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 Abstract 

As a matter of course, power market uncertainties escalation is by product of power industry restructure on one hand and the 

unrivalled penetration of renewable energies on the other. Generally, the decision making process in such an uncertain 

environment faces with different risks. In addition, the performance of real power markets is very close to oligopoly markets, 

in which, some market players exercise market power to influence the power market and this matter brings some risks to 

other players. Hence, each market player must consider these market features to choose his best decision. So, in case of such 

an uncertain environment, GENCO's bidding strategy would be a complicated and error-prone process. This paper aims to 

ease this issue suggesting the use of probabilistic bidding strategy of generation units by the unscented transformation (UT) 

method. The proposed method can consider the correlation between variables, where it models the coalition between market 

participants. Using the proposed methodology, a market participant can choose a desired range of profit; then, set his decision 

to manage his profit by reducing his risks. Finally, the proposed methodology is examined through some case studies done in 

a standard test system. Simulation results show that executing market power by some market players disturbs the competition 

in the market. 
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Nomenclature 

The notation used throughout the text is defined 

as below; others will be explained as required in the 

manuscript. 

),( tia  No load cost coefficient of i th thermal                                  

unit at time t ]/[$ h  

),( tib  Linear cost coefficient of i th thermal                          

unit at time t [ MWh/$ ] 

),( tic   Quadratic cost coefficient of i th thermal                       

unit at time t [ ))/(($ 2 hMW  ] 

WC              Weibull scale parameter [m/sec]. 

k         Index of samples, running from 1 to n  

WK        Weibull shape parameter. 

n         The number of uncertain variables 

ZZP        Covariance matrix of the input variables 

vector 

YYP   Covariance matrix of output variables 

vector 

)(min iP   Minimum generation of i th  unit   [MW]                       

)(max iP   Maximum generation of i th unit [MW]                         

rsP    SCG’s rated power [MW] 

rwP    WTG’s rated power [MW] 

SCGP    SCG output power [MW] 

WTGP    WTG output power [MW] 

R    Solar radiation [
2/ mW ] 

CR  A certain radiation point, usually 150

2/ mW  

STDR  Solar radiation in the standard radiation, 

usually 1000
2/ mW  

pp. 109:118 
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v    Wind speed [m/sec] 

iV   Wind turbine cut- in speed [m/sec]. 

oV   Wind turbine cut- out speed [m/sec]. 

rV   Wind turbine rated speed [m/sec]. 

kW  Weight associated with the k th sample 

point. 

Z  Vector of uncertain input variables. 


Z  Vector of mean value for input variables 
k

Z  The k th sample point 

Y  Vector of uncertain output variables 


Y  Vector of mean value for output variables 
k

Y  Vector of transformed sample point of
k

Z  

yx,          Correlation coefficient between variables 

x and y  

           Beta shape parameter [kW/m2] 

    Beta shape parameter [kW/m2] 

            Market energy price [$/MWh] 

i          The profit of GENCO i  [$] 

1. Introduction 

Restructuring process of power markets in 

recent years caused the bulk power system operation 

tend to change from a traditional and vertically 

integrated system to a competitive one and 

consequently, highlighting the power market concepts 

more and more. As a matter of fact, power systems 

and consequently the power markets are always faced 

with a variety of uncertainties. The system security, 

reliability and market efficiency may be influenced by 

these uncertainties which can deteriorate the system 

performance.  In recent years, as a direct result of 

environmental issues and especially after the oil 

shock at 1973 which caused the energy prices to 

increase dramatically, the attention is more 

concentrated on renewable energies (REs) 

