
International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

151

Distributed Black-Box Software Testing Using Negative

Selection

Ramin Rahnamoun
1

1 Computer Engineering Department, Azad University-Tehran Central Branch, Tehran, Iran. Email: ram.rahnamoon@iauctb.ac.ir

Abstract

In the software development process, testing is one of the most human intensive steps. Many researchers try to automate test

case generation to reduce the manual labor of this step. Negative selection is a famous algorithm in the field of Artificial

Immune System (AIS) and many different applications has been developed using its idea. In this paper we have designed a

new algorithm based on negative selection for breeding test cases. Our approach, belongs to the category of black-box

software testing. Moreover, this algorithm can be implemented in a distributed model. Two well-known case studies from

software testing benchmarks is selected and results show the efficiency of this algorithm.

Keywords: Artificial Immune System, black-Box Testing, Negative Selection, Code Coverage

© 2013 IAUCTB-IJSEE Science. All rights reserved

1. Introduction

In the process of software development, testing

is one of the most complex and human intensive

steps. Software testers concentrate on generating

proper test cases. As software systems grow and

embed in improvement processes of large

organizations, the cost of software failures continues

to escalate. Therefore, software companies must pay

much more money and time to develop trustworthy

products. Automated test generation is a process of

reducing cost and time in such situations.

This paper uses negative selection algorithm

from Artificial Immune System (AIS) to design a

black-box software test case generator. Black-box

testing is a method that does not need source code of

software and thus it is especially useful for

vulnerability detection in closed source

environments. Different algorithms (such as Genetic

Algorithms) has been applied for test case generation

in white-box testing, but few algorithms has been

designed based on black-box approach.

The main idea of this paper is focused on

normal interaction between user and software. Users

of any software have a normal interaction, so if an

abnormal request is submitted to the system, the

probability of finding an exception would increase.

This concept can be expressed by the code coverage

of software. In our approach, normal behavior of

users with system, traverse a set of paths in flow

graph. The remaining path is called abnormality code

coverage and may also include abnormal behaviors.

This new algorithm tries to find such paths,

those paths that normal inputs cannot cover. To

obtain this, we use negative selection algorithm from

Artificial Immune System (AIS). At first, a record

log is created from normal interaction of the users

with software. It is possible to generate a distributed

log files, because every user can be logged separately

and a merged log can be created from them. Negative

selection generates detectors (input values) that are

assumed as abnormality. This input set can be fed to

software and the results might show the probable

exceptions.

pp.151:157

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

152

In the following section, related works about

automated test case generation and different

approaches of negative selection is reviewed. Section

3 describes the basic ideas of AIS with a special

focus on negative selection. Section 4 discusses

software testing and general methods of test case

generation. The main idea of this paper is described

in section 5. In section 6 and 7 case studies of our

work is explained with experimental results. In the

last section, our opinions about this work and also

future works are discussed.

2. Background and Related Works

Software testing has a wide history in the field

of software engineering. This paper is only focused

on automated test case generation, so we only review

this background. In static structure analysis of

programs, symbolic execution has made an especial

attention between researchers. This idea is related to

King [1][2] in 70’s decade, but has been recently

used in new research works [3][4]. Dynamic test data

generation has a wide range of methods. Random

search generate randomly input cases and watch the

results of them for exceptional events. Miller [5] and

later Korel [6] has extended this method by

redefinition of program conditions. Applying meta-

heuristic search methods is also popular. Simulated

annealing [7] is an example of such methods, but

evolutionary algorithms has made much more

attention in this area of research. Genetic Algorithms

[8][9] is the main method among such algorithms.

According to [10], evolutionary structural test

generation can be classified into coverage-oriented

[11] and structure-oriented approaches. Moreover,

the later approach sub-classified to control-oriented

[12], branch-distance-oriented [13] and combined

[14] methods. Most of the mentioned methods

belong to white-box approach. In contrary, black-box

methods has limited implementation. This method in

practice is useful for vulnerability detection [15], but

it is also applicable in the field of software testing.

Random and mutation testing can also be considered

in this category. Modelling software in Z notation

has also been used as a black-box method [16].

Artificial Immune System was used in various

applications, from computer security [17][18] and

Intrusion Detection Systems (IDS) [19][20], to

clustering [21] and machine learning [22]. Negative

selection algorithm introduced in [23] and then

extended by new researchers [24].

