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Abstract 

Microgrids, with their ability to integrate renewable energy sources, play a crucial role in achieving sustainable and resilient 

energy systems. Effective planning and optimization of microgrids, particularly considering the inclusion of compressed air 

energy storage (CAES) systems, are essential for maximizing their benefits. This study proposes a novel approach, the Hybrid 

Artificial Neural Network-Modified Dragonfly Algorithm (HANN-MDA), for determining the optimum capacity of CAES in 

microgrid planning. The HANN-MDA method combines the learning capabilities of artificial neural networks with the 

optimization power of the modified dragonfly algorithm. The proposed method aims to minimize the overall cost of microgrid 

operation while considering the integration of renewable energy sources and the storage capabilities of CAES. Simulation 

results demonstrate the effectiveness of the HANN-MDA method in accurately determining the optimal CAES capacity, 

leading to improved microgrid performance and cost savings. The findings highlight the importance of considering CAES in 

microgrid planning and the potential of the HANN-MDA method for achieving efficient and economically viable microgrid 

designs. 

Keywords: Microgrids, Compressed Air Energy Storage, Hybrid Artificial Neural Network, Modified Dragonfly Algorithm  
Article history: Received 2024/01/18; Revised 2024/03/02; Accepted 2024/03/10, Article Type: Research paper 

© 2024 IAUCTB-IJSEE Science. All rights reserved 
  

1. Introduction 

The increasing integration of renewable energy 

sources into power systems has spurred the need for 

advanced planning strategies to enhance grid 

resilience, reliability, and sustainability. Microgrids 

(MGs), as localized and self-sufficient energy 

systems, have emerged as a promising solution to 

address these challenges [1]. This research focuses 

on the intricate domain of microgrid planning, 

emphasizing the critical role of Compressed Air 

Energy Storage (CAES) systems in mitigating 

uncertainties associated with renewable energy 

sources, ultimately aiming for cost minimization. In 

recent years, the global energy landscape has 

witnessed a transformative shift towards cleaner and 

more sustainable alternatives as shown in Figure (1). 

The escalating concerns about climate change, 

coupled with advancements in renewable energy 

technologies, have accelerated the adoption of solar, 

wind, and other clean energy sources. However, the 

inherent intermittency and variability of renewables 

pose significant challenges to the stability and 

reliability of power grids. MGs which characterized 

by their decentralized nature and ability to operate 

independently or in conjunction with the main grid, 

offer a viable solution to integrate renewables 

seamlessly [2]. 

 

 
Fig. 1. a typical microgrid equipped with CAES [2] 
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Microgrid planning involves the optimal 

allocation of resources, considering both the demand 

and supply sides. The integration of renewable 

energy sources, such as solar and wind, adds 

complexity due to their fluctuating nature [3]. 

Accurate forecasting and management of these 

uncertainties are paramount for ensuring a stable and 

efficient microgrid operation. This research aims to 

delve into the nuances of microgrid planning, 

focusing on effective strategies to accommodate 

renewable energy sources and mitigate their 

inherent variability. CAES systems have emerged as 

a promising technology to address the intermittency 

challenges associated with renewables [4]. By 

storing excess energy during periods of abundance 

and releasing it during high demand, CAES 

enhances grid stability and reliability. However, 

determining the optimum capacity of CAES is a 

complex task, especially when considering 

uncertainties associated with renewable energy 

generation. This research aims to develop a 

comprehensive framework for microgrid planning 

that incorporates the optimal determination of 

CAES capacity, taking into account the uncertainties 

inherent in renewable energy sources. Microgrid 

planning is a multidimensional optimization 

problem that requires careful consideration of 

various factors, including energy demand, 

generation capacity, storage capabilities, and 

economic constraints. The dynamic nature of 

renewable energy sources adds an additional layer 

of complexity to this optimization process. 

Traditional approaches may fall short in providing 

effective solutions that balance these diverse and 

dynamic parameters. This research seeks to address 

this gap by proposing an advanced optimization 

model that integrates the uncertainties associated 

with renewables, with a specific focus on 

determining the optimum capacity of CAES [5-7]. 

Optimum scheduling in an economic MG involves 

determining the optimal operation of the MG to 

minimize its operating costs while meeting the 

energy demand of its local consumers. One key 

factor in optimizing the operation of a MG is the 

determination of the optimum capacity of its energy 

storage systems. It could be determined based on 

several factors such as the energy demand profile of 

the local consumers, the availability and cost of the 

distributed generation sources and the price of 

electricity in the upstream network [8]. The energy 

storage system capacity needs to be large enough to 

store excess energy generated from renewable 

sources during times when the demand for 

electricity is low and supply energy during times 

when the demand for electricity is high. To 

determine the optimum capacity of energy storage 

systems, an optimization model can be developed 

that considers various factors such as the energy 

demand profile, the availability and cost of the 

distributed generation sources, and the price of 

electricity in the upstream network. The objective of 

the optimization model is to minimize the operating 

costs of the MG while meeting the energy demand 

of its local consumers. Once the optimum capacity 

of energy storage systems is determined, the MG can 

be operated to minimize its operating costs while 

meeting the energy demand of its local consumers 

[9].  

A) Literature Review and Research Gap 

This paper introduces a novel optimization 

framework that focuses on scheduling Distributed 

Energy Resources (DERs) within MGs, with 

particular emphasis on determining the optimal 

energy storage capacity. The proposed methodology 

takes into account economic factors, technical 

considerations, and the dynamic behavior of DERs 

to achieve improved economic efficiency and 

reliability in MG operation [10]. In a related study, 

the performance of various optimization algorithms, 

including genetic algorithm, particle swarm 

optimization, and dynamic programming, is 

compared for scheduling DERs in MGs. The results 

highlight the effectiveness and computational 

efficiency of these different techniques. Another 

review paper provides an overview of economic 

dispatch strategies in MG operation. The authors 

discuss different objective functions, dispatch 

strategies, and their impact on optimizing economic 

performance, considering the integration of DERs 

and Energy Storage Systems (ESS) [11]. 

Furthermore, a methodology is presented in a 

separate paper for determining the optimum energy 

storage capacity in MG systems. This approach 

considers economic factors, technical 

considerations, and the dynamic behavior of DERs 

to determine the most suitable energy storage 

capacity [12]. A different study investigates the 

integration of renewable energy sources and energy 

storage systems in MGs. The authors discuss the 

benefits, challenges, and optimization strategies for 

scheduling DERs while considering the 

determination of energy storage capacity [13]. A 

review paper explores various methodologies for 

sizing energy storage systems in MGs, comparing 

deterministic and probabilistic approaches. The 

economic and technical considerations involved in 

energy storage sizing are highlighted [14]. In 

addition, a paper proposes a stochastic economic 

dispatch model for MGs that takes into account the 

uncertainty of DERs. The authors analyze the effect 

of uncertainty on MG operation and demonstrate 

improved economic performance [15]. Another 

study presents a multi-objective optimization 

approach for economic dispatch of DERs in MGs, 
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considering cost minimization, emission reduction, 