exploitation. Theses energies have an instable 

behavior and are not expected to have a certain trend 

in a given time; therefore, have their own 

uncertainties added to other uncertain system 

parameters. So, scurrying the power industry 

reregulation juxtaposed with the unrivalled utilization 

of uncertain REs faces the power system operation 

with severs uncertainties [1].  As a result, assessment 

of system and market behaviors considering these 

uncertainties is of significant importance. The 

problem of GENCO’s optimal bidding strategy is one 

of restructured power market problems faced with 

generation companies. In this problem, GENCO’s 

must provide their selling bids for the future hours 

with the knowledge of market behavior, opponents 

decision, the model of demand, market mechanism, 

and power system operational conditions. These types 

of problems are included in the category of game 

theory problems [2]. Nash equilibrium is the most 

commonly accepted solution concept in game theory 

[3]. In order to have a safe profit margin, rational 

GENCOs bid at Nash equilibrium point. As the profit 

of these market participants relates to the energy sold 

and the price of their bids, finding their optimal 

bidding strategy considering market uncertainties is of 

significant interest. 

 The investigation of power system uncertainties 

was proposed in the early seventies [4], [5]. As yet, 

many probabilistic methods have been proposed to 

study the uncertainty in power system problems such 

as Cumulant method [6]- [8], point estimation method 

(PEM) [9]-[12], and Unscented Transformation (UT) 

method  [1], [13]-[15], to name a few. In [16], the 

bidding strategy of GENCOs under the uncertainty of 

opponents’ information is studied. In [17], the fuzzy 

modeling is used to model the uncertainty of input 

variables in the bidding strategy. In [18]-[19], the 

problem of bidding strategy under the uncertainty 

using probability theory is investigated.  However, 

there is not a comprehensive work on the problem of 

GENCOs bidding strategy considering different kind 

of uncertainties and this motivates the researchers in 

this field. 

The main contribution of this work is to propose 

a framework for probabilistic bidding strategy in 

deregulated two-side auction markets using the 

Unscented Transformation (UT) method considering 

different kind of uncertainties. As the coalition 

between market players is probable in power markets; 

the coalition modeling and assessing its effects on the 

market behavior is of significant importance. As 

another contribution, it is proposed to model the 

coalition between market participants using the 

concept of correlation between uncertain decision 

variables of the market players.  Using the proposed 

method of this work, each market player i.e. GENCOs 

or system loads, can define their profit margins and 

the method determines their decision variable margins 

to ensure the expected profit margin.  

The rest of the paper is organized as follows. 

Section II formulates the GENCOs bidding strategy 

problem and discusses about the solution of this 

problem.  The game theory and finding Nash 

equilibrium point through particle swarm 

optimization (PSO) method is discussed. In Section 

III, the procedure of uncertainty modeling in the 

bidding strategy is given. Section IV introduces the 

UT method and its formulation. In Section V, the 

probabilistic framework for GENCOs optimal bidding 

strategy and its flowchart is proposed.  Section VI 
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describes the case studies, thereafter; the obtained 

results are presented for each case study.  

2. GENCOs Bidding Strategy 

A) Bidding Strategy 

In deregulated two side auction power markets, 

the generation units and loads participate in the 

market to sell/buy energy and other market 

commodities. In such a system, the generation units 

prepare their offers in an increasing order of price and 

the loads prepare their bids in a decreasing order to 

the independent system operator (ISO). Then, the 

market clearing price (MCP) is obtained by sorting 

and the intersection of the aggregated supply and 

demand curves. Once the energy market is cleared, 

each GENCO will be paid according to pricing 

mechanism of the market. Generally, there are two 

pricing mechanisms: uniform and pay-as-bid [20]. In 

a power market, GENCOs may prepare their strategic 

bids according to the four known models in imperfect 

competition included are Cournot, Bertrand, 

Stackelberg, and Supply Function Equilibrium (SFE) 

[3].  In the SFE model, GENCOs compete through the 

simultaneous choice of supply functions. In SFE 

model, GENCOs are able to link their bidding price 

with the bidding quantity of their product. This model 

is close to the actual behavior of players in the actual 

power market [2]. 