3. Artificial Immune System and Negative

Selection

Vertebrate immune system has different

intelligent behaviors and one of the most important

one is self/non-self-discrimination. This system can

discriminate 10
16

 self-antigens from any other

antigens, a feature that many artificial systems

cannot simulate. Moreover, learning, induction, and

memory are other interesting features of this system.

Artificial Immune System (AIS) is a general

paradigm that covers all of these features in

computational models. Among various mechanisms

in the immune system that are explored for AIS,

negative selection, immune network model and

clonal selection are still the most discussed models

[24].

Artificial negative selection is a model that is

developed based on a natural process in thymus for

T-cells. Immature T-cells in thymus is assembled

based on an especial rearrangement of genetic codes.

Then, thymus eliminates any T-cells that interact

with self-antigens. The models that are developed

based on this natural process are called negative

selection and applied to various real world

applications. Different researchers try to modify

classical model, but the major characteristic of

negative selection still remains [23]. This algorithm

consists of two stages. In generation stage, based on

a random process non-self-antigens (detectors) are

generated and similar detectors with self-samples

will be eliminated. So, producing a set of self-

samples is essential in this stage. In detection stage,

every new sample is compared with detectors and

those having similarities with detectors will be

recognized as non-self [24].

Negative selection algorithm has the following

essential points that must be discussed in each

implementation [23][25]:

– Data representation of samples and detectors:

Self and non-self-entities of each real world

application have different structures. So it must be

modelled in an especial form, for example binary or

real-valued vectors representation.

– Matching rule:

 In both phases of the algorithm, we need a

mechanism to calculate similarities between inputs,

detectors and self-set. This matching rule is

resembled to any detection, classification and

recognition algorithms.

– Detector generation mechanism:

In classical form an exhaustive (random) search

is used, but deterministic algorithms is also

implemented.

4. Black-Box Software Testing

Software testing is a critical element of

software quality assurance. But testing cannot show

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

153

the absence of defects, it can only show that software

defects are present [26]. However the design of test

cases for a software is a challenging problem. The

total input space of an operational software is so

large, and therefore it is not possible to test every

input values. A perfect test case is the one that find

most errors with a minimum amount of time and

effort [27].

Although different references in software

testing use distinct classification of testing

approaches [27][28], but white-box and black-box

testing approaches are more popular. According to

this view, black-box approach concentrates on

functional behavior of software in the operational

environments while white-box approach looks at

internal structure of software modules [28].

Black-box, data-driven, or input/output data-

driven is a famous testing strategy. In this approach,

testers do not concentrate about internal behavior or

structure of software. Instead, they concentrate on

finding circumstances in which the program does not

behave according to its specifications [15]. Black-

box testing has different advantages. This approach

can be applicable, even if the source code is not

available. In vulnerability detection, this ability has a

critical role. Also in web-based applications that

source code changes rapidly, this method can be used

easily. Software in operation may face some errors

that cannot be detected by trying the approaches

based on the structure of source code, but black-box

testing may find such defects. Simplicity of this

approach is an important feature. White-box testing

needs to analyze the details of software and this

process will be more difficult in large scale source

code, but in black-box approach we do not need any

information about details of program structure. This

approach can be reused easily for testing other

software therefore reproducibility is another

interesting feature of it. Beside of these abilities, the

challenging problem is determining when to stop

testing and how much effective the testing has been

[15].

5. A New Approach Based on Negative Selection

In this section we first define some important

keywords in software testing and negative selection

and then we explain the framework based on our

algorithm with them.

5.1. Formal Definitions

– Input vector: An input vector is a vector v =

(x1; x2 . . . ; xk) of input variables to program P. The

domain of input variable xi, 1 ≤ i ≤ k is the set of all

possible values for xi denoted by Dxi. The input

domain of P is the cross product DP = Dx1 × Dx2

×...× Dxk. A program input x is a single point in the

k-dimensional input space DP, x ∈ DP. So the

domain of input vector for real functions is very

large, thus it is not possible to evaluate each member

of DP in order to find probable bugs.

– Control flow graph: A control flow graph for

a program P is a directed graph CFG = (N, E, s, e),

where N is a set of nodes, E is a set of edges, and s

and e are respective unique entry and exit nodes.

Each node n ∈ N is a statement in the program, with

each edge, e = (ni, nj) ∈ E, representing a transfer of

control from node ni to node nj [10].

