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Abstract 

This paper presents a theoretical approach to implementation of the “Multi-realization of nonlinear MIMO systems”. This 

method aims to find state-variable realization for a set of systems, sharing as many parameters as possible. In this paper a 

special nonlinear multi-realization problem, namely the multi-realization of feedback linearizable nonlinear systems is 

considered and an algorithm for achieving minimal stably-based multi-realization of a set of nonlinear feedback linearizable 

systems is introduced. An example that illustrates this algorithm is also presented. 
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1. Introduction 

The original motivation for studying multi-

realization problems comes from multiple-model 

adaptive control (MMAC) algorithms [1]. The 

implementation of “multi-controller” architecture is 

an important issue for MMAC applications. As 

argued in for example [2], because at any instant of 

time only one of the constituent controllers is to be 

applied to the plant, it is only necessary to generate 

one control signal at any time. Often, this means 

significant simplification can be achieved if all 

control signals are capable of being generated by a 

single system. In other words, rather than 

implementing each of the controllers in the family as 

a separate dynamical system, one can often achieve 

the same results using a single controller with 

adjustable parameters. Because the single controller 

state is, in effect, shared by the family of controllers, 

this implementation is termed a “state shared” multi-

realization. 

Most literature on system realization deals with 

the problem of passing from a transfer function 

description of a single linear time-invariant (LTI) 

system [3], [4], [5] to a state space description or 

matrix fraction description. Morse [2] introduced the 

concept and showed how to perform multi-

realization of several linear SISO systems in the 

context of examining MMAC for SISO plants. Paper 

[6] investigates the multi-realization of several linear 

MIMO systems. The results are applicable to MMAC 

problems for linear MIMO plants. 

As an extension to the linear case presented by 

Morse [2] for (MMAC) algorithms, Su et. al. were 

the first researchers who investigated the Multi-

realization of nonlinear systems [7]. 

This approach to multi-realization of nonlinear 

MIMO systems is the basis of the method presented 

in this paper. 

In this paper, the multi-realization technique for 

nonlinear MIMO systems is reviewed and an 

algorithm for implementing this method for 

nonlinear controllers is presented. Furthermore, this 

technique can realize “bumpless” transfer between 

nonlinear multivariable systems which is an effective 
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way to improve poor transient response of systems at 

time of switching. In this regard, a set of nonlinear 

controllers are considered and the proposed 

algorithm is used for switching between them. 

2. Multi-realization of Nonlinear systems 

The notations and symbols in this paper are 

standard and can be found in [8]. In the following 

discussion, when we use a symbol P or (P, x0) to 

denote a system, it includes both input-to-state and 

state-to-output mappings and not just the input-

output mapping. Occasionally, when only the state 

space equation is presented (i.e. only input-to-state 

mapping is considered), it implies all state variables 

are directly measurable and therefore observable. As 

a state is always associated with a system, we 

sometimes omit the sub-index of the state variable 

when referring to a particular system. 

The problem of multi-realization of general 

nonlinear systems is more complicated and difficult 

than in the linear case. Here we first consider a 

special nonlinear multi-realization problem: the 

multi-realization of feedback linearizable nonlinear 

systems. 

2.1.The multi-realization problem 

Suppose that there are given a number of 

nonlinear systems   1,2,...,iP i N described by: 

   

 
0

,
( , ) :

ixn m
i i

i
p

i

x f x g x u x u
P x

y h x y

   


 

 

(1) 

It is assumed that the mappings ,i if g  and 

functions ih  are smooth in their arguments [8]. 

Further assume that,  0
ig x has rank m and  0,iP x

satisfies both controllability and observability rank 

conditions [9] at the point ox . 