and reliability enhancement as conflicting objectives 

[16]. To tackle optimal scheduling and energy 

storage capacity determination, a hybrid algorithm 

combining particle swarm optimization and artificial 

neural networks is proposed in a paper. This 

approach demonstrates improved convergence and 

accuracy [17]. Load forecasting techniques and their 

application in MG scheduling are reviewed in 

another paper. Accurate load forecasting is crucial 

for optimal scheduling while considering energy 

storage capacity determination [18]. A robust 

scheduling strategy is proposed in a paper for DERs 

in MGs, considering probabilistic energy storage 

sizing. The approach accounts for uncertainties in 

DERs and optimizes MG operation under various 

scenarios [19]. Another study focuses on energy 

storage sizing for enhancing MG resilience. An 

optimization framework is proposed that considers 

the capacity and performance of energy storage 

systems to ensure reliable and resilient MG 

operation [20]. A real-time scheduling approach for 

DERs in economic MGs is presented in a paper. The 

authors consider the dynamic behavior of DERs and 

optimize their dispatch in response to changing grid 

conditions [21]. Optimal power flow modeling for 

MGs, with a focus on determining the optimum 

energy storage capacity, is proposed in another 

paper. The authors demonstrate improved economic 

efficiency and reliable operation of MGs using this 

model [22]. The integration of demand response 

management with MG scheduling, considering 

energy storage capacity determination, is 

investigated in a study. The authors analyze the 

impact of demand response on economic 

performance and grid stability [23]. A 

comprehensive framework for optimal scheduling of 

DERs with energy storage in economic MGs is 

proposed in a paper. Various factors such as cost, 

reliability, and environmental impact are considered 

to optimize MG operation [24]. The effect of energy 

storage capacity on MG stability and resilience is 

analyzed in a study. The authors examine the 

relationship between storage capacity, DERs, and 

grid stability under different operating conditions 

[25]. An optimal allocation method for energy 

storage systems in MGs is addressed in a paper. The 

authors propose a method that considers the 

location, capacity, and cost of energy storage to 

optimize MG performance [26]. The impact of DER 

and ESS integration on MG operation costs is 

analyzed in a study. The authors quantify the 

economic benefits and cost savings achieved 

through optimized scheduling and energy storage 

capacity determination [27]. Finally, authors in [28] 

paper investigates the enhancement of renewable 

energy utilization in economic MGs through optimal 

scheduling. Scheduling strategies are proposed to 

maximize the utilization of renewable energy 

sources while considering energy storage capacity 

determination. 

While the existing literature provides valuable 

insights into microgrid planning, renewable energy 

integration, and the role of CAES, there is a 

noticeable gap in research specifically addressing 

the dynamic uncertainties associated with 

renewables in the context of CAES integration 

within microgrids. The need for a comprehensive 

optimization model that considers these 

uncertainties and determines the optimal CAES 

capacity is evident, pointing to the motivation for the 

current research. 

B) Research Objectives 

This research holds significant implications for 

the advancement of microgrid planning strategies in 

the context of increasing renewable energy 

integration. The developed optimization model, 

incorporating CAES capacity determination and 

addressing uncertainties, is expected to contribute to 

more resilient and cost-effective microgrid designs. 

By optimizing the deployment of CAES, the 

research aims to enhance the overall efficiency of 

microgrids and accelerate their adoption as a 

sustainable solution for decentralized energy 

generation. Therefore, the primary objectives of this 

research are as follows: 

- Develop a comprehensive understanding of 

microgrid planning and the challenges posed by the 

integration of renewable energy sources. 

- Investigate the role of CAES in mitigating 

uncertainties associated with renewables and 

enhancing microgrid stability. 

- Propose an optimization model that considers 

the dynamic nature of renewable energy generation 

and determines the optimum capacity of CAES for 

cost minimization. 

- Evaluate the proposed model through 

simulations and case studies to demonstrate its 

effectiveness in real-world microgrid scenarios. 

C) Research Structure  

The remainder of this research will be 

organized as follows: Section 2 represents the 

methodology, so that as an in-depth exploration of 

the proposed optimization model, detailing the 

incorporation of renewable uncertainties and the 

determination of optimal CAES capacity are 

investigated. A brief review on optimization 

algorithm is represented in Section 3. The results 

and discussion are presented in Section 4 as 

presentation and analysis of simulation results, 

demonstrating the effectiveness of the proposed 

model in diverse microgrid scenarios. The 

discussions are represented in Section 5. Finally, a 
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summary of key findings, implications, and avenues 

for future research in the field of microgrid planning 

and renewable energy integration are expressed in 

Section 6 as the conclusion. 

2. Methodology 

Optimizing a microgrid with diverse energy 

resources, including renewable sources, 

microturbines, and a CAES system, involves a 

complex framework aimed at achieving multiple 

objectives. Microgrids represent a modern approach 

to decentralized and sustainable energy systems. 

The integration of renewable energy sources, such 

as wind turbines (𝑊) and solar photovoltaics (𝑃𝑉), 

alongside conventional generators like 

microturbines (𝑀) and innovative storage solutions 

like CAES, offers a robust and resilient energy 

infrastructure. The primary goal is to formulate an 

optimization framework that minimizes the total 

planning costs while ensuring reliable and 

environmentally conscious microgrid operation. 

The framework involves several decision 

variables, each influencing the microgrid's 

operation. These include power outputs of 

generators 𝑃𝑔(𝑡), renewable power outputs (𝑃𝑤(𝑡), 

𝑃𝑠(𝑡), CAES compression and discharge powers 

𝑃caes_c(𝑡), 𝑃caes_d(𝑡), CAES energy level 𝐸caes(𝑡), 

power not served 𝑃ens(𝑡), excess power 𝑃ex(𝑡), and 

emissions of pollutants 𝐸𝑝(𝑡). The overarching 

objective is to minimize the total planning costs (𝐽). 

This cost includes the generation costs of wind (𝐶𝑤), 

solar (𝐶𝑠), and microturbine (𝐶𝑚) sources, the cost 

of energy not served (𝐶ens), the cost of excess 

generation (𝐶ex), and penalty costs associated with 

pollutant emissions (𝐶𝑃(𝑝)). The objective function 

encapsulates economic, environmental, and 

reliability considerations. 

J = ∑ (

𝐶𝑤 × 𝑃𝑤(𝑡) + 𝐶𝑠 × 𝑃𝑠(𝑡) + 𝐶𝑚 × 𝑃𝑚(𝑡)

+𝐶ens(𝑡) + 𝐶ex(𝑡) + ∑ 𝐶

𝑝∈𝑃

𝑃(𝑝) × 𝐸𝑝(𝑡))

𝑡∈𝑇

 (1) 

A) Power Balance Constraints 

The power balance equation ensures that the 

total electric power generated from various sources, 

accounting for CAES processes and considering 

excess or deficit power, matches the electric load 

demand at each time period. Here is the refined 

version of the power balance equation: 

 𝑃𝑔(𝑡)  +  𝑃𝑤(𝑡)  +  𝑃𝑠(𝑡)  +  𝑃caes_d(𝑡)  −  𝑃caes_c(𝑡) 

+  𝑃ex(𝑡)  −  𝑃ens(𝑡) 
=  𝐷(𝑡)  ∀ 𝑡  ∈  𝑇  

(2) 

This equation expresses the equilibrium 

between the sum of power outputs from generators 

(𝑃𝑔(𝑡)), wind turbines (𝑃𝑤(𝑡)), solar PV (𝑃𝑠(𝑡)), and 

CAES discharge (𝑃caes_d(𝑡)), minus the CAES 

compression (𝑃caes_c(𝑡)), plus excess power (𝑃ex(𝑡)) 

and minus the power not served (𝑃ens(𝑡)), which 

equals the electric load demand (𝐷(𝑡)) at each time 

period (∀ 𝑡  ∈  𝑇). This equation forms the 

foundation for maintaining a stable and balanced 

operation of the microgrid, ensuring that the total 

power supplied meets the demand at all times. 