The cost function of a generation unit can be 

modeled as a quadratic function relating the operation 

cost to the amount that is generated. 

iiiiiii cPbPaPC  2)(  (1) 

In a perfect competitive energy market, with 

many number of generation units, GENCOs try to bid 

their generations according to their marginal cost as: 

iiiii bPaMC  2  (2) 

In the real energy market with limited number of 

players, oligopoly is the base of energy market 

performance. In such a market, some GENCOs act as 

price makers and the others as price takers. A player 

will behave as a price taker in the market if it bid at 

its marginal cost. If all of GENCOs bid according to 

their marginal cost, the market power will not 

produce. So each price maker player tries to increase 

its profit using its market power opportunity. In such 

a market, GENCOs use their mark-up marginal cost 

to construct their bids as (3): 

1

)2(





i

iiiiiii

k

bPakMCk
 (3) 

Where, iK is the bidding strategy of i th 

GENCO. In such an oligopoly market, GENCOs try 

to maximize their profit by choosing their best 

bidding strategy. 

)()( iiiiiii PCPPCR    (4) 

)]([

)]([

iii

iiii

PCPMax

PCRMaxMax






 (5) 

In a pool-co system, the minimum and 

maximum limits of generation for all units must be 

considered.  

maxmin
iii PPP   (6) 

In an imperfect power market, the MCP is 

influenced by the market players' decisions. So, the 

profit of each GENCO depends on his decision ik and 

decision of his opponents ik . This matter can be 

stated as: 

),( iiii XX   (7) 

),( iiii kk   (8) 

Note that as the profit of each GENCO depends 

on its production and the market price, the maximum 

profit can be obtained when 

0


i

i

dk

d
 (9) 

So, finding the solution of this problem would 

be a multi-player optimization problem. Game theory 

is one of the approaches that may be used for this 

purpose.  

B) Game Theory and Nash Equilibrium 

Generally, the multi-player decision making 

problem is studied by game theory [2].   Usually, 

three main mathematical forms are used in the study 

of games included are the strategic form, the 

extensive form, and the coalitional form [3]. They are 

different in the amount of detail on the play of the 

game. The behavior of electricity markets is near to 

strategic form [3]. Nash equilibrium is the most 

commonly accepted problem solution of the game 

theory. A strategy has the characteristics of Nash 

equilibrium for a player if that player cannot increase 

its own payoff by choosing any strategy other than its 

equilibrium strategy, given the strategy choice of its 

rivals. In this case, each player will decrease its 

payoff if it deviates from its Nash equilibrium 

strategy, assuming all other players continue to play 

their existing strategies. As a result, a Nash 

equilibrium point is the ‘‘best response’’, which 

means that no player has an incentive to change its 

strategy choice, given all other player’s strategy 

choices. As mentioned, the problem of finding a Nash 

equilibrium point can be formulated as a problem of 

finding the global optimum of a real valued function. 

In this work, the particle swarm optimization method 

is used to find this point.  
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C) Particle Swarm Optimization (PSO) Method for 

Optimal Bidding 

Particle swarm optimization (PSO) is a swarm 

based evolutionary algorithm [21]. It can reliably and 

accurately solve very complex constrained 

optimization problems [21]-[24]. In this method, each 

particle which is a potential solution moves in multi-

dimensional problem space with a given velocity. 

Each particle updates its velocity according to its 

flying experiences and the others. The i th  particle in 

swarm at iteration k has a position represented by a 

d-dimensional vector such as (10). Its velocity is 

calculated from (12); where ),( kiVd
 is the velocity of 

particle i  in the d th  dimension. The best position of 

particle i  obtained until iteration k is named as 

particle best (PB) that represented by

)1,,,( ktjiPB . The best previous position among 

all the particles in iteration k is recorded and called 

global best (GB) that represented by )1,,( ktjGB . 

Particles' position is updated by (13). 