– Code coverage: In software testing, code

coverage is a set of nodes C ∈ N of CFG which is

covered when a set T of test cases is executed by P.

Code coverage is normally shown by percent and is

equal to
‖ ‖

‖ ‖
 . Normality samples cover the

normality set of nodes Norm ∈ N. Considering our

test case set T covering k nodes which are not in

Norm, we take one step further and define.

 Abnormality Code Coverage =

‖ ‖ ‖ ‖
 .

– Euclidean distance: If α and β are two input

values of an input variable xd then dist(α, β) =

║α-β║.

– Hamming distance: Assuming bi is the ith bit

of the every input value b, The hamming distance

between two input values α and β of input variable xd

is defined as () ∑ ()

 , where

size is the bit-size of input variables and is the

logical Exclusive OR representative.

– R-chunk matching: An input value α of an

input variable xd with the size of N is said to be the r-

chunk match of input value β of the same input

variable if all bits of α matches the bits of β in the

window(s) specified by w. That is if we define wz as

the representative of w where the bits in the window

are 1 and the one outside are 0 then the sum

∑ (()(

)) where ⊙ is logical And

representative should be zero.

5.2. General Framework

Fig.1 shows the activity diagram of our

framework. A log recorder module should be

installed on every machine that has the software

which users interact with them normally. This

module produces a log file from every machine and

these distributed logs will be merged into a central

log file.

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

154

Fig.1. General Framework for breeding test cases based on

negative selection

This log file represents normal behavior of the

software. Now, the negative selection algorithm

generates abnormality detectors (in the terminology

of testing, they are test cases). The process of

negative selection can be distributed on different

machines via classification of random generator

outputs to reduce run time. In this case the generated

test cases can also be merged into a central test case

set. This set is then sent to every machine that runs

the software under the test mode.

The negative selection algorithm has a central

role in this framework. In section 3, we described the

main characteristics of negative selection however

this algorithm can be implemented in different ways.

For every application, the details needed for this

algorithm must be carefully defined. In the next

section different versions of this algorithm is

discussed with the generated experimental results.

6. Case Study

For case studies we decided to choose two

completely different cases. The triangle [30] problem

is chosen because of its input space which are

integers and in the other hand sreadhex [31] input

space is a string of characters with two related

integer. Both TriTyp and sreadhex are famous

software testing problems which are used to test the

effectiveness of new methods introduced in software

testing.

6.1. Triangle Problem

The classic triangle problem which is also

known as TriTyp is one of the most famous

benchmarks for software testing. TriTyp simply tries

to classify a triangle by the given 3 values of its sides

into three categories, scalene, isosceles and

equilateral. Sides are normally of the type signed

short which is 16 bit in the current 32 bit systems,

thus the problem space of TriTyp is pretty huge (2
48

different values) in contrast with its limited inputs. It

may seem that TriTyp is a simple problem for

software testing but in fact it isn’t. Considering the

size of the problem space there are only few inputs

which satisfy some of the branches of TriTyp. For

example there are 2
15

 − 1 equilateral triangles, so the

mathematical expectation of choosing 3 random

short values which would result in the branch which

processes the equilateral triangles is

. This

behavior of TriTyp makes it perfect for evaluation

and comparison of different methods in software

testing. In our approach scalene, isosceles and

equilateral triangles are considered to be from

normality space. The samples is gathered with our

little program from students also supports our

assumption. The abnormality space is also

categorized into 17 categories concerning zero and

negative values and invalid triangles. This

categorization helps us distinguish which matching

would do better for this problem and also gives us a

metric for comparison with another software testing

methods like Random Testing.

6.2. Triangle Problem Test Case Generation

Three detectors each concerning the value for

sides should be chosen for each attempt and the

problem reduces to finding the highest abnormality

coverage with fewer attempts. Two metrics can be

taken into account when it is coming to comparison

of different matching or methods, the code coverage

and the number of attempts for reaching certain code

coverage. The following specific matching functions

used for elimination of generated detectors showing a

certain amount of matching with normality:

– Euclidean distance: This simple matching

simply rejects all the values within the range of

normality, with the gathered samples any integer

within the range of [6, 2000] would be rejected as a

detector.

– Hamming distance: For 16 bit values the

threshold parameter of Hamming distance seems to

work fine with 2 as the value.