B) Renewable Power Output Constraints 

These constraints limit the power output of 

wind turbines and solar PV, accounting for 

uncertainties 𝑈𝑤(𝑡) and 𝑈𝑠(𝑡). The constraints 

ensure that the generated renewable power does not 

exceed the specified maximum values, considering 

variations due to uncertainties, and contribute to 

maintaining grid stability. 

𝑃𝑤(𝑡) ≤ 𝑃𝑤max(𝑡) × (1 + 𝑈𝑤(𝑡)) ∀𝑡 ∈ 𝑇 (3) 

𝑃𝑠(𝑡) ≤ 𝑃𝑠max(𝑡) × (1 + 𝑈𝑠(𝑡)) ∀𝑡 ∈ 𝑇 (4) 

To account for uncertainties in renewable 

energy sources, the power outputs of wind turbines 

and solar PV are modified by uncertainty factors 

𝑈𝑤(𝑡) and 𝑈𝑠(𝑡). These uncertainties reflect the 

variations in wind and solar power generation, 

ensuring a more realistic representation of the 

renewable energy inputs in the optimization 

framework. 

C) CAES Energy Limits 

These constraints define the allowable range 

for the energy stored in the CAES system. It 

prevents overcharging or complete depletion, 

ensuring the CAES system operates within its 

capacity limits and contributes effectively to grid 

stability. 

0 ≤ 𝐸caes(𝑡) ≤ 𝐸caesmax ∀𝑡 ∈ 𝑇 (5) 

D) Generator Output Limits 

These constraints impose upper bounds on the 

power output of each generator (wind turbines, solar 

PV, microturbines). They prevent excessive 

generation that could lead to operational challenges 

and contribute to the overall control of the 

microgrid. 

0 ≤ 𝑃𝑔(𝑡) ≤ 𝑃𝑔max ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇 (6) 

E) CAES Compression/Discharge Limits 

These constraints regulate the power flow 

during CAES compression and discharge processes, 

ensuring they operate within the specified efficiency 

limits. They play a crucial role in optimizing the 

CAES system's performance and efficiency. 

0  ≤ 𝑃caes_c(𝑡)  ≤
𝐸caes(𝑡)  

eff_c
  ∀𝑡  ∈  𝑇  (7) 
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0 ≤ 𝑃caes_d(𝑡) ≤ 𝐸caes(𝑡) × eff_d ∀𝑡 ∈ 𝑇 (8) 

F) Emission Calculations 

These equations quantify the emissions of 

pollutants (𝐶𝑂2, 𝑆𝑂2, 𝑁𝑂𝑥) based on the power 

output of each generator and their respective 

emission rates. It helps in assessing the 

environmental impact of the microgrid operation 

and guides decision-making towards cleaner energy 

sources. 

𝐸𝑝(𝑡) = ∑ 𝐸𝑔(𝑝)

𝑔∈𝐺

× 𝑃𝑔(𝑡) ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (9) 

G) Non-negativity Constraints 

These constraints enforce that all decision 

variables, including power outputs, energy levels, 

and emissions, remain non-negative. It reflects the 

physical constraints of the system, preventing 

unrealistic or negative values. 

𝑃𝑔(𝑡), 𝑃𝑤(𝑡), 𝑃𝑠(𝑡), 𝑃caes_c(𝑡), 𝑃caes_d(𝑡), 𝑃ens(𝑡), 𝑃ex(𝑡), 𝐸𝑝(𝑡)

≥ 0 ∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, ∀𝑝 ∈ 𝑃 

(10

) 

H) CAES Compression Energy 

This equation calculates the energy consumed 

during CAES compression. It considers the 

compression power, efficiency, and time interval, 

providing insights into the energy requirements for 

storing compressed air in the CAES system. 

𝐸caes_c(𝑡) = 𝑃caes_c(𝑡) × eff_c × Δ𝑡 ∀𝑡 ∈ 𝑇 (11) 

I) CAES Expansion Energy 

Similar to the compression energy equation, 

this calculates the energy released during CAES 

expansion. It is a key component in understanding 

the energy dynamics of the CAES system during 

discharge. 

𝐸caes_d(𝑡) = 𝑃caes_d(𝑡) × eff_d × Δ𝑡 ∀𝑡 ∈ 𝑇 (12) 

J) CAES Compression Exergy 

This equation computes the exergy 

(availability to do work) associated with the 

compressed air during CAES compression. It's a 

thermodynamic measure reflecting the quality of the 

stored energy in the CAES system. 

exergy
caes_c

(𝑡) =
𝑃caes_c(𝑡) × eff_c × Δ𝑡

𝑇0

 ∀𝑡 ∈ 𝑇 (13) 

K) CAES Expansion Exergy 

Similar to compression exergy, this equation 

calculates the exergy associated with the expanded 

air during CAES discharge. It provides insights into 

the thermodynamic efficiency of the CAES process. 

exergy
caes_d

(𝑡) =
𝑃caes_d(𝑡) × eff_d × Δ𝑡

𝑇0

 ∀𝑡 ∈ 𝑇 (14) 

L) CAES Compression Exergy Efficiency 

This equation defines the exergy efficiency 

during CAES compression. It quantifies how 

effectively the compression process converts 

input energy into exergy, offering a measure of 

the system's thermodynamic performance. 

eff_exergy_caes_c(𝑡) =
exergy

caes_c
(𝑡)

𝑄𝐿𝐻𝑉
 ∀𝑡 ∈ 𝑇 (15) 

M) CAES Expansion Exergy Efficiency 

Parallel to compression exergy efficiency, this 

equation characterizes the exergy efficiency during 

CAES expansion. It evaluates the effectiveness of 

the CAES system in converting stored energy into 

useful work. 

eff_exergy_caes_d(𝑡) =
exergy

caes_d
(𝑡)

𝑄𝐿𝐻𝑉
 ∀𝑡 ∈ 𝑇 (16) 

N) CAES Compression Exit Temperature 

This equation calculates the exit temperature 

of air after compression in the CAES system. It 

considers the compression power, efficiency, and 

thermodynamic properties, providing insights into 

the thermal aspects of the compression process. 

𝑇caes_c_exit(𝑡) = 𝑇0 × (1 − (
𝑃caes_c(𝑡)

𝑃0

)

𝑛−1
𝑛

) ∀𝑡 ∈ 𝑇 (17) 

O) CAES Expansion Exit Temperature 

Similar to compression exit temperature, this 

equation determines the exit temperature of air 

during CAES expansion. It offers valuable 

information on the thermal conditions at the end of 

the expansion process. 

𝑇caes_d_exit(𝑡) = 𝑇0 × (1 − (
𝑃caes_d(𝑡)

𝑃0

)

𝑛−1
𝑛

) ∀𝑡 ∈ 𝑇 (18) 

P) CAES Polytropic Index Limits 

These constraints restrict the polytropic index 

within specified bounds. The polytropic index 

influences the thermodynamic behavior of the 

compressed air, and these limits ensure it stays 

within a reasonable range for stable operation. 

𝑛min ≤ 𝑛 ≤ 𝑛max (19) 

Q) CAES Inventory Energy Limit 

This equation ensures the conservation of 

energy in the CAES inventory, preventing energy 
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imbalances between compression and discharge 

processes. It contributes to the overall energy 

accountability within the CAES system. 

𝐸caes_inventory(𝑡) = 𝐸caes_c(𝑡) − 𝐸caes_d(𝑡) ∀𝑡 ∈ 𝑇 (20) 

R) CAES Compression Air Costs 

This equation computes the cost associated 

with compressing air in the CAES system, 

considering the cost of air and operational 

parameters. It helps in evaluating the economic 

implications of the compression process. 

