 ̂( )           ( (  )  ∏  (     )
 
   )    (10)

 
The parameters of a naive Bayes model i.e. the 

class prior probabilities  (    ) and the posterior 

probability  (       ). They can be estimated 

from data by maximum-likelihood estimation 

(MLE).  Given the training data, the class prior 

probabilities may be simply estimated by the relative 

frequency (number of samples in the class) / (total 

number of samples)).  To compute  (       ) 
one must assume a distribution or generate 

nonparametric models for the attribute. The typical 

approach in two following situations is [21]:  

1. If xi 
is categorical then  (       ) can be 

estimated by the relative frequency.  

2. If xi 
is continuous-valued then it assume that 

 (       ) have Normal (Gaussian distribution), 

calculate the mean    and standard deviation     of 

the attribute values xi for training samples in the class 

   and substitute them into Gaussian distribution 

formula (11). 

 (       )  
 

√     
 
 
(     

) 

    
 

                     (11) 

Depending on the precise nature of the 

probability model, naive Bayes classifiers can be 

trained very efficiently in a supervised learning 

setting. In many practical applications, parameter 

estimation for naive Bayes models uses the method 

of maximum likelihood; in other words, one can 

work with the naive Bayes model without believing 

in Bayesian probability or using any Bayesian 

methods. 

In our traffic state prediction, we also used 

Laplace estimator [11] in probability estimation of 

prior and conditional probability. It avoids 

subsequent problem in the situation when there is no 

training sample for the specific class. This situation 

would return a zero probability and would cancel the 

effects of all the other (posterior) probabilities 

involved in the product (9) Laplace estimator 

assumes that the training data is so large and simply 

add one to each count that is needed to estimate 

probabilities. 

2.4. CN2 

Beside decision tree, a second way to generate 

if-then rules is to use rule induction algorithms, 

which search for propositional rules directly from the 

training data. CN2 [15] is one the most famous 

example of this type of approach. It has two main 

procedures:  
On upper level it runs a sequential covering 

strategy (also known as separate-and-conquer or 

cover-and-remove), first employed by the AQ 

Algorithm [30]. This process sequentially extracts 

rule from the training set by calling the lower level 

procedure (conquer step), and remove data records 

that are covered by the rule (separate step). It 

continues this routine until no more efficient rules be 

discovered. In addition to this exclusive covering 

strategy, as in the original CN2 is used [15], 

Alternative type of covering is weighted covering, 

which only decreases the weight of covered records 

instead of removing them[26]. 

On the lower level, a beam search method is 

done. Beam search start with an empty rule (no 

conditions on its if-part) and iteratively specialize it, 

evaluates the extended rules created by the 

specialization operation, and keep the b  best-

extended rules (Beam width). This process is 

repeated until a stopping criterion is satisfied. In this 

process, rule evaluation is done with the aim of 

heuristic functions that consider coverage (number of 

records covered by a rule) and accuracy during the 

process of building a rule. Taking inspiration from 

ID3, original CN2 uses entropy (1) as the rule 

evaluation function but Clark and Boswell [14] 

present the Laplace estimation as an alternative rule 

quality measure to overcome undesirable “downward 

bias” of entropy and it is defined in Equation (12). 

                 ( )  
   

     
                         (12) 

In the formula (12), P
 
represent the number of 

positive examples covered by a rule R in the training 

set, n is the number of negative examples covered by 

a rule R and k is the number of classes available in 

the training set. In addition to these functions there is 

many others like m-estimate of probability [18] 

and WRACC (weighted CN2-SD algorithmcy), used 

in CN2-SD algorithm [26].  

In addition to the evaluation function, CN2 uses 

a statistical significance test to ensure the new rule 

http://en.wikipedia.org/wiki/Maximum_a_posteriori
http://en.wikipedia.org/wiki/Maximum_a_posteriori
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reflects a true correlation between attributes and 

classes, and is not due to chance. Actually, it is pre-

pruning method, which avoids generating too 

specific rule. It applies the likelihood ratio statistic 

test (LRS) to compare the observed class distribution 

among examples satisfying the rule with the class 

distribution result if the rule had selected examples 

randomly. The user determines required significance 

level of a rule (i.e. Alpha in LRS test). 

The rule models generated by a rule induction 

algorithm can be different slightly by changes in 

upper level process. Classical CN2 [15] generates 

ordered rules (also known as rule lists or decision 

lists) in this case the first rule in the ordered list that 

covers the new example will classify it. Unordered 

CN2 [14] induces unordered rules (rule sets).  