– R-chunk matching: The bit stream

ddddd111111111dd is used for this matching with d

representing for don’t cares. With this specific bit

stream the r parameter of r-chunk would actually be

9.

Also two heuristics are used trying to lower the

number of attempts. These heuristics are general

heuristics concerning boundary values. The first

heuristic simply takes a value from the set {0, 1,−1,

2
15

 − 1,−2
15

} half of the times and the other one from

{0, 2
15

 −1,−2
15

} and the values around them. Adding

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

155

these heuristics to the classic negative selection

algorithm shows a great efficiency.

This will be discussed more in detail in the

results section.

6.3. Sreadhex

As for our second case study we decided to use

a routine which works mostly with characters and

related integers, something which happens in the

majority of software or routines. This makes this case

study more like a real-world example of how

negative selection can effectively be used to reduce

the number of test cases while having a fair amount

of abnormality coverage. This would indeed reduce

costs in many different systems. sreadhex is a C

routine aimed to manipulate hexadecimals out of a

string of representing characters, a similar Java

program named PackHexChar is also discussed in

[29]. The routine is called with 5 arguments but only

3 of them are interesting for us. The first parameter

str holds the input string of characters which are

representation of hexadecimals, Each two characters

together meaning two hexadecimal together represent

the 8 bits of a byte. The second parameter rlen holds

the number of bytes which should be read from str. If

the number of valid characters in the first rlen

characters of str and our third parameter is even then

we will have a complete set of bytes, otherwise we

should save the remaining nibble in our third

parameter odd which is a pointer to integer. This

allows continuous calls to sreadhex without worrying

about the length of valid characters in the first rlen

characters of str. We also categorized the

abnormality space of sreadhex into 8 distinct

categories. This categorization is concerned with

invalid rlen and odd values and the invalid characters

in str.

6.4. Detectors and Test Case Generation in sreadhex

Considering our categorization, we decided to

choose four kinds of detectors: byte detectors

concerning the validity of hexadecimal

representatives and three integer detector of type

signed char concerning string length, one for

controlling dlen and one for our odd parameter.

Except the detector which controls the string length,

all the other three have a direct influence on the

abnormality space coverage. The following matching

function is used to determine if the detector can be

accepted:

– Euclidean distance: With the selected

normality all the detectors with values inside the

character range of [0...f] or [48, 102] are going to be

rejected.

This issue will be discussed more about this

matching in the next section.

– Hamming distance: The threshold parameter

is somehow very limited in this case due to few

numbers of bits in detectors. The results are gathered

with the same threshold value as before.

– R-chunk matching: The bit-stream 11dd11dd

is used for checking against the normality, with this

bit-stream the two higher bits of each nibble become

important.

7. Results

The most time consuming part of negative

selection algorithms is detector generation. After

detector generation each set of detectors are

considered for execution. The corresponding results

including abnormality code coverage with each try as

a metric are gathered via our driver program. It is

only good for comparing results and calculating the

efficiency of each method. In the real world however

we cannot have such information about code

coverage. This is a general limitation of Black-Box

software testing.

In triangle problem the number of generated

detectors in each of approaches including our classic

random generation of detectors and our two

heuristics could be found in Table 1.

Table.1

Total Number of Detectors Generated in Triangle Problem

H1 and H2 are our two heuristics. The maximum try for reaching

full abnormality code coverage was 450000.

Matching Euclidean Hamming R-chunk

Classic 450000 450000 450000

H1 1098 450000 525

H2 1749 450000 642

Table 2 is concerned with specific code

coverage regarding the number of attempts needed to

be made with random detector generation approach

while Table 3 and 4 covers the results with the help

of our heuristic functions.

Table 2 also includes random selection result

which is another black-box approach. From Table 2,

it is clear that r-chunk detectors are showing a great

efficiency when higher abnormality code coverage is

desired but whenever time becomes a more important

factor Euclidean detectors are doing better.

Table.2

Abnormality code coverage with random generation of detectors.

The maximum coverage of 82.35% reached, na means the
coverage is not reached with the maximum try of 150000 attempts

with each attempt containing 3 detectors.

Coverage% 5.88 23.52 47 70.58 82.35

Euclidean 1 7 15 4154 122435

Hamming 1 7 15 4235 na

R-chunk 1 5 21 3909 76059

Random 1 7 15 4284 131573

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

156

Table.3

Abnormality code coverage with the influence of first heuristic
na means the coverage is not reached with the maximum try of

150000 attempts with each attempt containing 3 detectors. The

table is started with 23.52% since before that the coverage is fast.