𝐶caes_air(𝑡) = 𝐶𝑎 ×
𝑃caes_c(𝑡) × Δ𝑡

eff_c
 ∀𝑡 ∈ 𝑇 (21) 

S) CAES Thermal Efficiency 

This equation defines the thermal efficiency of 

the CAES system during discharge. It quantifies the 

ratio of useful work output to the energy input, 

providing a measure of the system's overall energy 

conversion efficiency. 

eff_thermal_caes(𝑡) =
𝑃caes_d(𝑡)

𝑃caes_c(𝑡)
 ∀𝑡 ∈ 𝑇 (22) 

T) Cost of Energy Not Served 

This equation calculates the cost associated 

with the energy not served to meet the demand. It 

represents the economic consequences of 

insufficient power generation and guides decision-

making to minimize such costs. 

𝐶ens(𝑡) = 𝐶ens × 𝑃ens(𝑡) ∀𝑡 ∈ 𝑇 (23) 

U) Cost of Excess Generation 

Similar to energy not served, this equation 

computes the cost associated with excess generation 

beyond the demand. It reflects the economic impact 

of overgeneration and aids in optimizing the 

microgrid operation economically. 

𝐶ex(𝑡) = 𝐶ex × 𝑃ex(𝑡) ∀𝑡 ∈ 𝑇 (24) 

V) Generator Emission Penalties 

These constraints limit the product of pollutant 

emissions and penalty costs for each generator. They 

provide an upper bound on the economic impact of 

emissions from the generators, facilitating 

environmentally conscious decision-making. 

𝐶𝑃(𝑝) × 𝐸𝑝(𝑡) ≤ 𝑀emission ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (25) 

These constraints ensure that the total 

economic impact of emissions from each generator, 

weighted by the penalty costs (𝐶𝑃(𝑝)), remains 

within acceptable bounds (𝑀emission). It promotes a 

balance between economic considerations and 

environmental sustainability, aligning with the 

overarching goal of minimizing total planning costs. 

W) Maximum Renewable Power 

These constraints restrict the power output of 

wind turbines and solar PV to their respective 

maximum values, accounting for uncertainties 

𝑈𝑤(𝑡) and 𝑈𝑠(𝑡). They play a crucial role in 

preventing excessive renewable energy generation, 

which could lead to operational challenges and 

contribute to grid instability. 

𝑃𝑤(𝑡) ≤ 𝑃𝑤max(𝑡) × (1 + 𝑈𝑤(𝑡)) ∀𝑡 ∈ 𝑇 (26) 

𝑃𝑠(𝑡) ≤ 𝑃𝑠max(𝑡) × (1 + 𝑈𝑠(𝑡)) ∀𝑡 ∈ 𝑇 (27) 

X) Microturbine Limits 

These constraints ensure that the power output 

of microturbines remains within specified minimum 

and maximum values. They contribute to the overall 

control of the microgrid and prevent operational 

challenges associated with microturbine power. 

𝑃𝑚(𝑡) ≥ 𝑃𝑚min  ∀𝑡 ∈ 𝑇 (28) 

𝑃𝑚(𝑡) ≤ 𝑃𝑚max ∀𝑡 ∈ 𝑇 (29) 

These constraints on microturbine power 

output serve as important operational limits, 

preventing underutilization or overloading of 

microturbine assets in the microgrid. 

Y) Demand Response 

Demand response (DR) plays a pivotal role in 

influencing and enhancing the proposed microgrid 

planning framework. The integration of demand 

response mechanisms introduces a dynamic element 

that significantly impacts the optimization of 

microgrid operations, renewable energy integration, 

and the determination of CAES capacity. Here are 

the key effects: 

DR introduces flexibility by allowing the 

microgrid to dynamically respond to changes in 

energy demand. This enhances the adaptability of 

the microgrid planning framework, enabling real-

time adjustments to optimize energy generation, 

consumption, and storage. By incorporating demand 

response, the microgrid gains the ability to actively 

manage energy consumption during peak demand 

periods. This results in improved grid stability and 

reliability, reducing the risk of overloads and 

enhancing overall system resilience. 

DR facilitates better utilization of available 

resources by aligning energy consumption with 

periods of high renewable energy generation. This 

optimization ensures that energy storage systems, 

including CAES, are utilized efficiently, minimizing 

waste and reducing operational costs. DR 

mechanisms contribute to economic benefits by 
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allowing the microgrid to participate in demand-side 

management programs. This enables the microgrid 

to capitalize on favorable pricing conditions, reduce 

peak demand charges, and potentially generate 

revenue through demand response participation. 

The effect of DR on microgrid planning is 

particularly pronounced when integrating renewable 

energy sources. DR enables the alignment of energy 

consumption with periods of high renewable 

generation, maximizing the utilization of clean 

energy and reducing dependence on non-renewable 

sources. DR allows for dynamic load balancing, 

enabling the microgrid to optimize the distribution 

of energy based on real-time demand fluctuations. 

This ensures efficient utilization of generation and 

storage resources, contributing to overall energy 

efficiency. 

The inclusion of demand response in the 

microgrid planning framework helps mitigate grid 

congestion during peak demand periods. By 

encouraging load-shifting and load reduction 

strategies, DR reduces stress on the grid and 

minimizes the risk of system failures. DR enhances 

the microgrid's ability to withstand disruptions by 

actively managing energy demand. This improved 

energy resilience is crucial in the face of 

uncertainties, contributing to the overall reliability 

and robustness of the microgrid. 

DR can influence the operation of CAES 

systems by aligning energy consumption with 

periods of low demand or high renewable energy 

availability. This ensures that CAES operates 

optimally, supporting grid stability and minimizing 

the need for additional energy sources. The effect of 

demand response extends to the integration of 

advanced technologies, such as smart grids and IoT 

devices. These technologies enhance the 

responsiveness of demand-side management, 

providing real-time data for more accurate decision-

making within the microgrid planning framework. 

In general, the incorporation of demand 

response in the microgrid planning framework 

brings about a multitude of positive effects, ranging 

from improved grid stability and economic benefits 

to optimized resource utilization and enhanced 

resilience. This dynamic interaction strengthens the 

overall sustainability and efficiency of microgrid 

operations in the face of evolving energy 

landscapes, as can be formulates like the following: 

𝑃𝑙(𝑡) ≤ 𝐷𝑒𝑚𝑎𝑛𝑑t𝑙 , ∀(t ∈ T) 𝑎𝑛𝑑 (𝑙 ∈ 𝐿) (30) 

𝑃𝑙(𝑡) ≥ (1 − 𝑥τ𝑙
𝐷𝑅) ⋅ 𝐷𝑒𝑚𝑎𝑛𝑑t𝑙 ,

∀(t ∈ T) 𝑎𝑛𝑑 (𝑙 ∈ 𝐿) 
(31) 

𝑥t𝑙
𝐷𝑅 ∈ {0,1}, ∀(t ∈ T) 𝑎𝑛𝑑 (𝑙 ∈ 𝐿) (32) 

Totally, the optimization framework for a 

microgrid with renewable energy sources, 

microturbines, and a compressed air energy storage 

system is a sophisticated mathematical model. It 

balances economic, environmental, and operational 

considerations to achieve the overarching goal of 

minimizing total planning costs. The inclusion of 

decision variables such as power outputs, energy 

levels, and emissions, along with associated 

constraints, captures the complexity of microgrid 

dynamics. The objective function encapsulates the 

economic aspect by considering generation costs, 

costs of energy not served, costs of excess 

generation, and penalty costs for pollutant 

emissions. The power balance equation ensures that 

energy supply matches demand at each time period, 

forming the basis for stable microgrid operation. 

