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Abstract 

In the software development process, testing is one of the most human intensive steps. Many researchers try to automate test 

case generation to reduce the manual labor of this step. Negative selection is a famous algorithm in the field of Artificial 

Immune System (AIS) and many different applications has been developed using its idea. In this paper we have designed a 

new algorithm based on negative selection for breeding test cases. Our approach, belongs to the category of black-box 

software testing. Moreover, this algorithm can be implemented in a distributed model. Two well-known case studies from 

software testing benchmarks is selected and results show the efficiency of this algorithm. 
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1. Introduction 

In the process of software development, testing 

is one of the most complex and human intensive 

steps. Software testers concentrate on generating 

proper test cases. As software systems grow and 

embed in improvement processes of large 

organizations, the cost of software failures continues 

to escalate. Therefore, software companies must pay 

much more money and time to develop trustworthy 

products. Automated test generation is a process of 

reducing cost and time in such situations. 

This paper uses negative selection algorithm 

from Artificial Immune System (AIS) to design a 

black-box software test case generator. Black-box 

testing is a method that does not need source code of 

software and thus it is especially useful for 

vulnerability detection in closed source 

environments. Different algorithms (such as Genetic 

Algorithms) has been applied for test case generation 

in white-box testing, but few algorithms has been 

designed based on black-box approach. 

The main idea of this paper is focused on 

normal interaction between user and software. Users 

of any software have a normal interaction, so if an 

abnormal request is submitted to the system, the 

probability of finding an exception would increase. 

This concept can be expressed by the code coverage 

of software. In our approach, normal behavior of 

users with system, traverse a set of paths in flow 

graph. The remaining path is called abnormality code 

coverage and may also include abnormal behaviors. 

This new algorithm tries to find such paths, 

those paths that normal inputs cannot cover. To 

obtain this, we use negative selection algorithm from 

Artificial Immune System (AIS). At first, a record 

log is created from normal interaction of the users 

with software. It is possible to generate a distributed 

log files, because every user can be logged separately 

and a merged log can be created from them. Negative 

selection generates detectors (input values) that are 

assumed as abnormality. This input set can be fed to 

software and the results might show the probable 

exceptions.  
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In the following section, related works about 

automated test case generation and different 

approaches of negative selection is reviewed. Section 

3 describes the basic ideas of AIS with a special 

focus on negative selection. Section 4 discusses 

software testing and general methods of test case 

generation. The main idea of this paper is described 

in section 5. In section 6 and 7 case studies of our 

work is explained with experimental results. In the 

last section, our opinions about this work and also 

future works are discussed. 

2. Background and Related Works 

Software testing has a wide history in the field 

of software engineering. This paper is only focused 

on automated test case generation, so we only review 

this background. In static structure analysis of 

programs, symbolic execution has made an especial 

attention between researchers. This idea is related to 

King [1][2] in 70’s decade, but has been recently 

used in new research works [3][4]. Dynamic test data 

generation has a wide range of methods. Random 

search generate randomly input cases and watch the 

results of them for exceptional events. Miller [5] and 

later Korel [6] has extended this method by 

redefinition of program conditions. Applying meta- 

heuristic search methods is also popular. Simulated 

annealing [7] is an example of such methods, but 

evolutionary algorithms has made much more 

attention in this area of research. Genetic Algorithms 

[8][9] is the main method among such algorithms. 

According to [10], evolutionary structural test 

generation can be classified into coverage-oriented 

[11] and structure-oriented approaches. Moreover, 

the later approach sub-classified to control-oriented 

[12], branch-distance-oriented [13] and combined 

[14] methods. Most of the mentioned methods 

belong to white-box approach. In contrary, black-box 

methods has limited implementation. This method in 

practice is useful for vulnerability detection [15], but 

it is also applicable in the field of software testing. 

Random and mutation testing can also be considered 

in this category. Modelling software in Z notation 

has also been used as a black-box method [16]. 

Artificial Immune System was used in various 

applications, from computer security [17][18] and 

Intrusion Detection Systems (IDS) [19][20], to 

clustering [21] and machine learning [22]. Negative 

selection algorithm introduced in [23] and then 

extended by new researchers [24]. 