Similar to learning in classical CN2, the process of 

on the upper level is separated to learn rules for each 

class.. In the latter case, all the rules in the model are 

used to classify a new example and when more than 

one rule covers a new example, and the class 

predicted by them is not the same, a tiebreak 

criterion is used to decide which rule assess the class 

of new example more accurate. 

In our implementation, on the upper level we 

adopt an exclusive covering, as Unordered CN2 [14]. 

On the lower level, we used Laplace estimation as 

evaluation functions. Pre-pruning of rules is done by 

using of two LRS test and indicating minimum rule 

coverage threshold.  The First LRS test ensures the 

minimum required significance level    of a rule 

when compared to the default rule. In addition, we 

use a second LRS test; in this case, the rule is 

compared to its parent rule: it verifies whether the 

last specialization of the rule has enough significant 

level   . Finally Minimum coverage threshold 

specifies the minimal number of examples that each 

induced rule must cover. The value for the setting 

parameters are listed in Table.2.  

 

 
 

 

Table.2 

The setting parameters of CN2 
Time Interval (min) 

1  2  
Minimum 

Coverage 

10 0.050 0.020 9 

15 0.065 0.020 7 

30 0.070 0.020 6 

3. Results  

To test performance, we used Java 

programming language to write required procedures 

for extracting traffic parameters and Level of service 

with the definition corresponded to the Highway 

Capacity Manual [42] form raw data then the 

classification model was built through the widget and 

python scripting in Orange software. Data for this 

study come from real-world traffic data set of Hakim 

highway in Tehran, Iran, which has been gathered in 

the autumn 2011 with radar traffic sensor. This data 

set has been obtained from Tehran Traffic control 

Co. that includes 2519011 instances. Processing 

these instances, traffic parameters extracted for time 

intervals with the length of 10, 15 and 30 minutes 

which respectively result in 12358, 8245, 4121 

records. Due to lack of records in LOS B and E, 

these levels have been merged with their adjacent 

ones. 

3.1. Model Evaluation 

The holdout method was used for model 

evaluation (Fig.2). According to this method, the 

given data were randomly partitioned into two 

independent sets, a training set and a test set. The 

records of 14 days of the data are allocated to the 

training set, and the remaining is allocated to the test 

set In Model Builder part that contains Classification 

Tree, Random Forest, Naïve Bayes and CN2 model 

inducers, the training set was used to derive the 

model. Test Learner and Calculate Accuracy part 

uses output models of Model builder part for 

prediction of next state of test data and compare it 

with the real state of traffic to estimate model’s 

accuracy. 

 

Training 
Data

Test Data

Model Builder

Test Learner
&

Calculate 
Accuraccy

Data

 

Fig.3. Accuracy estimation with the holdout method
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Table.2 provides the model evaluation results 

and compare the performance of all the classification 

models on the record forms of 10, 15, and 30 minutes 

time intervals. In these tables: 

Classification accuracy (CA) is the proportion 

of correctly classified examples, Sensitivity (Sens) 

(also called true positive rate (TPR), hit rate and 

recall) is the number of detecting positive examples 

among all positive examples, e.g. The proportion of 

sick people correctly diagnosed as sick, Brier score 

(Brier) measures the accuracy of probability 

assessments, which measures the average deviation 

between the predicted probabilities of events and the 

actual events. 

 

Table.3 
 Performance comparison of the classification models

Method Time 

Interval 
(min) 

CA Sens Brier 

   Class A Class B Class C Class D  

Classification 

Tree 

10 0.7962 89.50% 84.00% 70.40% 81.40% 

0.2994 15 0.8105 89.70% 86.90% 71.50% 80.10% 

30 0.8146 92.20% 85.00% 72.60% 86.00% 

Naïve Bayes 10 0.7807 92.20% 79.00% 65.00% 87.60% 

0.3355 15 0.7749 93.50% 81.60% 62.80% 87.00% 

30 0.772 92.20% 76.50% 65.50% 90.00% 

Random 

Forest 

10 0.7867 88.00% 88.20% 65.50% 75.20% 

0.2994 15 0.8057 93.60% 88.90% 68.30% 79.50% 

30 0.8166 94.10% 83.50% 66.40% 92.00% 

CN2 10 0.7746 90.30% 81.10% 68.80% 79.00% 

0.3355 15 0.7846 91.70% 84.10% 66.80% 77.00% 

30 0.7964 90.20% 93.00% 69.00% 80.00% 

 

As Table.2 shows, all the four classification 

methods perform nearly equal quality prediction on 

three time interval type data sets that shows the 

models are not depending on time intervals.  