Renewable power output constraints and generator 

output limits prevent excessive generation and 

contribute to overall system stability. The 

incorporation of CAES introduces a storage 

mechanism that enhances the microgrid's capability 

to balance intermittent renewable generation with 

varying demand. The thermodynamic aspects, 

including CAES energy limits, compression and 

discharge processes, exergy efficiency, and exit 

temperatures, provide insights into the energy 

dynamics and performance of the storage system. 

Incorporating uncertainties in renewable energy 

sources adds a layer of realism to the model, 

acknowledging the inherent variability in wind and 

solar power generation. This enhances the 

robustness of the optimization framework, allowing 

for more accurate predictions of the microgrid's 

performance under real-world conditions. 

3. Optimization Algorithm  

An Artificial Neural Network (ANN) consists 

of interconnected nodes, or artificial neurons, 

organized in layers. The input layer receives the 

input data, which is then passed through hidden 

layers to the output layer. Each neuron performs a 

weighted sum of its inputs, applies an activation 

function, and passes the result to the next layer. The 

weights and biases of the neurons determine the 

behavior and performance of the network [28-30]. 

Let's denote: 

x: Input vector of size 𝑛 (𝑥 =
 [𝑥1, 𝑥2, . . . , 𝑥𝑛]) 

y: Output vector of size 𝑚 (𝑦 =
 [𝑦1, 𝑦2, . . . , 𝑦𝑚]) 

W: Weight matrix (𝑛 ×  ℎ) connecting the 

input layer to the hidden layer 

B: Bias matrix (1 ×  ℎ) for the hidden layer 

V: Weight matrix (ℎ ×  𝑚) connecting the 

hidden layer to the output layer 

C: Bias matrix (1 ×  𝑚) for the output layer 

f: Activation function (e.g., sigmoid, 𝑅𝑒𝐿𝑈) 

The output of the hidden layer can be 

calculated as: 
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𝐻 =  𝑓(𝑥 ∗  𝑊 +  𝐵)  (33) 

And the output of the network can be 

calculated as: 

𝑂 =  𝑓(𝐻 ∗  𝑉 +  𝐶) (34) 

The goal is to find the optimal values for the 

weight matrices 𝑊 and 𝑉, as well as the bias 

matrices 𝐵 and 𝐶, by minimizing a loss function that 

measures the discrepancy between the predicted 

output 𝑂 and the actual output 𝑦. 

The Modified Dragonfly Algorithm is (MDA) 

the optimization algorithm inspired by the swarming 

behavior of dragonflies. It consists of a population 

of solutions (dragonflies) and iteratively updates 

their positions to find the optimal solution. Let's 

denote: 

𝑋: Position matrix (𝑛 ×  ℎ +  ℎ ×  𝑚) 

representing the weights and biases of the neural 

network 

𝐿: Fitness matrix (1 ×  ℎ +  1 ×  𝑚) 

representing the performance of each solution 

𝑋𝑏: Global best position 

𝐿𝑏: Global best fitness 

𝑋𝑛: Neighboring position 

𝐿𝑛: Neighboring fitness 

𝛼: Attraction coefficient 

𝛽: Randomization parameter 

𝜖: Randomization factor 

𝛾: Step size 

The steps of the Modified Dragonfly 

Algorithm can be summarized as follows: 

Step 1: Initialize the population of dragonflies 

with random positions X and evaluate their fitness 

L. 

Step 2: Update the global best position and 

fitness: 

If 𝐿 >  𝐿𝑏, set 𝐿𝑏 =  𝐿 and 𝑋𝑏 =  𝑋. 

Step 3: Update the position of each dragonfly: 

Generate a random number ϵ between 0 and 1. 

For each dragonfly: 

Calculate the distance between the current 

position X and the global best position Xb. 

Update the position: 
   𝑋 =  𝑋 +  𝛼 ∗  (𝑋𝑏 −  𝑋) +  𝛽 ∗  (𝑋𝑛 −  𝑋) +  𝜖 

∗  𝛾 ∗  (𝑟𝑎𝑛𝑑 −  0.5) 
(35) 

Where 𝑟𝑎𝑛𝑑 is a random number between 0 

and 1. 

Evaluate the fitness L of the updated position. 

Step 4: Repeat Steps 2 and 3 until a termination 

criterion is met (e.g., maximum number of 

iterations). 

By integrating the MDA optimization process 

into the training of the neural network, the HANN-

MDA approach aims to improve the convergence 

speed and accuracy of the network. To implement a 

HANN-MDA, these general steps would be 

addressed: 

− Initialize the population of dragonflies with 

random positions, representing the weights and 

biases of the ANN. 

− Evaluate the fitness of each dragonfly by 

training the ANN using the corresponding 

position and measuring its performance on a 

training dataset. The fitness value could be 

based on a performance metric such as 

accuracy, error rate, or loss function. 

− Update the global best position and fitness by 

comparing the fitness values of the dragonflies. 

− Update the position of each dragonfly based on 

the MDA update equations, taking into account 

the global best position, neighboring positions, 

and randomization parameters. 

− Evaluate the fitness of the updated positions. 

− Repeat steps 3 to 5 for a certain number of 

iterations or until a termination criterion are met 

(e.g., convergence). 

− After the optimization process, use the global 

best position (representing the optimal weights 

and biases) to obtain the final trained ANN 

model. 

4. Simulation Results 

The study assumes that the MG incorporates 

decentralized power generation sources like micro 

turbines and fuel cells. These sources are spread 

across the MG and installed at various locations. 

Figure (1) displays the complete load curve of the 

MG for a specific day, showcasing the power 

requirements throughout the day. This data offers 

valuable information about energy consumption 

patterns and facilitates an understanding of the MG's 

operational behavior. Additionally, Figure (2) 

presents the fluctuations in the time of use (ToU) 

cost associated with using the grid during different 

hours of the day. 

 

Fig. 2. Daily load profile for under studied MG 

 

Fig. 3. ToU cost for under studied MG 
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Table 1 illustrates the minimum and maximum 

utilization boundaries for both the distributed 

production resources and the entire system. This 

table provides a comprehensive overview of the 

effective utilization limits for these resources. The 

minimum exploitation limits ensure that the 

resources are sufficiently utilized to meet the 

system's energy demands. Conversely, the 

maximum exploitation limits indicate the threshold 

beyond which the resources should not be pushed to 

avoid operational issues or inefficiencies. This 

crucial information ensures the optimization of 

resource utilization and the smooth functioning of 

the system. Stakeholders can make informed 

decisions about the deployment and operation of 

these resources by understanding and adhering to 

these exploitation limits. This ultimately leads to 

improved system performance and reliability. Table 

1 also highlights that during a financial day, the 

exchange of electrical energy between the grid and 

the MG should not exceed a threshold of 200 

kilowatts. This limitation ensures that the energy 

flow between these entities remains within an 

acceptable range, preventing imbalances or strain on 

the system. By adhering to this restriction, stable and 

reliable operation is maintained. Additionally, Table 

1 provides detailed information on the costs 

associated with utilizing the distributed production 

resources, presented in dollars per kilowatt-hour 

(kWh). This data offers insights into the financial 

implications of leveraging these resources in the 

MG. Stakeholders can analyze the cost information 

to make informed decisions about the most 

economically viable utilization of these resources. 

This knowledge enables them to optimize resource 

allocation, prioritize cost-effective options, and 

improve financial management and overall 

efficiency. 