Coverage% 23.5 47.05 76.4 94.11 100

Euclidean 4 9 28 46 3266

Hamming 4 9 na na na

R-chunk 4 9 22 39 175

Table.4

Abnormality code coverage with the influence of second heuristic.

Coverage% 23.5 47.05 76.4 94.11 100

Euclidean 4 11 31 70 483

Hamming 4 14 na na Na

R-chunk 4 14 27 79 214

Hamming distance is not desired when input

variables are integers and have a direct influence on

CFG. Hamming detectors could not reach a higher

abnormality code coverage in comparison to other

methods, because detectors with 0 value would be

rejected and in our categorization it plays an

important role.

Both r-chunk and Euclidean detectors dominate

the classic random selection methods. From Table 3

it is also clear that a little amount of information

about the software can make a huge difference in

efficiency, and it normally is the case.

However it is always a good idea to check the

boundary values and the points around them in input

vector space. Our second heuristic shows the same

result while being a little less efficient checking a

little more space around boundary values.

The number of detectors in each attempt is

variable in the case of sreadhex. Results which can

be seen in Fig.2 shows a fast growth in the

abnormality code coverage. The dominance of r-

chunk detectors over the classic random selection is

clear. The same conclusion can be made in sreadhex

case: when higher abnormality code coverage is

desired, r-chunk detectors would be the desired

choice. The Euclidean detectors are clearly not a

good choice when dealing with the string of

characters. They never reached 100% coverage

because some characters in the abnormality space are

rejected. Hamming detectors are also showing good

results after certain coverage. The r-chunk detectors

in both cases have shown good results in comparison

to other type of detectors and the classic random

selection.

8. Conclusion and Future Works

Black-box software testing is a method that can

be used for automated test case generation without

the need of source code. Breeding test cases has a

practical importance of reducing the manual labor in

testing process. In this paper, we used negative

selection algorithm that is inspired from vertebrate

immune system to generate proper test cases for the

software under test. A distributed framework is also

designed to reduce the running time of test case

generation.

Fig.2. Abnormality code coverage regarding the number of

attempts in sreadhex. The details of results at the beginning of plot

are more important thus the Fig. is not plotted in its full domain.

The internal detail of negative selection is

discussed and different variations are compared in

two case studies.

This new distributed algorithm can also be used

in new different areas. We believe that our approach

can be used to develop a new vulnerability detection

method. Vulnerabilities which endanger the security

of software can be more devastating than the normal

bugs. The reader should have noticed that our

approach is only implemented on simple programs

without internal states. Many of practical software

have internal states and in such situations the term of

normality must be redefined. In these scenarios, the

user’s session with the system can be considered as

an instance of normal behavior. So the definition of

test cases must also be redefined. This new concept

can be used in web applications and object oriented

unit testing.

References

[1] J. King, “A New Approach to Program Testing”, In

Proceedings of the International Conference on Reliable
Software ACM Press, pp.228-233, 1975.

[2] J. King, “Symbolic Execution and Program Testing”,

Communications of the ACM, Vol.19, Iss.7, pp.385-394,
1976.

[3] S. Khurshid, C. S. Pasareanu, W. Visser: Generalized

symbolic execution for model checking and testing, In Proc.
9th International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pp.553-568, April

2003.

[4] K. L. McMillan, “Symbolic Model Checking”, Kluwer

Academic Publishers, 1993.

[5] W. Miller, D. Spooner, “Automatic Generation of Floating-

Point Test Data”. IEEE Trans. On Software Engineering,

Vol.2, No.3, pp.223-226, 1976.

[6] B. Korel, “Automated Software Test Data Generation”, IEEE
Trans. On Software Engineering, Vol.16, No8, pp.870-879,

International Journal of Smart Electrical Engineering, Vol.2, No.3, Summer 2013 ISSN: 2251-9246

157

1990.

[7] N. Tracey, J. Clark, K. Mander, J. McDermid, “An automated

framework for structural test-data generation”, In Proceedings
of the International Conference on Automated Software

Engineering, pp.285-288, IEEE Computer Society Press,

Hawaii, USA, 1998.

[8] D. Goldberg, “Genetic Algorithms in Search, Optimization

and Machine Learning”, Addison-Wesley, 1989.