 ),(),...,,(),,(),( 21 kixkixkixkiX d  (10) 

 ),(),...,,(),,(),( 21 kivkivkivkiV d  (11) 

)]1,,,()1,,([

)]1,,,()1,,,([

)1,,,(),,,(

22

11







ktjixktjGBrandc

ktjixktjiPBrandc

ktjivwktjiV

 

(12) 

),,,()1,,,(),,,( ktjivktjixktjix   (13) 

It must be noted that in (12), )1,,,( ktjiv  is 

the particle's current velocity and the second term 

indicates the cognitive part of PSO in which the given 

particle updates its velocity based on its own 

experiences. The social part of PSO is given by the 

third part in which the particle uses the experiences of 

other particles to update its velocity.  Specific weights 

are devoted to each term. Note that i  indicates 

particle number, j  represents generating unit/vehicle, 

t  is the time and k shows the iteration number.  

3. Uncertain Parameters and Uncertainty 

Modeling 

As formerly mentioned, optimal bidding strategy 

is an optimization problem with some constraints. In 

an optimization problem, the lagrangian multiplayers 

stand for lack of resources; so, they change as the 

right hand side of constraints vary. MCP in the power 

market is the incremental operation cost of the system 

due to increase of the demand by 1MWh. The 

locational marginal prices (LMPs) of power systems 

with competitive market form comprises from 

different components each standing for marginal 

energy price, marginal loss price, and marginal 

congestion price [25]. In case of restructured 

oligopoly market, there would be an extra term 

affecting the MCP, named as the bidding strategy of 

market participants. So, with the variation of 

lagrangian multiplayers associated with these parts, 

the MCP would be variable. In fact, the existence of 

some uncertainties such as the estimated load, 

generation, system element conditions, and the 

bidding strategy of market participants, the right hand 

sides of the problem constraints vary and 

consequently, the value of MCP changes. In the 

following, the considered uncertainties in this work 

and their modeling are presented.  

D) Uncertain Parameters 

With the introduction of power markets' 

restructuring concepts, the process of energy 

generation has experienced huge revolutions from 

centralized governmental ownership to distributed 

private form on one hand and from traditional thermal 

units to modern renewable based ones on the other 

hand.  In such markets, market behavior factors are 

highlighted more and more. Therefore, the 

momentousness of optimal bidding strategy for power 

generation companies has been glanced considerably. 

Generally, optimal bidding strategy is known as a 

deterministic market problem with fixed model 

parameters and input variables. However, many 

uncertain factors may exist within such uncertain 

power market operation due to system parameter 

forecasting errors or system elements outage as well 

as price spikes. These uncertainties introduce errors in 

the optimal decisions when deterministic data are 

used; therefore, probabilistic decision making must be 

considered. In fact, power markets are faced with 

variety of uncertainties but we mostly focus on the 

load, wind, and solar power generation uncertainties 

as system uncertainties and the bidding strategy of 

energy sellers/buyers as market participants’ 

uncertainties.  

E) Uncertainty Modeling 

Certainly, the load as the most challenging 

uncertain variable fluctuates as a function of time, 

weather conditions, and electricity price among the 

rest. In the literature review, it is commonly used to 

model the load uncertainty through the normal 

probability density function (PDF) with specific mean 

and STD values obtained from historical data [25], 

[26].  In this study, the load is divided to price 

sensitive (interruptible) and insensitive (fixed) load. 

The fixed load is modeled through a normal 

distribution function with μ, the mean value equal to 

the base load, and σ, the STD equal to ±5% of its 

mean. For the price sensitive loads, the price bids are 

modeled through normal distribution. 

)])((
2

1
exp[

2

1
)( 2













x
xf  (14) 
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In our study, some buses are assumed to have 

integrated wind farms which have uncertain output 

powers. Wind speed varies both in time and location 

and its PDF is modeled by weibull PDF in the 

respected literature [27], [28]. So, the wind speed is 

modeled with the weibull distribution function. The 

modeling of uncertainty for wind power generation in 

our problem is summarized as follows: 

Step1: The wind speed is modeled by an 

appropriate PDF such as weibull. The weibull 

distribution function is represented by (15). 