The first case study assumes that the MG 

operates in island mode without any energy storage 

within the system. In contrast, the second scenario 

assumes the MG also operates in island mode but 

incorporates the installation of storage devices. Both 

cases have a project lifespan of 18 years. In island 

mode, the MG functions independently of the main 

grid. However, the absence of energy storage in the 

first case limits the MG's ability to effectively 

manage fluctuations in energy generation and 

demand. On the other hand, the second case, with 

storage devices, provides improved flexibility and 

resilience. It allows the MG to store excess energy 

during low-demand periods and release it during 

peak-demand periods.  In all the mentioned 

scenarios, the project duration is set to 18 years. This 

timeframe ensures a comprehensive evaluation of 

the project's feasibility, cost-effectiveness, and long-

term sustainability. By considering a consistent 

project lifespan, stakeholders can assess the 

economic viability and overall performance of the 

MG system over an extended period. This facilitates 

informed decision-making and strategic planning. 

A) Islanding mode without ESS 

The findings for the unit production 

arrangement during the day and night, based on the 

provided load profile, are displayed in Figure (4). 

The production quantities of the units are measured 

in kilowatts, while the associated costs are expressed 

in dollars. The table clearly shows that when the 

photovoltaic system is unable to operate, such as 

during nighttime, its power output becomes zero. 

Consequently, other units are necessary to meet the 

system load. The analyzed system exhibits two peak 

loads in a day. The first peak occurs during daytime 

office hours, while the second peak arises at night 

due to heating systems, as the investigation is 

conducted during the winter season. As shown in 

Figure (5), the cost of operating the MG from 12 am 

to 6 pm significantly decreases compared to the 

previous hour, despite the grid load being at its peak. 

This decrease in cost is attributed to the presence of 

the photovoltaic system in the MG, generating its 

maximum power output during this time period and 

helping to minimize operating costs. However, 

during the night peak when the photovoltaic system 

is inactive, the system's operational cost is higher 

than other hours. The absence of the photovoltaic 

system during this period increases reliance on other 

sources, resulting in higher costs. The following 

section explores the inclusion of storage units in the 

island mode to investigate the operation of the 

microgrid under these conditions. 

Table.1. 
DERs specifications used in MG under consideration 

Power 

source 

O&M 

Cost ($) 

SU 

cost ($) 

SD 

cost ($) 

Fuel 

cost ($) 

𝑷𝒎𝒊𝒏 

(kW) 

𝑷𝒎𝒂𝒙 

(kW) 

PV 0.639 0 0 0 0 50 

Wind 0.778 0.342 0.186 0 0 85 

FC 0.241 0.337 0.322 0.233 8 45 

MT 0.103 0.281 0.186 0.178 8 45 

Upstream 

network 
- - - - -180 +180 

 

 
Fig. 4. Daily power generated by DERs in islanding mode 

without using ESS 
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Fig. 5. Daily cost of islanding mode without using ESS 

B) Islanding mode in the presence of ESS 

In this particular scenario, the photovoltaic 

system operates at its maximum power output 

during the day, and any surplus power is stored in 

the battery. Later, during nighttime, the battery is 

utilized to supply power. The analysis involves 

determining the optimal battery capacity required 

for the MG system and then identifying the optimal 

production arrangement for the available resources 

within the MG. To incorporate the batteries into the 

optimization process, the proposed algorithm is 

employed, utilizing the technical information 

provided earlier about the batteries, as well as the 

various combinations illustrated in Figure (6), which 

represent a range of battery capacities and energy 

levels. The profitability observed in this scenario is 

attributed to the lower operational cost of the PV 

system compared to other DERs. Specifically, 

electricity is obtained from the PV system at a rate 

of 7.74 dollars/kWh, while it is supplied at a cost of 

9.12 dollars/kWh during non-PV operating hours, as 

indicated in Figure (7). Since the MG operates in 

island mode without any connection to the upstream 

network, discussions about market prices are 

irrelevant. Furthermore, the total power output 

capacity achieved by the PV system is 309.48 

kilowatts. Out of this capacity, 208.21 kilowatts are 

allocated through the unit arrangement process for 

production purposes, leaving only 101.49 kilowatts 

available for battery charging. Consequently, the 

evaluated optimum capacity for the CAES system is 

determined to be 48.31 kW, which can be practically 

utilized. After analyzing the MG in island mode, the 

focus now shifts to examining the network 

connection mode and its characteristics. In this 

scenario, the objective is to compare the cost of 

producing one kilowatt of power using the most 

expensive DG resource with the current electricity 

price in the market. 

 
Fig. 6. Figure (6), Daily power generated by DERs in 

islanding mode using ESS 

 
Fig. 7. Daily cost of islanding mode using ESS 

If the market price is lower, it becomes 

advantageous to source power from the upstream 

network. Conversely, if the market price exceeds the 

cost of local power generation, it becomes desirable 

to supply power locally within the MG. By 

conducting this comparison, stakeholders can make 

informed decisions regarding the most cost-effective 

approach for power supply. If the market price is 

more favorable, accessing electricity from the 

upstream network proves beneficial as it allows the 

MG to utilize external resources at a lower cost. On 

the other hand, if the local power generation cost is 

lower than the market price, supplying power within 

the MG becomes a preferable option as it ensures 

greater control and self-sufficiency. This analysis of 

the network connection mode and its associated 

factors enables stakeholders to optimize their power 

procurement strategy, considering the prevailing 

market conditions and the cost-effectiveness of local 

power generation. By making the appropriate choice 

between accessing power from the upstream 

network and supplying power within the MG, 

stakeholders can maximize their financial benefits 

and ensure the efficient operation of the MG system. 

C) Grid-connected mode without using ESS 

The results regarding the unit production 

arrangement in the network connection mode, 

without storage, have been summarized in Figure 

(8). It is important to emphasize that these outcomes 

are presented from the perspective of the MG 

network. Therefore, a negative power exchange with 

the network signifies power received from the 

network, while a positive exchange indicates power 

injected into the network. According to Figure (8), it 

is evident that in only five time periods, sourcing 

electricity from the upstream network reduces the 

costs and profits of the MG. Therefore, the unit 

production arrangement during these four hours 

corresponds to the details provided in the 

aforementioned table. Additionally, the results 

indicate that engaging in power exchange with the 

upstream network can increase the MG's 

profitability. In this case, the profitability is 18.32% 

higher compared to the previous two scenarios, 

primarily due to the significant contribution of the 

upstream network in supplying power. Several 

factors contribute to this increased profitability: 
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− Cost Savings: By relying on the upstream 

network for a significant portion of the power 

supply, companies can reduce their own power 

generation costs. This includes expenses related 

to operating and maintaining power generation 

facilities, as well as the cost of fuel or energy 

sources. The savings achieved through this 

arrangement contribute to overall profitability. 

− Scalability: Leveraging the upstream network 

allows for greater scalability and flexibility in 

meeting power demands. Companies can easily 

adjust their power consumption based on 

fluctuating needs without requiring substantial 

infrastructure investments. This agility enables 

efficient resource allocation and optimization, 

resulting in improved profitability. 

− Risk Mitigation: Depending solely on internal 

power generation can be risky, as it exposes 

companies to potential disruptions or failures in 

their own power infrastructure. By diversifying 

their power sources and relying on the more 

reliable upstream network, businesses can 

mitigate these risks and ensure a consistent 

power supply. This stability translates into 

enhanced operational efficiency and ultimately 

higher profitability. 

− Focus on Core Competencies: By relying on the 

upstream network, companies can allocate 

resources and expertise to their core 

competencies rather than power generation. 

This allows for more efficient resource 

allocation, increased productivity, and better 

financial outcomes. 