[9] M. Mitchell, “An Introduction to Genetic Algorithms”, MIT
Press, Cambridge, MA, 1996.

[10] P. McMinn, “Search-Based Test Data Generation, A survey”,

Journal on Software Testing, Verification and Reliability,
Vol.14, No.2, pp.105-156, June 2004.

[11] A. Watkins, “The Automatic Generation of Test Data Using

Genetic Algorithms”, In Proceedings of the Fourth Software
Quality Conference, pp.300-309, 1995.

[12] R. Pargas, M. Harrold, and R. Peck, “Test-Data Generation

Using Genetic Algorithms”, Software Testing, Verification
and Reliability, Vol.9, No.4, pp.263-282, 1999.

[13] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, K.

Karapoulios, “Application of Genetic Algorithms to Software
Testing”, In 5th International Conference on Software

Engineering and its Applications, pp.625-636, Toulouse,

France, 1992.

[14] J. Wegener, A. Baresel, H. Sthamer, “Evolutionary Test

Environment for Automatic Structural Testing”, Information

and Software Technology, Vol.43, No.14, pp.841-854, 2001.

[15] M. Sutton, A. Greene, P. Amini, “Fuzzing: Brute Force

Vulnerability Discovery”, 2006.

[16] B. Jones, H. Sthamer, X. Yang, and D. Eyres, “The Automatic
Generation of Software Test Data Sets Using Adaptive Search

Techniques”, In Proceedings of the 3rd International

Conference on Software Quality Management, pp.435-444,
Seville, Spain, 1995.

[17] S. Forrest, S. Hofmeyr, A. Somayaji, “Computer

Immunology”, Communications of the ACM, Vol.40, No.10,
pp.88-96, 1997.

[18] J. O. Kephart, G. B. Sorkin,W. C. Arnold, D.M. Chess, G. J.
Tesauro, S. R.White, “Biologically Inspired Defences Against

Computer Viruses”, Machine Learning and Data Mining:

Method and Applications, R. S. (Ed) Michalski, I. Bratko, M.
Kubat, John-Wiley & Son, pp.313-334, 1997.

[19] Jung Won Kim, “Integrating Artificial Immune Algorithms

for Intrusion Detection”, PhD Thesis, Department of

Computer Science, University College London, July 30, 2002.

[20] F. Gonzalez, “A Study of Artificial Immune Systems Applied

to Anomaly Detection”, PhD Thesis, Division of Computer

Science, University of Memphis, Memphis, TN 38152, May
2003.

[21] J. Timmis, “Artificial Immune Systems: A Novel Data

Analysis Technique Inspired by the Immune Network
Theory”, PhD Thesis, Department of Computer Science,

University of Wales, Aberystwyth, 2001.

[22] T. Knight, “MARIA: A Multilayered Unsupervised Machine
Learning Algorithm Based on the Vertebrate Immune

System”, PhD Thesis, The University of Kent at Canterbury,

2005.

[23] S. Forrest, A. Perelson, L. Allen, R. Allen, Cherukuri, “Self-

nonself Discrimination in a Computer”, In Proceedings of the

1994 IEEE Symposium on Research in Security and Privacy,
pp.202-212, Los Alamitos, CA. IEEE Computer Society

Press, 1994.

[24] Z. Ji, D. Dasgupta, “Revisiting Negative Selection
Algorithms”, Evolutionary Computation, Vol.15, No,2,

pp.223-251, 2007.

[25] F. Esponda, S. Forrest, P. Helman, “A Formal Framework for
Positive and Negative Detection Schemes”, pp.357-373, IEEE

Systems, Man, and Cybernetics Society, 2003.

[26] R. G. Pressman, “Software Engineering, a Practitioner’s
approach”, McGraw-Hill, 2005.

[27] B. Beizer, “Software Testing Techniques”, Second Edition,

The Coriolis Group, 1990.

[28] G. J. Myers, ”The Art of Software Testing”, John Wiley &

Sons, 2004.

[29] L. C. Briand, Y. Labiche, Z. Bawar, “Using Machine Learning
to Refine Black-Box Test Specifications and Test Suites”,

Technical Report, Carleton University, 2007.

[30] TriTyp source code,
http://www.irisa.fr/lande/gotlieb/resources/Mutants/trityp.c

[31] Marick B., “The Craft of Software Testing”, Prentice Hall,
1995.