Find (if possible) a parameter-dependent system 

(the functions qiv and qih  can be chosen for each i):  

 
 

0 00
,

, :
n m

qi qi

i
p

qi

A B
P

y h y

    




   


 

 

(2) 

such that under coordinate transformation and 

regular state feedback    
i i iq q q u     , the 

system  0,iP  can be transformed to a 

decomposition form as follows: 

 

   

   

 

1 1 1

0

1 1 12 2

2 22 2

2

, :

, , ix

ix

i

n n
i i

n
i i

p
i i

P

f g u

f g u

y h y





     

   



   



  


   

(3) 

System  0,iP  is considered as a multi-

realization of non-linear systems 0( , )iP x . 

Furthermore if we could find a stable 0A  with the 

smallest possible dimension, we call the state space 

description (2) a minimal stably based multi-

realization of the set of nonlinear systems  0,iP x . 

2.2.Theorem 1 

Assume given N distinct systems 

  1,2,...,iP i N described by state variable 

equations of the standard type with i in n
iA R  , 

in m
iB R  and ip n

iC R  (with the pairs (Ai,Bi) and 

(Ci,Ai) are controllable and observable, and Bi has 

full column rank) for each system iP such that all 

controllable pairs (Ai,Bi) have an identical 

controllability indices 1, ,i imd d  and define the 

ordered set {ri1, ri2, ri3, . . .} to be the set of 

controllability indices reordered so that

 1 2 , 1,2,...,i i imr r r i N     . Then, the 

dimension of a minimal stably-based multi-

realization (with input transformation) of the set of 

systems   1,2,...,iP i N is equal to 

 
1

1

max
m

ij
i N

j

n r
 




 

(4) 

The proof of theorem is given in [7]. 

2.3.Theorem 2 

The multi-realization problem is solvable if and 

only if the following equivalent conditions (a) or (b) 

hold: 

 

(a) For each system iP (described by equation (1)), 

there exist a neighborhood U of 0x and m real-valued 

functions 
1
,...,

mi i  defined on U, such that the 

system  

   

 

i i

i

x f x g x u

y x

 




 

(5) 

has some relative degree 1{ ,..., }i imr r at 0x and

1 2
...

mi i i ir r r n    . 
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(b) 

i) for each  1,2,...,i N and 

 1,2,..., 1l n  the distribution ilG has 

constant dimension near 0x . 

ii) the distribution , 1i nG  (  1,2,...,i N ) has 

dimension n; 

iii) for each  1,2,...,i N and 

 1,2,..., 1l n  the distribution Gil is 

involutive. 

where 

 

 

 

0 1

1 1 1

,...,

,..., , ,...,

:0 ,1

i i

i

i i im

i i im f i f im

k
il ijf

G span g g

G span g g ad g ad g

G span ad g k l j m





      

(6) 

(See theorem 5.2.3 in [8]). 

Furthermore, the smallest possible dimension 

of A0 in equation (2) is equal to: 

 
1

1

max
m

ij
i N

j

n r
 




 

(7) 

The proof of theorem is given in [7]. 

3. The Multi-realization Algorithm  

In this section an algorithm for achieving 

stably-based multi-realization of a set of nonlinear 

feedback linearizable systems is presented: 

Step 1. For each nonlinear multivariable system 

Pi given by equation (1), the vector relative degree, 

can be evaluated such that: 

i)   0
j

k
g ifL L h x   

for all 1 j m  , 1ik r   and1 i m  , and all x in 

a neighborhood of 0x . 

ii) The m m  matrix 

 

   

   

   

1 1

1

2 2

1

1

1 1
1 1

1 1
2 2

1 1

...

...

...

...

m

m

m m

m

r r
g gf f

r r
g gf f

r r
g m g mf f

L L h x L L h x

L L h x L L h x
A x

L L h x L L h x

 

 

 

 
 
 
 
 
 

 

(8) 

is non-singular at 0x x . 

Step 2. The multi-realization problem is 

solvable if and only if the equivalent conditions (a) 

or (b), presented earlier in Theorem 1, hold. If 

neither of these conditions is true, real-valued 

functions    1 ,...,i imx x  defined on U should be 

chosen using Theorem 5.2.3 in [8] such that the 

following system satisfies the 1 2i i im ir r r n   

condition 

   

 

x f x g x u

y x

 



 (9) 

Step 3. Evaluate the minimal multi-realization 

degree,  
1

1

max
m

ij
i N

j

n r
 



 , Using Theorem 1.  