− Environmental Considerations: In many cases, 

the upstream network may utilize renewable 

energy sources or cleaner technologies, 

resulting in a reduced carbon footprint. By 

aligning with sustainable practices and 

benefiting from associated incentives, 

businesses can enhance their corporate image, 

attract environmentally conscious customers, 

and potentially access additional revenue 

streams. 

 

Fig. 8. Daily power generated by DERs in grid-connected 
mode without using ESS 

 
Fig. 9. Daily cost of grid-connected mode without using 

ESS 

D) Grid-connected mode using ESS 

This section is dedicated to determining the 

optimal storage capacity that maximizes the 

profitability of the microgrid when connected to the 

upstream network. It is assumed that the microgrid 

is already installed and equipped with distributed 

production resources. Additionally, the microgrid 

has the capability of exchanging 180 kilowatts of 

power with the upstream grid on a financial day. The 

proposed algorithm is once again employed to 

identify the optimal production arrangement and 

battery capacity. In this case, the battery functions 

by receiving and charging power from the upstream 

network during periods of low market prices and 

supplying power to the market during peak load 

periods when the market price is higher. After 

evaluating the overall situation of microgrid 

utilization and the availability of resources, it can be 

concluded that if the battery capacity is 28 kW or 

less, utilizing the entire capacity for storing energy 

from the upstream network during non-peak 

conditions and subsequently injecting it into the 

network during peak periods will yield the 

maximum achievable profit. This approach is 

advantageous because the electricity market price 

during peak periods significantly exceeds the 

operating cost of the microgrid units. However, it is 

important to note that out of the outlined scenarios, 

only 33.24 kilowatts of power exchange with the 

upstream network are possible during a financial 

day. Consequently, the scenario that generates the 

highest profit for the microgrid is selected. In this 

case, the most favorable scenario involves injecting 

18.48 kW of power into the upstream network, 

resulting in a profit of $7.67 according to Figures 

(10) and (11). 

 
Fig. 10. Daily power generated by DERs in grid-connected 

mode using ESS 
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Fig. 11. Daily cost of grid-connected mode using ESS 

 

The simulation results presented in this study 

offer valuable insights into the operation and 

optimization of a MG system that utilizes 

decentralized power generation resources like micro 

turbines and fuel cells. The analysis focuses on two 

primary modes of operation: islanding mode 

(without energy storage) and grid-connected mode 

(with energy storage). The discussion highlights the 

key findings and implications of each mode, taking 

into account system performance, financial 

management, and overall efficiency. In the islanding 

mode without energy storage, the MG operates 

independently without relying on the main grid. 

However, the absence of energy storage limits the 

system's ability to effectively manage fluctuations in 

energy generation and demand. The simulation 

results demonstrate that the presence of a 

photovoltaic system significantly reduces operating 

costs during the day when it generates maximum 

power output. However, operational costs increase 

during nighttime hours when the PV system is 

inactive, emphasizing the need for energy storage to 

improve flexibility and resilience. Energy storage 

allows for the storage of excess energy during low-

demand periods and its release during peak demand 

periods, leading to cost savings and improved 

overall performance. 

The analysis also considers the network 

connection mode, where the MG can procure power 

from the upstream grid or supply power locally 

within the MG. By comparing the cost of producing 

one kilowatt of power using the most expensive 

distributed generation resource with the prevailing 

market price, stakeholders can make informed 

decisions about the most cost-effective approach. If 

the market price is lower than the cost of local power 

generation, accessing electricity from the upstream 

network becomes advantageous. Conversely, if the 

local power generation cost is lower than the market 

price, supplying power within the MG becomes 

preferable. This analysis enables stakeholders to 

optimize their power procurement strategy based on 

market conditions and cost-effectiveness, 

maximizing financial benefits and ensuring efficient 

operation of the MG system. In the grid-connected 

mode with energy storage, the simulation results 

focus on determining the optimal storage capacity to 

maximize the MG's profitability when connected to 

the upstream network. The battery operates by 

receiving and charging power from the upstream 

network during periods of low market prices and 

supplying power to the market during peak load 

periods when the market price is higher. The results 

indicate that profitability is influenced by the 

relationship between the battery capacity and market 

conditions. The optimal approach involves storing 

energy from the upstream network during non-peak 

conditions and injecting it into the network during 

peak periods, where the market price significantly 

exceeds the MG's operating costs. This strategy 

allows for significant profit generation and 

highlights the importance of optimizing storage 

capacity based on market dynamics. 

5. Discussion  

The simulation results emphasize the broader 

implications of the findings. In the grid-connected 

mode without energy storage, leveraging the 

upstream network for a significant portion of the 

power supply enables cost savings, scalability, risk 

mitigation, focus on core competencies, and 

environmental considerations. By relying on the 

more reliable upstream network, businesses can 

enhance operational efficiency, reduce their carbon 

footprint, and potentially access additional revenue 

streams. In the grid-connected mode with energy 

storage, the optimal utilization of storage capacity 

allows for maximum profit generation by aligning 

energy supply with market conditions. 

To conclude the paper, there are several 

scenarios for reliability evaluation (RE) that 

investigate the influence of CAESs on the operation 

mechanism of the microgrid. 

A) Scenario 1: Basic RE 

In this scenario, a basic RE of the energy 

storage system in the MG is considered. The 

provided data includes λ and MTTR for the battery, 

converter, and control system. The system 

availability is calculated based on the MTBF and 

MTTR of the system components. The 𝑀𝑇𝐵𝐹𝑠𝑦𝑠 is 

obtained by taking the inverse of the sum of the 

component λ. The MTTR_sys is calculated by 

summing the individual component MTTRs. The 

reliability (R) is calculated as the probability that the 

system operates without failure for a given period. It 

is derived from the system availability (A) using the 

formula discussed in [32-35]. The maintainability 

(M) represents the ability to repair and restore the 

system to an operational state within a given time. It 

is calculated as the ratio of 𝑀𝑇𝐵𝐹𝑠𝑦𝑠 to 𝑀𝑇𝐵𝐹𝑠𝑦𝑠 

plus twice the 𝑀𝑇𝑇𝑅𝑠𝑦𝑠. Table (2) presents the main 

parameters used for the RE of the CAES in the MG, 

while Table (3) illustrates the results of this scenario. 

It shows that using CAES will increase the system 
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reliability, availability and maintainability. In 

addition, the simulation results show that the MG 

power system can continue its normal operation for 

many hours without any interruption or loss of load 

and energy not served. Scenario 2: Redundancy 

Analysis 

In this second scenario, the impact of 

redundancy on the reliability of the energy storage 

system is analyzed. The data provided includes the 

same λ and MTTR for the components as in 

Scenario 1, along with the number of redundant 

batteries (𝑁𝑟𝑒𝑑). Considering the 𝑁𝑟𝑒𝑑  redundant 

batteries in parallel, the system reliability is 

calculated using the k-out-of-n method. Table (4) 

presents the main parameters used for this scenario. 

This method evaluates the system reliability based 

on the number of redundant components needed for 

the system to operate successfully. The reliability of 

a single battery (𝑅𝑏𝑎𝑡𝑡𝑒𝑟𝑦) is raised to the power of 

the number of redundant batteries (𝑘), multiplied by 

the complement of 𝑅𝑏𝑎𝑡𝑡𝑒𝑟𝑦 raised to the power of 

the difference between 𝑁𝑟𝑒𝑑   and 𝑘. By adding 

redundancy to the system, the overall reliability and 

availability are expected to improve, as the failure of 

a single component does not result in a complete 

system failure as the results are shown in Table (5). 