3. Artificial Immune System and Negative 

Selection  

Vertebrate immune system has different 

intelligent behaviors and one of the most important 

one is self/non-self-discrimination. This system can 

discriminate 10
16

 self-antigens from any other 

antigens, a feature that many artificial systems 

cannot simulate. Moreover, learning, induction, and 

memory are other interesting features of this system. 

Artificial Immune System (AIS) is a general 

paradigm that covers all of these features in 

computational models. Among various mechanisms 

in the immune system that are explored for AIS, 

negative selection, immune network model and 

clonal selection are still the most discussed models 

[24]. 

Artificial negative selection is a model that is 

developed based on a natural process in thymus for 

T-cells. Immature T-cells in thymus is assembled 

based on an especial rearrangement of genetic codes. 

Then, thymus eliminates any T-cells that interact 

with self-antigens. The models that are developed 

based on this natural process are called negative 

selection and applied to various real world 

applications. Different researchers try to modify 

classical model, but the major characteristic of 

negative selection still remains [23]. This algorithm 

consists of two stages. In generation stage, based on 

a random process non-self-antigens (detectors) are 

generated and similar detectors with self-samples 

will be eliminated. So, producing a set of self-

samples is essential in this stage. In detection stage, 

every new sample is compared with detectors and 

those having similarities with detectors will be 

recognized as non-self [24]. 

Negative selection algorithm has the following 

essential points that must be discussed in each 

implementation [23][25]: 

– Data representation of samples and detectors: 

Self and non-self-entities of each real world 

application have different structures. So it must be 

modelled in an especial form, for example binary or 

real-valued vectors representation. 

– Matching rule: 

 In both phases of the algorithm, we need a 

mechanism to calculate similarities between inputs, 

detectors and self-set. This matching rule is 

resembled to any detection, classification and 

recognition algorithms. 

– Detector generation mechanism:  

In classical form an exhaustive (random) search 

is used, but deterministic algorithms is also 

implemented. 

4. Black-Box Software Testing 

Software testing is a critical element of 

software quality assurance. But testing cannot show 
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the absence of defects, it can only show that software 

defects are present [26]. However the design of test 

cases for a software is a challenging problem. The 

total input space of an operational software is so 

large, and therefore it is not possible to test every 

input values. A perfect test case is the one that find 

most errors with a minimum amount of time and 

effort [27]. 

Although different references in software 

testing use distinct classification of testing 

approaches [27][28], but white-box and black-box 

testing approaches are more popular. According to 

this view, black-box approach concentrates on 

functional behavior of software in the operational 

environments while white-box approach looks at 

internal structure of software modules [28]. 

Black-box, data-driven, or input/output data-

driven is a famous testing strategy. In this approach, 

testers do not concentrate about internal behavior or 

structure of software. Instead, they concentrate on 

finding circumstances in which the program does not 

behave according to its specifications [15]. Black-

box testing has different advantages. This approach 

can be applicable, even if the source code is not 

available. In vulnerability detection, this ability has a 

critical role. Also in web-based applications that 

source code changes rapidly, this method can be used 

easily. Software in operation may face some errors 

that cannot be detected by trying the approaches 

based on the structure of source code, but black-box 

testing may find such defects. Simplicity of this 

approach is an important feature. White-box testing 

needs to analyze the details of software and this 

process will be more difficult in large scale source 

code, but in black-box approach we do not need any 

information about details of program structure. This 

approach can be reused easily for testing other 

software therefore reproducibility is another 

interesting feature of it. Beside of these abilities, the 

challenging problem is determining when to stop 

testing and how much effective the testing has been 

[15]. 

5. A New Approach Based on Negative Selection 

In this section we first define some important 

keywords in software testing and negative selection 

and then we explain the framework based on our 

algorithm with them. 

5.1. Formal Definitions 

– Input vector: An input vector is a vector v = 

(x1; x2 . . . ; xk) of input variables to program P. The 

domain of input variable xi, 1 ≤ i ≤ k is the set of all 

possible values for xi denoted by Dxi. The input 

domain of P is the cross product DP = Dx1 × Dx2 

×...× Dxk. A program input x is a single point in the 

k-dimensional input space DP, x ∈ DP. So the 

domain of input vector for real functions is very 

large, thus it is not possible to evaluate each member 

of DP in order to find probable bugs. 