)])((exp[)()(
1 ww K

w

K

ww

w

C

v

C

v

C

K
vf 

  (15) 

Step2: In order to model the uncertainties, the 

problem is evaluated several times to cover at least 

the most important or probable conditions [15]. In 

order to model the WTG’s output power uncertainty, 

the wind speed samples are generated in each 

evaluation by an appropriate manner. 

Step3: The wind speed-power curve is used to 

convert wind speed samples to wind turbine output 

power. 
























oVvrVrwP

rVviV
iVrV

iVv
rwP

oVviVv

WTGP

if

if

orif0

 (16) 

Step4: When the wind power generation is 

calculated for each iteration, the next step would be 

the uncertainty modeling of offered price for this 

power that is done using normal distribution. 

The solar power generation is the other 

uncertain variable. It has a high degree of uncertainty. 

It varies as a function of several factors such as 

environmental conditions, time of day, month, season, 

and orientation of the solar cell generator (SCG) to 

the sun radiation and so on. The solar radiation PDF 

is modeled by beta distribution function [28], as the 

following: 

 









 )1(

)()(

)(
),:(

1
RRRf 







 (17) 

SCG’s output power is related to the solar 

radiation; therefore, its output power modeling 

requires the solar radiation modeling. The SCG’s 

output power as a function of radiation is stated as 

radiation-power curve [28]: 
























RSTDRifrsP

STDRRCRif
STDR

R
rsP

CRRif
CRSTDR

R
rsP

SCGP

0)
2

(

 (18) 

The procedure of uncertainty modeling for solar 

generation would be the same as that of the wind 

generation. Stress again that the uncertainty of 

bidding strategy for market participants (offer and bid 

prices) can be modeled using the normal distribution 

function. So, the price of offers for thermal, wind, and 

solar units as well as the price of bids for interruptible 

loads can be modeled using normal PDF.  

4. Unscented Transformation (UT) Method 

The UT is a probabilistic analysis method that 

has been developed to remove the drawbacks 

associated with linearization-based probabilistic 

methods. It is very simple and easy to code. Till now, 

several extensions of the method have been 

implemented to different uncertain problems and have 

shown exceptional performances [29]. The UT is a 

reliable method to calculate the statistics of output 

random variables undergoing a set of nonlinear 

transformations [29]. It is based on the fact that it is 

easier to approximate a probability distribution than 

an arbitrary nonlinear transformation function [30]. It 

easily produces appropriate samples of input variables 

to maintain sufficient information about the input 

variable’s PDF. Assume that Z  is a vector of n-

dimensional input random variables with mean mZ 


, and covariance matrix ZZP . Assume the other 

random variable Y relates to the input variable 

through a nonlinear function as (19). 

)(ZY f  (19) 

Where, both Z
 
and Y  are random variables 

and f can be a set of nonlinear transformation 

functions. With the UT method, the mean and 

covariance of the output variable Y  and  YYP  can be 

obtained through the following steps [29]. 

Step 1: Obtain 12 n  sample points using (20) 

to (22). 

mZ 0  (20) 

k
k

W

n
)

1
(

0 ZZPmZ


  , nk ,...,2,1            (21) 

k
nk

W

n
)

1
(

0 ZZPmZ


 , nk ,...,2,1  (22) 

Step 2: The associated weight of each Z is 

calculated using (23) to (25)  . 

00 WW   (23) 

n

W
W k

2

1 0
 , nk ,...,2,1  (24) 

n

W
W nk

2

1 0
 , nnnk 2,...,1  (25) 

It must be noted that the sum of associated 

weights must be equal to 1. 

1

2

0




n

k

kW  (26) 
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Note that k
W

n
)

1
(

0 ZZP
  

is the thk row or 

column of matrix square root ZZP)
1

(
0W

n


. The 

matrix square root of positive definite matrix P  

means that there is a matrix PA   such that
T

AAP  . Numerically efficient and stable methods 

such as the Cholesky decomposition must be used to 

calculate the matrix square root [29]. Here, 0W  is the 

weight associated with the point mZ 


, named zeroth 

point. It controls the location of other points around 

the mean value of Z [29].  