Classification Tree has the best classification 

accuracy and Random Forest after Classification tree 

shows better accuracy proportionately, these models 

concentrate on entropy and information gain 

parameters that helps covering noise factor in the 

data set. Result in Table.2 also shows the naïve 

Bayes method has a nearly invariant accuracy by 

changing the length of time interval, this is because 

of its more depend on numerical data of the current 

state of traffic. CN2 has a mediocre performance this 

could be because sequential covering form of 

building CN2 model. Random Forest and 

Classification Tree methods consider the whole of 

the data set and operate in splitting manner. In 

contrast to them, CN2 covers a portion of the training 

set the covered by the extracted rule in each iteration 

so overlapping between inference rules occurs more 

and cause decreased CN2’s performance. 

To demonstrate better the performance of 

prediction methods, scatter diagrams of Fig.3 to 

Fig.7 compares the real LOS of 30 min time intervals 

of training set with the predicted LOS that obtained 

from each classification model. As these diagrams 

shows, except some boundary point in LOS C and D 

in other points, the predictions have acceptable 

correspondent with real-world next state LOS.   

 

 
 
Fig.4. The real next state LOS for 30 min time intervals 

 
Fig.5. The predicted next state LOS for 30 min time intervals with 
Classification Tree 
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Fig.6. The predicted next state LOS for 30 min time intervals with 

Random Forest 

 

 
Fig.7. The predicted next state LOS for 30 min time intervals with 

Naïve Bayes 

 
 

Fig.8. The predicted next state LOS for 30 min time intervals with 

CN2 

 

3.2. Naïve Bayesian Nomogram 

Nomogram is a simple and intuitive, yet useful 

and powerful representation of linear models, such as 

logistic regression, naive Bayesian classifier and 

linear SVM. Fig.4 shows a Naïve Bayesian 

nomogram to assess the prediction probability of 

class A. In statistical terms, the nomogram plots log 

odds ratios for each value of each attribute. For more 

information, readers can refer to Mozina & et al. 

[31]. The topmost horizontal axis of this diagram 

represents the point scores, e.g. the odds ratio, which 

are estimated from the training data. To get log odds 

ratios for a particular value of the attribute, find the 

vertical axis to the left of the curve corresponding to 

the attribute. Then imagine a line to the left, at the 

point where it hits the curve, turn upwards and read 

the number on the top scale.  The curve thus shows a 

mapping from attribute values on the left to log odds 

at the top. The lower part of the nomogram (bottom 

two axes of the nomogram) relates the sum of points 

as contributed by the known attributes to the class 

probability  (      ). 
The Naïve Bayesian nomogram structure 

reveals influences of the attribute values to the class 

probability. According to Fig.4 Flow has the biggest 

potential influence on the prediction probability of 

class A, since the corresponding line in the 

nomogram for this attribute is the longest. After that 

Speed, Density and Time are respectively influential 

parameters in the probability of the class A for the 

next time interval. This diagram also shows that 

effect of Speed and Time is not monotonous. 

3.3. Rule Evaluation 

Using CN2 model, the number of 527, 353 and 

229 if-then rules generated respectively for 10, 15 

and 30 min time intervals which correspondingly  in 

224, 166 and 102 cases the rule quality was greater 

than or equal to 0.9 . Table.3 lists 14 rules of the 

whole rule set generated by CN2 on 30 min time 

interval records. These rules selected by rule quality 

threshold 0.9 and coverage threshold 40. For 

example, the rule No. 2 that only depends on Speed 

and Flow to ensure next state will be in LOS A can 

be interesting for indicating maximum flow in free-

flow condition. The rule No. 14 says between 3:30 

PM to 5:30 PM if Speed is less than or equal to 63 

km and Flow is greater than 1598, LOS will change 

to F. Rules like this latter case are interesting in 

designing traffic management and traveler 

information systems because they declare detailed 
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statement with proper variable and precise 

thresholds. 

Table.4 shows an overview of classification tree 

learned model as a hierarchy in a textual form that 

can be used to extract propositional rule. This table 

assesses the probabilities with class A. Columns 

respectively shows Majority class, probability of 

majority class, the probability of the target class, 

number of instances, relative distribution and 

absolute distribution. 