– Control flow graph: A control flow graph for 

a program P is a directed graph CFG = (N, E, s, e), 

where N is a set of nodes, E is a set of edges, and s 

and e are respective unique entry and exit nodes. 

Each node n ∈ N is a statement in the program, with 

each edge, e = (ni, nj) ∈ E, representing a transfer of 

control from node ni to node nj [10]. 

– Code coverage: In software testing, code 

coverage is a set of nodes C ∈ N of CFG which is 

covered when a set T of test cases is executed by P. 

Code coverage is normally shown by percent and is 

equal to 
‖ ‖

‖ ‖
    . Normality samples cover the 

normality set of nodes Norm ∈ N. Considering our 

test case set T covering k nodes which are not in 

Norm, we take one step further and define. 

 Abnormality Code Coverage = 
 

‖ ‖ ‖    ‖
    . 

– Euclidean distance: If α and β are two input 

values of an input variable xd then      dist(α, β) = 

║α-β║. 

– Hamming distance: Assuming bi is the ith bit 

of the every input value b, The hamming distance 

between two input values α and β of input variable xd 

is defined as     (   )   ∑ (     )
    
   , where 

size is the bit-size of input variables and   is the 

logical Exclusive OR representative. 

– R-chunk matching: An input value α of an 

input variable xd with the size of N is said to be the r-

chunk match of input value β of the same input 

variable if all bits of α matches the bits of β in the 

window(s) specified by w. That is if we define wz as 

the representative of w where the bits in the window 

are 1 and the one outside are 0 then the sum 

∑ ((      )(  
    
       )) where ⊙ is logical And 

representative should be zero. 

5.2. General Framework 

Fig.1 shows the activity diagram of our 

framework. A log recorder module should be 

installed on every machine that has the software 

which users interact with them normally. This 

module produces a log file from every machine and 

these distributed logs will be merged into a central 

log file. 
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Fig.1. General Framework for breeding test cases based on 

negative selection  

This log file represents normal behavior of the 

software. Now, the negative selection algorithm 

generates abnormality detectors (in the terminology 

of testing, they are test cases). The process of 

negative selection can be distributed on different 

machines via classification of random generator 

outputs to reduce run time. In this case the generated 

test cases can also be merged into a central test case 

set. This set is then sent to every machine that runs 

the software under the test mode. 

The negative selection algorithm has a central 

role in this framework. In section 3, we described the 

main characteristics of negative selection however 

this algorithm can be implemented in different ways. 

For every application, the details needed for this 

algorithm must be carefully defined. In the next 

section different versions of this algorithm is 

discussed with the generated experimental results. 

6. Case Study 

For case studies we decided to choose two 

completely different cases. The triangle [30] problem 

is chosen because of its input space which are 

integers and in the other hand sreadhex [31] input 

space is a string of characters with two related 

integer. Both TriTyp and sreadhex are famous 

software testing problems which are used to test the 

effectiveness of new methods introduced in software 

testing. 

6.1. Triangle Problem 

The classic triangle problem which is also 

known as TriTyp is one of the most famous 

benchmarks for software testing. TriTyp simply tries 

to classify a triangle by the given 3 values of its sides 

into three categories, scalene, isosceles and 

equilateral. Sides are normally of the type signed 

short which is 16 bit in the current 32 bit systems, 

thus the problem space of TriTyp is pretty huge (2
48

 

different values) in contrast with its limited inputs. It 

may seem that TriTyp is a simple problem for 

software testing but in fact it isn’t. Considering the 

size of the problem space there are only few inputs 

which satisfy some of the branches of TriTyp. For 

example there are 2
15

 − 1 equilateral triangles, so the 

mathematical expectation of choosing 3 random 

short values which would result in the branch which 

processes the equilateral triangles is 
     

   
 

 

   
. This 

behavior of TriTyp makes it perfect for evaluation 

and comparison of different methods in software 

testing. In our approach scalene, isosceles and 

equilateral triangles are considered to be from 

normality space. The samples is gathered with our 

little program from students also supports our 

assumption. The abnormality space is also 

categorized into 17 categories concerning zero and 

negative values and invalid triangles. This 

categorization helps us distinguish which matching 

would do better for this problem and also gives us a 

metric for comparison with another software testing 

methods like Random Testing. 