Step 3: Each sample point is fed to the nonlinear 

function to obtain a set of transformed sample points 

as: 

)( kk f Zy   (27) 

In this method, the nonlinear transformation 

function is considered as a black box; therefore, no 

simplification or linearization is required.  This issue 

is shown in Fig. 1.  

 
Fig. 1. The principle of the UT method [29] 

Step 4: The mean and covariance of output 

variable Y  is calculated using (28) and (29), 

respectively. 








n

k

kk
2

0

YWY  (28) 

Tk
n

k

kk )()(

2

0







 YYYYWPYY
 (29) 

The UT method has two special properties that 

make it easy and operative.  Firstly, the sample points 

are not selected randomly; they are so chosen to have 

a predefined mean and covariance. Secondly, the 

associated weights on the selected points do not have 

to be in the range [0, 1]; they may have positive or 

negative values but they must meet the situation of 

(26) [29]. For more details and extensions of the UT 

method, interested reader is referred to [29].  

5. Proposed Probabilistic Bidding strategy Method 

In order to execute the probabilistic bidding 

strategy of generation units in a restructured two sided 

auction market, we propose the following steps: 

 Define the market players and list the uncertain 

parameters that can be modeled using probability 

theory. In this study, we consider the following 

players: 

 Thermal units: their offering price is 

unknown and is modeled by normal 

distribution 

 Wind and solar units: their generation 

and offering prices are unknown. Wind 

and solar power generation uncertainties 

are modeled by weibull and beta 

distributions, respectively. Their 

offering prices are modeled by normal 

distribution. 

 Fixed (price insensitive) loads: the 

demand of these variables is unknown 

and their uncertainty can be modeled by 

normal distribution. 

 Interruptible (price sensitive) loads: 

their bid prices are unknown and are 

modeled by normal distribution.  

 Define the probabilistic method and the 

optimization method to find the Nash equilibrium 

point and use the simplified flowchart depicted in 

Fig. 2 Note that the UT method is used in this 

study as the probabilistic method. 

 Select the appropriate sampling of uncertain 

variables by the probabilistic method using 

equations (20) - (22).   

 For each selected sample of the method, find the 

Nash equilibrium point and save the results. Note 

that finding the Nash equilibrium point needs an 

optimization process which has some inner loops 

and is not depicted in this figure in order to avoid 

the crowded figure. The PSO method is used as 

the optimization technique to find the Nash 

equilibrium point of each sample point of the UT 

method. 

 Obtain the statistical data of decision variables by 

probabilistic method using equations (28), (29). 

6. Case Studies and Discussion 

In this section, the proposed methodology is 

examined in the IEEE 9-Bus test system. This system 

has three generation units in buses 1, 2, and 3 with the 

maximum generation capacity of 250, 80, and 80 

MW, respectively [31]. There are 3 loads in buses 5, 

7, and 9 of the system. The loads in buses 5, 7 

participate in the market by submitting their bids to 

the ISO and the load in bus 9 is not price sensitive and 

assumed to be an aggregated unit of household 

consumers. It is also assumed that a wind farm with 

an installed capacity of 15 MW and wind speed 

weibull scale and shape parameters equal to 8 

[m/sec.] and 3 is located at bus 7. Let assume that a 

solar farm with an installed capacity of 10 MW and 

solar radiation beta shape parameters equal to 0.5 

[kw/m2] and 0.3 [kw/m2] is located at bus 8.  Here, 

unit 1 is selected to be probabilistically studied on the 
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market and that chooses its optimal bidding strategy 

associated with uncertainties listed in the following: 

 Generation unit in bus 2: its offering price 

modeled by normal PDF 

 Generation unit in bus 3: its offering price 

modeled by normal PDF 

 Wind unit in bus 7: i's generated power modeled 

by weibul PDF of wind speed 

 Wind unit in bus 7: its offering price modeled by 

normal PDF  

 Solar unit in bus 8: it's generated power- modeled 

by beta PDF of solar radiation 

 Loads in buses 5, 7: their bidding prices- 

modeled by normal PDF  

 Load in bus 9: its power consumption- modeled 

by normal PDF  

Base Case 

Assume that GENCO 1 estimates the generator 

offers and price sensitive load bids mean values 

according to Table 1.  