Step 4. Construct the following stable system 

which is of order n  

 0 0 0, :i qiP A B      (10) 

Step 5. This step of the algorithm has two cases: 

i) If the dimension of Pi is equal to the dimension of 

state-space equation (10), proceed to Step 6. 

ii) If the dimension of Pi is less than the dimension of 

state-space equation (10), then its dimension should 

be augmented with a linear transformation  iT 

such that the system in equation (10) can be 

transformed as 

 
 

11 12 1

22 2

0

2

0

, :

0

iq

i

A A B

A B

P

Y C

  





    
     
   



 

 
(11) 

Then proceed to step 7. 

Step 6. Construct for the parameter dependent 

system (2), an invertible transformation  i  

and regular state feedback    qi qi qi       

using the state-space exact linearization approach, 

such that the state-space equation of  0,iP  can be 

transformed in a form of  0,iP  . Thus, if the 

transformation is selected as  i   , and the 

output function is selected as  iy h  , then the 

multi-realization is obtained.  

Step 7. Construct for the parameter dependent 

system (2), an invertible transformation 

    21 ,
TT T

i i       and regular state 

feedback    2 2qi qi qi u       using state-space 

exact linearization approach, such that the state-space 

equations of  0,iP  can be transformed in a form of 

 0,iP  . Thus, if the overall transformation is 

selected as     i i iT      , and the output 
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function is selected as     2 2 2i i iy h h    , 

then the multi-realization is obtained. 

4. Example  

We show the multi-realization strategy of the 

following systems. 

 

 

2 1

3
1

1 2 21

1 2

2 2
1 11 2

3
2 3 21

2 2
3 2

1 3

: ,
6

,

3

:

,

T

T

x u

x x
x x uP

y x x

x x x u

x x x x u
P

x x

y x x

  
       

 

 

    
       


   
 

 

(12) 

The relative degrees associated with output 

channels ( 1r  and 2r ) in systems 1P  and 2P are 

calculated according to step 1 above and found to 

satisfy the condition (a) in step 2, 11 12 11 1r r n     

and 21 22 21 2r r n    respectively. Both 1P  and 2P

are linearizable.  

According to Theorem 2, the minimal order of 

the multi-realization is 3n  , therefore, we 

construct a third order stable system iP , with these 

specifications:  

1) (A0,B0) is a controllable pair. 

2) B0 has full column rank. 

3) The controllability indices,  
1
maxj ij

i N
d r

 
 , 

are increasingly ordered. 

4) A0 is stable and minimal with dimension

 
1

1

max
m

ij
i N

j

n r
 



 . 

as 

1

0 0 2

3

1

2

1 0 0

0 0 1

0 2 3

1 0

0 0 .

0 1

qi

qi

qi

A B



   







   
     
   

       

 
       

  
  

(13) 

where the controllability indices are d1 = 1 and d2 = 

2.  

Since the dimension of 1P is less than that of 

Equation 13, a linear transformation  T   is 

constructed to implement an observable 

/unobservable decomposition. To build the 

decomposition form, we select a new matrix C for 

the purpose of pole/zero cancellation. The resulting 

transfer function of the system has the form: 

 

 

1

0 0

1 0 0

0 1 1

1
0

1

1
0

2

C

s
C sI A B

s



 
  
 

 
 
  
 
  

 

(14) 

According to virtual output  1 2 3

T
y     , 

to get the decomposition form, it is easy to construct 

the transformation  T  . At first the 

observability matrix o  is defined as  

2

1 0 0

0 1 1

1 0 0

0 2 2

1 0 0

0 4 4

o

C

CA

CA



 
 
  
             
 
 

 

(15) 