6.2. Triangle Problem Test Case Generation 

Three detectors each concerning the value for 

sides should be chosen for each attempt and the 

problem reduces to finding the highest abnormality 

coverage with fewer attempts. Two metrics can be 

taken into account when it is coming to comparison 

of different matching or methods, the code coverage 

and the number of attempts for reaching certain code 

coverage. The following specific matching functions 

used for elimination of generated detectors showing a 

certain amount of matching with normality: 

– Euclidean distance: This simple matching 

simply rejects all the values within the range of 

normality, with the gathered samples any integer 

within the range of [6, 2000] would be rejected as a 

detector. 

– Hamming distance: For 16 bit values the 

threshold parameter of Hamming distance seems to 

work fine with 2 as the value. 

– R-chunk matching: The bit stream 

ddddd111111111dd is used for this matching with d 

representing for don’t cares. With this specific bit 

stream the r parameter of r-chunk would actually be 

9. 

Also two heuristics are used trying to lower the 

number of attempts. These heuristics are general 

heuristics concerning boundary values. The first 

heuristic simply takes a value from the set {0, 1,−1, 

2
15

 − 1,−2
15

} half of the times and the other one from 

{0, 2
15

 −1,−2
15

} and the values around them. Adding 
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these heuristics to the classic negative selection 

algorithm shows a great efficiency. 

This will be discussed more in detail in the 

results section. 

6.3. Sreadhex 

As for our second case study we decided to use 

a routine which works mostly with characters and 

related integers, something which happens in the 

majority of software or routines. This makes this case 

study more like a real-world example of how 

negative selection can effectively be used to reduce 

the number of test cases while having a fair amount 

of abnormality coverage. This would indeed reduce 

costs in many different systems. sreadhex is a C 

routine aimed to manipulate hexadecimals out of a 

string of representing characters, a similar Java 

program named PackHexChar is also discussed in 

[29]. The routine is called with 5 arguments but only 

3 of them are interesting for us. The first parameter 

str holds the input string of characters which are 

representation of hexadecimals, Each two characters 

together meaning two hexadecimal together represent 

the 8 bits of a byte. The second parameter rlen holds 

the number of bytes which should be read from str. If 

the number of valid characters in the first rlen 

characters of str and our third parameter is even then 

we will have a complete set of bytes, otherwise we 

should save the remaining nibble in our third 

parameter odd which is a pointer to integer. This 

allows continuous calls to sreadhex without worrying 

about the length of valid characters in the first rlen 

characters of str. We also categorized the 

abnormality space of sreadhex into 8 distinct 

categories. This categorization is concerned with 

invalid rlen and odd values and the invalid characters 

in str. 

6.4. Detectors and Test Case Generation in sreadhex 

Considering our categorization, we decided to 

choose four kinds of detectors: byte detectors 

concerning the validity of hexadecimal 

representatives and three integer detector of type 

signed char concerning string length, one for 

controlling dlen and one for our odd parameter. 

Except the detector which controls the string length, 

all the other three have a direct influence on the 

abnormality space coverage. The following matching 

function is used to determine if the detector can be 

accepted: 

– Euclidean distance: With the selected 

normality all the detectors with values inside the 

character range of [0...f] or [48, 102] are going to be 

rejected. 

This issue will be discussed more about this 

matching in the next section. 

– Hamming distance: The threshold parameter 

is somehow very limited in this case due to few 

numbers of bits in detectors. The results are gathered 

with the same threshold value as before. 

– R-chunk matching: The bit-stream 11dd11dd 

is used for checking against the normality, with this 

bit-stream the two higher bits of each nibble become 

important. 

7. Results  

The most time consuming part of negative 

selection algorithms is detector generation. After 

detector generation each set of detectors are 

considered for execution. The corresponding results 

including abnormality code coverage with each try as 

a metric are gathered via our driver program. It is 

only good for comparing results and calculating the 

efficiency of each method. In the real world however 

we cannot have such information about code 

coverage. This is a general limitation of Black-Box 

software testing. 

In triangle problem the number of generated 

detectors in each of approaches including our classic 

random generation of detectors and our two 

heuristics could be found in Table 1.  

Table.1 

Total Number of Detectors Generated in Triangle Problem 

H1 and H2 are our two heuristics. The maximum try for reaching 

full abnormality code coverage was 450000. 