Note that STDs of all normally distributed 

variables are considered to be %5 of their mean 

values. The market clearing mechanism is based on 

pay as bid and the bidding strategy of market players 

and their obtained profit are considered as output 

variables. Performing the probabilistic market study 

by unit 1 using the proposed methodology, gives the 

results outlined in Table 3. 

 

 
 

Fig. 2. The principle of the UT method [29] 

For the sake of simplicity and without loss of 

generality, it is assumed that wind and solar units 

construct their offers as %40, %30, and %30 of their 

power generation with mean offer prices of Table 2. 

The mean value of load at bus 9 is assumed to be 125 

MW. High mean and low STD value of the bidding 

strategy show that the benefit of unit 1 from market 

power is very large. Note that due to scarce of 

generation in the system, two other units may benefit 

from such condition tend to increase their bids. In 

order to confirm this reality, one may study the 

market under a more competitive condition by 

increasing the generation capacity of units 2 and 3. 

Case 1: More Competitive condition 

Assume that the market in the base case has 

been more competitive by doubling the generation 

capacity of units 2 and 3. Note that the generation 

offers for units 2 and 3 in Table 1 has been doubled 

with the same prices, where the results of 

probabilistic market studies are outlined in Table 4.  

Table.1. 
Generator Offers and Load Bids 

Generator/ 

load  
Block1 

MW@$/MWh 
Block 2 

MW@$/MWh 
Block3 

MW@$/MWh 

Unit@1 50@13 80@15.5 120@19.5 

Unit@2 10@16 30@17 40 @18 

Unit@3 10 @16 30 @18 40 @19 

Load@5 30@80 30@60 30@40 

Load@7 10@100 5@80 15@60 

Table.2. 
Wind and Solar Generator Offers According to Their Generation 

Generator  
Block1 

% of  Gen.@ 

$/MWh 

Block 2 
% of  Gen.@ 

$/MWh 

Block3 
% of  Gen.@ 

$/MWh 

Wind 
Unit 

%40@12 %30@13 
%30@15 

Solar 

Unit 
%40@12 %30@14 

%30@16 

Table.3. 
Generation Units’ Statistical Data- Base Case 

Unit       

Bidding Strategy 

(Ki) 
Profit [1e3$] 

Mean STD Mean STD 

Unit@1 4.7649 0.0645 2.304 0.0705 

Unit@2 3.9038 3.4875 3.7353 2.1954 

Unit@3 3.6299 2.966 4.3128 4.2666 

Unit@7 4.661 3.7939 0.2506 0.2285 

Unit@8 4.3813 3.5667 0.3556 0.3187 

Table.4. 
Generation Units’ Statistical Data- Case 1 

Unit       
Bidding Strategy Profit [1e3$] 

Mean STD Mean STD 

Unit@1 1.673 0.1624 0.4122 0.1055 

Unit@2 1.2783 0.4689 1.0756 0.6698 

Unit@3 1.3011 0.3820 0.9892 0.8369 

Wind@7 1.4695 0.6927 0.0673 0.0442 

Solar@8 1.3857 0.6419 0.0992 0.0674 
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Comparing the results of Tables 3 and 4 reveals 

that the market has been more competitive as the 

mean values of bidding strategy for all GENCOs are 

close to each other and the STD for GENCO 1 is 

increased while for the others are decreased. It means 

that the decision risk for GENCO 1 is higher than the 

base case, where it may lose its market share under 

improper decision. As another observation, the profit 

of GENCO 1 has been decreased drastically.  