It can be seen that its rank is equal to 2 and the 

system is unobservable. To construct the linear 

transformation matrix  T   two independent row 

vectors of matrix 0   are considered as 1T  and a third 

arbitrary row vector  0 0 1 which is independent 

of 1T  is selected as 2T . Therefore the transformation 

matrix can be shown as  

 

2

1

3 1 2 3

0 0 1

1 0 0

0 0 1

T

T
T

T

T     

 
         

  

    

(16) 

and the system  0,iP   is transformed as follows: 

1

2
0

1

2

1 2
1 2

1 0 2 0 1

0 1 0 1 0

( , ) : 0 0 2 0 1

0 1 0

0 0 1

,

qi

iP

y


 








 

     
              

       


            

 
 

(17) 

which is an observable /unobservable decomposition 

form. 

Using equation 5.7 from [8], system’s equations 

can be achieved in the new coordinates as: 
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   

   

 

1
1 1 11 1 12 21

2 3 1

2
2 3 2 21 1 22 21

3
1

1 2 3 2

( )

( )

.
6

b a u a u

u

b a u a u

u

    

 

     


  

   

  

    

     
 

(18) 

Without loss of generality Equation above can 

be transformed into the following form by adding 

and subtracting a 3  term to and from the second 

equation. 

1 2 3 1

2 3

3
1

3 1 2 3 22
6

u

u

  

 


   


  





      
  

(19) 

Now using Equations 13 and 19, state feedback 

can be formulated as 

   1 1 1

1 2 3
1

3
1

21 2 3

1 0

0 1
6

q q q u

u

u

    

  


  

 

  
                 

 
 

(20) 

and the invertible transformation 
  

and the output 

matrix can be stated as 

       

   

1 3 1 2 3

1 1 2 3 .

T

T

q

T

y h

        

   

       

  

 

(21) 

 

then the implemented system can be rewritten as 

3
2

2 3 1 2

3 1

3
2

2 3 2

2 3

6

6
T

u

u

u

y


  

 


 

 

 
     
 

  
 
 

     

   

 

(22) 

The above equation is in the form of Equation 1 

in the multi-realization problem and according to 

Equation 17, 1  is unobservable but stable.  

The same procedure is applicable to system P2, 

except that since this system’s dimension is equal to 

the dimension of the state space 13, there is one less 

step to carry out (i.e. there is no need to construct the 

linear transformation  T  ). 

Using state feedback and local coordinate 

transformation, the system’s equations in the new 

coordinates can be written in accordance with 

equation 5.7 from [8] as: 

 

   

 

2
1 1 2 3 11

2 3

1
3 23 2 3 2 2 31

1

22 2 3 2

3

3 2

2

u

u

    

 

      

  

    





    


    

(23) 

and other system settings are as follows 

   

 

   

2 2 2

2
1 2 31 1

1 1
3 22 22 2 3 2 31

2 1 0

2 0 2

q q q u

u

u

    

   

     

 

       
      

        
 

(24) 

   
1

22 1 2 3 2 ,
T

         
  

 

   2 1 2

T

qy h      

then the implemented system P2 is  

 

2 2
1 11 2

3
2 3 21

2 0 2
3 2

1 3

3

, :

T

u

u
P

y

  

   


 

 

    
  

     
 
  


     

(25) 

So as to ensure the transformation 2 ( )    is 

smooth and the feedback is “regular static state 

feedback” [8], it is required that  
1

22 3 0   . 

5. Conclusion 

In this paper, an algorithm for applying the 

multi-realization method to a set of feedback 

linearizable nonlinear systems is presented. Using the 

proposed method a minimal stably based multi-

realization is achieved. As an example, a set of 

feedback linearizable controllers are considered and 

multi-realization is used as a method of switching 

between the controllers when the operating 

conditions of the system change.  

This paper does not attempt to prove that the 

control performance of switching between nonlinear 

controllers is superior to that of linear controllers. 

However, it does provide more options for switching 

controller selection and proposed stably-based multi-

realization approach to implement switching between 

controllers which are not necessarily linear. 
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