Matching Euclidean Hamming R-chunk 

Classic 450000 450000 450000 

H1 1098 450000 525 

H2 1749 450000 642 

Table 2 is concerned with specific code 

coverage regarding the number of attempts needed to 

be made with random detector generation approach 

while Table 3 and 4 covers the results with the help 

of our heuristic functions.  

Table 2 also includes random selection result 

which is another black-box approach. From Table 2, 

it is clear that r-chunk detectors are showing a great 

efficiency when higher abnormality code coverage is 

desired but whenever time becomes a more important 

factor Euclidean detectors are doing better. 

Table.2 

Abnormality code coverage with random generation of detectors. 

The maximum coverage of 82.35% reached, na means the 
coverage is not reached with the maximum try of 150000 attempts 

with each attempt containing 3 detectors. 

Coverage% 5.88 23.52 47 70.58 82.35 

Euclidean 1 7 15 4154 122435 

Hamming 1 7 15 4235 na 

R-chunk 1 5 21 3909 76059 

Random 1 7 15 4284 131573 
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Table.3 

Abnormality code coverage with the influence of first heuristic 
na means the coverage is not reached with the maximum try of 

150000 attempts with each attempt containing 3 detectors. The 

table is started with 23.52% since before that the coverage is fast. 
 

Coverage% 23.5 47.05 76.4 94.11 100 

Euclidean 4 9 28 46 3266 

Hamming 4 9 na na na 

R-chunk 4 9 22 39 175 

Table.4 

Abnormality code coverage with the influence of second heuristic. 

 

Coverage% 23.5 47.05 76.4 94.11 100 

Euclidean 4 11 31 70 483 

Hamming 4 14 na na Na 

R-chunk 4 14 27 79 214 

Hamming distance is not desired when input 

variables are integers and have a direct influence on 

CFG. Hamming detectors could not reach a higher 

abnormality code coverage in comparison to other 

methods, because detectors with 0 value would be 

rejected and in our categorization it plays an 

important role. 

Both r-chunk and Euclidean detectors dominate 

the classic random selection methods. From Table 3 

it is also clear that a little amount of information 

about the software can make a huge difference in 

efficiency, and it normally is the case. 

However it is always a good idea to check the 

boundary values and the points around them in input 

vector space. Our second heuristic shows the same 

result while being a little less efficient checking a 

little more space around boundary values. 

The number of detectors in each attempt is 

variable in the case of sreadhex. Results which can 

be seen in Fig.2 shows a fast growth in the 

abnormality code coverage. The dominance of r-

chunk detectors over the classic random selection is 

clear. The same conclusion can be made in sreadhex 

case: when higher abnormality code coverage is 

desired, r-chunk detectors would be the desired 

choice. The Euclidean detectors are clearly not a 

good choice when dealing with the string of 

characters. They never reached 100% coverage 

because some characters in the abnormality space are 

rejected. Hamming detectors are also showing good 

results after certain coverage. The r-chunk detectors 

in both cases have shown good results in comparison 

to other type of detectors and the classic random 

selection. 

8. Conclusion and Future Works  

Black-box software testing is a method that can 

be used for automated test case generation without 

the need of source code. Breeding test cases has a 

practical importance of reducing the manual labor in 

testing process. In this paper, we used negative 

selection algorithm that is inspired from vertebrate 

immune system to generate proper test cases for the 

software under test. A distributed framework is also 

designed to reduce the running time of test case 

generation. 

 
Fig.2. Abnormality code coverage regarding the number of 

attempts in sreadhex. The details of results at the beginning of plot 

are more important thus the Fig. is not plotted in its full domain. 

The internal detail of negative selection is 

discussed and different variations are compared in 

two case studies. 

This new distributed algorithm can also be used 

in new different areas. We believe that our approach 

can be used to develop a new vulnerability detection 

method. Vulnerabilities which endanger the security 

of software can be more devastating than the normal 

bugs. The reader should have noticed that our 

approach is only implemented on simple programs 

without internal states. Many of practical software 

have internal states and in such situations the term of 

normality must be redefined. In these scenarios, the 

user’s session with the system can be considered as 

an instance of normal behavior. So the definition of 

test cases must also be redefined. This new concept 

can be used in web applications and object oriented 

unit testing. 
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