In Fig. 3, the inverse cumulative distribution 

function (CDF) of profit and bidding strategy for 

GENCO 1 that helps to have the same horizontal axis 

is shown. Having Fig. 3, GENCO 1 can consider a 

desired range of profit and optimally choose the best 

range of decision variable according to the range of 

desired profit. The probability of achieving the 

desired profit can be obtained by subtracting the 

probability of lower bound profit from the upper one.  

For an instance, if GENCO 1 targeting a profit 

between 0.2 and 0.5 [1e3$], his bidding strategy i.e. 

K1, is between 1.346 and 1.81, where the probability 

of profit would be 0.7795.  

Case 2: Market Players potential Coalition Modeling  

As a well-known fact, the coalition is not an 

impossible action in modern power markets which 

usually are oligopolistic. So, the modeling of power 

markets considering the coalition and its effects on 

the market behavior is of significant interest.  When 

there is a potential coalition, the decision making in 

such a power market would be a difficult and error-

prone process if the coalition is not modeled. So, the 

market simulation methods that can model this effect 

are very appealing. Here, we propose a potential 

coalition model using the concept of correlation 

between their decision variables. When the variables 

are mutually correlated, the variation of one variable 

affects the others. Generally, this matter is stated 

through the covariance matrix the so-called 

correlation coefficient matrix. The correlation 

coefficients can be obtained through (30). 

....,,2,1,
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nyx

yxEyx

yx

yx

yx

yx


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  

(30) 

Assume that GENCO 1 wants to model the 

effects of coalition between GENCOs 2 and 3 on the 

market and his profit. Let the correlation coefficient 

between the offered price of these GENCOs to be 

+0.6. In this case, the results of probabilistic market 

studies are listed in Table 5.   It can be seen that sum 

of mean profit for GENCOs 2 and 3 has been 

increased and their STD for profit has been decreased 

indicating potential market power.  Fig. 4 portrays the 

inverse CDF of profit and bidding strategy for 

GENCO 1 in this case.  

 
Fig. 3. Inverse CDF of profit and bidding strategy for GENCO 

1- Base Case 

Table.5. 
Generation Units’ Statistical Data- Case 2 

Unit       
Bidding Strategy Profit [1e3$] 

Mean STD Mean STD 

Unit@1 1.6781 0.167 0.4154 0.1084 

Unit@2 1.3531 0.4477 1.1849 0.6334 

Unit@3 1.3377 0.4561 1.0179 0.7268 

Wind@7 1.7293 0.5505 0.094 0.04101 

Solar@8 1.6132 0.5118 0.1246 0.04821 

 

 

Fig. 4. Inverse CDF of profit and bidding strategy for GENCO 
1- Case 2 

7. Conclusions 

Hastening the power industries restructure on 

one hand and increasing the penetration of renewable 

energies in the power system one the other hand, 

intensify the power market uncertainties. Generally, 

the decision making process in such an uncertain 

environment faces with different risks. In addition, 

the performance of real power markets is very close 

to oligopoly markets, in which, some market players 

exercise market power to influence the power market 

and this matter brings some risks to other players. 

Hence, each market player must consider these 

market features to choose his best decision. In this 

paper, we proposed a methodology for probabilistic 

bidding strategy for GENCOs in two-sided auction 

power markets. The Unscented Transformation (UT) 

method is proposed for this purpose. The proposed 

method can consider the correlation between variables 

where it models the coalition between market 

participants. The proposed methodology is examined 

through case studies done in a 9-Bus test system. 
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Using the proposed methodology, a market 

participant can choose a desired range of profit; then, 

set his decision to manage his profit by reducing his 

risks. Simulation results show that executing market 

power by some market players disturbs the 

competition in the market. The results also indicate 

that potential coalition between market players may 

increase their market power and consequently 

increasing their profit. 
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