 

 
Fig.9. Naïve Bayesian nomogram for prediction of short-term level of service for target class: A, the relative number of examples for 

each value of attributes was shown by the thickness of the curve corresponding to the attribute where the number of examples is higher. 
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Table.3 

Selected Rules (obtained from 30 min time interval records) with Rule quality threshold 0.9 and coverage threshold 40 

No. 
Rule 

length 

Rule 

quality 
Coverage 

Predicted 

class 
Distribution Rule 

1 4 0.998 430 A 430.0:0.0:0.0:0.0 
IF Time Duration (min)<=240 AND Flow (veh/h)<=774 AND 
Time Duration (min)>30 AND Speed (km/h)>69 THEN 

nextState=A 

2 2 0.978 43 A 43.0:0.0:0.0:0.0 
IF Speed (km/h)<=95 AND Flow (veh/h)<=170 THEN 
nextState=A 

3 3 0.987 74 C 0.0:74.0:0.0:0.0 
IF Time Duration (min)>1350 AND Speed (km/h)>65 AND 

Flow (veh/h)>42 THEN nextState=C 

4 3 0.994 152 C 0.0:152.0:0.0:0.0 
IF Speed (km/h)>85 AND Time Duration (min)<=390 AND 

Flow (veh/h)>102 THEN nextState=C 

5 4 0.981 50 C 0.0:50.0:0.0:0.0 
IF Flow (veh/h)>104 AND Speed (km/h)>90 AND Flow 

(veh/h)>1264 AND Density (veh/km)<=15 THEN nextState=C 

6 4 0.979 45 C 0.0:45.0:0.0:0.0 
IF Speed (km/h)>83 AND Time Duration (min)>1050 AND 
Flow (veh/h)<=1286 AND Flow (veh/h)>1246 THEN 

nextState=C 

7 6 0.987 73 C 0.0:73.0:0.0:0.0 

IF Flow (veh/h)<=1254 AND Density (veh/km)>11 AND 

Speed (km/h)>77 AND Time Duration (min)<=390 AND 
Time Duration (min)>120 AND Speed (km/h)<=84 THEN 

nextState=C 

8 7 0.986 70 C 0.0:70.0:0.0:0.0 

IF Density (veh/km)<=15 AND Time Duration (min)>270 
AND Time Duration (min)<=360 AND Density (veh/km)>7 

AND Speed (km/h)>74 AND Speed (km/h)<=82 AND Flow 

(veh/h)>636 THEN nextState=C 

9 4 0.979 46 D 0.0:0.0:46.0:0.0 

IF Time Duration (min)<=900 AND Density (veh/km)<=19 

AND Density (veh/km)>18 AND Density (veh/km)<=19 

THEN nextState=D 

10 7 0.977 41 D 0.0:0.0:41.0:0.0 

IF Flow (veh/h)>1356 AND Time Duration (min)<=900 AND 

Density (veh/km)>16 AND Density (veh/km)<=22 AND 

Speed (km/h)<=76 AND Flow (veh/h)<=1480 AND Flow 

(veh/h)>1410 THEN nextState=D 

11 5 0.983 58 D 0.0:0.0:58.0:0.0 
IF Density (veh/km)>15 AND Time Duration (min)<=900 
AND Density (veh/km)<=18 AND Speed (km/h)<=83 AND 

Time Duration (min)>750 THEN nextState=D 

12 6 0.984 60 D 0.0:0.0:60.0:0.0 

IF Flow (veh/h)>1254 AND Density (veh/km)>16AND Speed 

(km/h)<=73 AND Time Duration (min)>990 AND Time 
Duration (min)<=1170 AND Speed (km/h)>67 THEN 

nextState=D 

13 4 0.988 83 F 0.0:0.0:0.0:83.0 

IF Speed (km/h)<=53 AND Flow (veh/h)>1480 AND Density 

(veh/km)>37 AND Time Duration (min)<=1170 THEN 
nextState=F 

14 4 0.985 65 F 0.0:0.0:0.0:65.0 

IF Speed (km/h)<=63 AND Flow (veh/h)>1598 AND Time 

Duration (min)>930 AND Time Duration (min)<=1050 THEN 
nextState=F 

 

4. Conclusion 

 

In this study, a classification data mining 

approach has proposed for the prediction of road 

facility’s level of service and producing simple and 

easy handling if-then rules. This method can be used 

in designing intelligent transportation and expert 

systems and in studying of traffic pattern by traffic 

engineers.  

The results show Classification Tree and Random 

Forest have the best result in prediction. The Naïve 

Bayesian  nomogram also showed that Flow has the 

biggest potential influence between other attributes 

on the prediction. CN2 model generated some well-

suited if-then rules that can be used in studying of the 

traffic pattern. 

A considerable number of topics can be investigated 

in this area for future work, including: setting 

boundary conditions and calibration parameters of 

macroscopic simulation models according to predict 

LOS, finding road facility characteristics and 

recognition effective variable information and 

prediction of congestion, designing the decision tree 

controller, expert traffic systems and knowledge base 

systems based on the generated if-then rules.

 



International Journal of  Smart Electrical Engineering, Vol.1, No.3, Fall 2012                    ISSN:  2251-9246  
 

191 

Table.4 

 Hierarchy rules of classification tree with target class: A; Tree size: 615 nodes, 308 leaves

Classification Tree Class P(Class) P(Target) # Inst Distribution (rel) Distribution (abs) 

 
C 0.375 0.173 4121 

0.173:0.375:0.30
6:0.145 

713:1547:1263:59
8 

  Density (veh/km) <=16.314 C 0.577 0.292 2416 
0.292:0.577:0.12

9:0.002 
706:1393:311:6 

  
 

Flow (veh/h) <=899 A 0.752 0.752 896 
0.752:0.232:0.01

5:0.001 
674:208:13:1 

  
  

Time Duration (min) <=255 A 0.96 0.96 572 
0.960:0.040:0.00

0:0.000 
549:23:0:0 

  
   

Time Duration (min) <=45 C 0.789 0.211 19 
0.211:0.789:0.00

0:0.000 
4:15:0:0 

  
    

Flow (veh/h) <=798 A 0.5 0.5 8 
0.500:0.500:0.00

0:0.000 
4:4:0:0 

  
    

Flow (veh/h) >798 C 1 0 11 
0.000:1.000:0.00

0:0.000 
0:11:0:0 

  
   

Time Duration (min) >45 A 0.986 0.986 553 
0.986:0.014:0.00

0:0.000 
545:8:0:0 

  
  

Time Duration (min) >255 C 0.571 0.386 324 
0.386:0.571:0.04

0:0.003 
125:185:13:1 

  
   

Flow (veh/h) <=458 A 0.8 0.8 105 
0.800:0.171:0.02

9:0.000 
84:18:3:0 

  
    

Flow (veh/h) <=184 A 0.92 0.92 50 
0.920:0.020:0.06

0:0.000 
46:1:3:0 

  
    

Flow (veh/h) >184 A 0.691 0.691 55 
0.691:0.309:0.00

0:0.000 
38:17:0:0 

  
   

Flow (veh/h) >458 C 0.763 0.187 219 
0.187:0.763:0.04

6:0.005 
41:167:10:1 

  
    

Density (veh/km) 

<=8.142 
C 0.596 0.362 94 

0.362:0.596:0.04

3:0.000 
34:56:4:0 

  
    

Density (veh/km) 

>8.142 
C 0.888 0.056 125 

0.056:0.888:0.04

8:0.008 
7:111:6:1 

  
 

Flow (veh/h) >899 C 0.78 0.021 1520 
0.021:0.780:0.19

6:0.003 
32:1185:298:5 

  
  

Density (veh/km) <=14.990 C 0.884 0.037 845 
0.037:0.884:0.07

7:0.002 
31:747:65:2 

  
   

Time Duration (min) 

<=405 
C 0.936 0.058 360 

0.058:0.936:0.00

6:0.000 
21:337:2:0 

  
    

Speed (km/h) 

<=85.242 
C 0.891 0.1 211 

0.100:0.891:0.00

9:0.000 
21:188:2:0 

  
    

Speed (km/h) >85.242 C 1 0 149 
0.000:1.000:0.00

0:0.000 
0:149:0:0 

  
   

Time Duration (min) >405 C 0.845 0.021 485 
0.021:0.845:0.13

0:0.004 
10:410:63:2 

  
    

Speed (km/h) 
<=81.499 

D 0.538 0.077 13 
0.077:0.231:0.53

8:0.154 
1:3:7:2 

  
    

Speed (km/h) >81.499 C 0.862 0.019 472 
0.019:0.862:0.11

9:0.000 
9:407:56:0 

  
  

Density (veh/km) >14.990 C 0.649 0.001 675 
0.001:0.649:0.34

5:0.004 
1:438:233:3 

  
   

Time Duration (min) 

<=1155 
C 0.575 0.002 511 

0.002:0.575:0.41

7:0.006 
1:294:213:3 

  
    

Speed (km/h) 
<=86.899 

D 0.556 0 279 
0.000:0.434:0.55

6:0.011 
0:121:155:3 

  
    

Speed (km/h) >86.899 C 0.746 0.004 232 
0.004:0.746:0.25

0:0.000 
1:173:58:0 

  
   

Time Duration (min) 
>1155 

C 0.878 0 164 
0.000:0.878:0.12

2:0.000 
0:144:20:0 

  
    

Speed (km/h) 

<=83.418 
C 0.783 0 69 

0.000:0.783:0.21

7:0.000 
0:54:15:0 

  
    

Speed (km/h) >83.418 C 0.947 0 95 
0.000:0.947:0.05

3:0.000 
0:90:5:0 
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