B) Scenario 3: Failure Modes and Effects 

Analysis 

In this scenario, a failure modes and effects 

analysis (FMEA) for the energy storage system is 

performed. Along with the λ and MTTRs for the 

components, data is provided for two specific failure 

modes: overheating of the converter (𝐹𝑀1) and 

communication failure in the control system (𝐹𝑀2). 
For each failure mode, we consider the probability 

of occurrence (𝑃𝐹𝑀) and the consequence (𝐶𝐹𝑀). The 

overall system reliability is calculated by 

incorporating the probabilities and consequences of 

different failure modes using fault tree analysis. 

Considering the data represented in Table (6), the 

system availability, MTBF, MTTR, and reliability 

indices are calculated based on the same formulas 

and principles as in Scenario 1, considering the 

probabilities and consequences of FM1 and FM2 as 

shown in Table (7). By conducting a failure modes 

and effects analysis, we can identify and prioritize 

critical failure modes, understand their impact on 

system reliability, and develop appropriate 

mitigation strategies to enhance the overall 

reliability of the energy storage system. 

 

 

 

 

 

Table.2. 

Table 2, main parameters of scenario 1 used for the RE of 

CAES in the MG 

Parameter Value 

Battery failure rate 0.001 failures/hour 

Converter failure rate 0.0005 failures/hour 

Control system failure rate 0.0002 failures/hour 

MTTR for battery 3 hours 

MTTR for converter 4 hours 

MTTR for control system 2 hours 

Table.3. 
Table 3, the results of basic RE analysis 

Metric Value 

System Availability 0.9982 

MTBF for battery 1000 hours 

MTBF for converter 2000 hours 

MTBF for control system 5000 hours 

MTTR for system 9 hours 

Reliability (R) 0.999991 

Availability (A) 0.9982 

Maintainability (M) 0.9991 

 

Table.4. 
Main parameters of scenario 2 named redundancy analysis 

Parameter Value 

Battery failure rate 0.001 failures/hour 

Converter failure rate 0.0005 failures/hour 

Control system failure rate 0.0002 failures/hour 

MTTR for battery 3 hours 

MTTR for converter 4 hours 

MTTR for control system 2 hours 

Number of redundant batteries 2 

Table.5. 
The results of redundancy analysis scenario 

Metric Value 

System Availability 0.9994 

MTBF for battery 1000 hours 

MTBF for converter 2000 hours 

MTBF for control system 5000 hours 

MTTR for system 9 hours 

Reliability (R) 0.999995 

Availability (A) 0.9994 

Maintainability (M) 0.9996 
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Table.6. 
Main parameters of scenario 3 named FMEA 

Parameter Value 

Battery failure rate 0.001 failures/hour 

Converter failure rate 0.0005 failures/hour 

Control system failure rate 0.0002 failures/hour 

MTTR for battery 3 hours 

MTTR for converter 4 hours 

MTTR for control system 2 hours 

Probability of FM1 (𝑷𝑭𝑴𝟏) 0.0003 

Consequence of FM1 (𝑪𝑭𝑴𝟏) $5000 

Probability of FM2 (𝑷𝑭𝑴𝟐) 0.0002 

Consequence of FM2 (𝑪𝑭𝑴𝟐) $3000 

Table.7. 
The results of FMEA scenario 

Metric Value 

System Availability 0.9982 

MTBF for battery 1000 hours 

MTBF for converter 2000 hours 

MTBF for control system 5000 hours 

MTTR for system 9 hours 

Reliability (R) 0.999991 

Availability (A) 0.9982 

Maintainability (M) 0.9991 

6. Conclusion  

The optimization of microgrid planning was 

addressed in this study by considering the 

integration of CAES systems. A novel approach, the 

HANN-MDA, was proposed to determine the 

optimum CAES capacity in microgrid designs. The 

HANN-MDA method combined the learning 

capabilities of artificial neural networks with the 

optimization power of the modified dragonfly 

algorithm, enabling an efficient and accurate 

determination of the optimal CAES capacity. The 

effectiveness of the HANN-MDA method in 

achieving cost savings and improving microgrid 

performance was demonstrated through simulation 

results. By considering the integration of renewable 

energy sources and the storage capabilities of 

CAES, the proposed method effectively minimized 

the overall cost of microgrid operation and 

facilitated the optimal utilization of renewable 

energy resources, enhancing the grid's resilience and 

sustainability. The findings highlight the importance 

of considering CAES in microgrid planning and 

emphasize the valuable tool that the HANN-MDA 

method provides for designing and operating cost-

effective and sustainable microgrid systems. Further 

studies can explore the applicability of the HANN-

MDA method in different microgrid scenarios, 

taking into account additional factors such as 

environmental impacts and grid resiliency 

requirements. 

Nomenclature 

Sets 

𝑇 Time periods 

𝑊 Wind turbines 

𝑆 Solar PV 

𝑀 Microturbines 

𝐺 Generators (𝑊, 𝑆, 𝑀) 

𝐿 Set of loads 

𝑃 Pollutants (𝐶𝑂2, 𝑆𝑂2, 𝑁𝑂𝑥) 

Parameters 

𝐷(𝑡) Electric load at time (𝑡) (𝑀𝑊) 

𝐶𝑤, 𝐶𝑠, 𝐶𝑚 Generator costs ($/𝑀𝑊ℎ) 

𝑃𝑤max(𝑡), 𝑃𝑠max(𝑡) Max renewable power (𝑀𝑊) 

𝑃𝑚min, 𝑃𝑚max Microturbine limits (𝑀𝑊) 

𝐶ens 
Cost of energy not served 

(𝑀𝑊ℎ) 

𝐶ex 
Cost of excess generation 

(𝑀𝑊ℎ) 

𝐸𝑔(𝑝) 
Emission rate of pollutant (𝑝) 

(𝑘𝑔/𝑀𝑊ℎ) 

𝐶𝑃(𝑝) Penalty for pollutant (𝑝) (𝑘𝑔) 

eff_c CAES compression efficiency 

eff_d CAES discharge efficiency 

𝐸caesmax Max CAES energy (𝑀𝑊ℎ) 

𝑅 Gas constant (𝐽/𝑘𝑔𝐾) 

𝑇0 Temperature (𝐾) 

𝑃0 Pressure (𝑃𝑎) 

𝑐𝑝 Specific heat (𝐽/𝑘𝑔𝐾) 

𝑛min, 𝑛max Polytropic index limits 

𝑄𝐿𝐻𝑉 Lower heating value (𝑀𝐽/𝑘𝑔) 

𝐶𝑎 Cost of air (𝑘𝑔) 

𝑀emission 
Maximum allowable emissions 

cost (𝑀𝑊ℎ) 

𝑈𝑤(𝑡), 𝑈𝑠(𝑡) 
Uncertainty factors for wind and 

solar power 

𝑥𝑡𝑙
𝐷𝑅 

Binary variable indicating 

whether demand response is 

activated for load 𝑙 during period 

(𝑡) 

Decision Variables 

𝑃𝑔(𝑡) 
Power output of generator (𝑔) at 

time (𝑡) (𝑀𝑊) 

𝑃𝑙(𝑡) 
Power demand for for load 𝑙 
during period (𝑡) 

𝑃caes_c(𝑡) 
CAES compression power at 

time (𝑡) (𝑀𝑊) 

𝑃caes_d(𝑡) 
CAES discharge power at time 

(𝑡) (𝑀𝑊) 

𝐸caes(𝑡) 
CAES energy level at time (𝑡) 

(𝑀𝑊ℎ) 

𝑃ens(𝑡) 
Power not served at time (𝑡) 

(𝑀𝑊) 

𝑃ex(𝑡) Excess power at time (𝑡) (𝑀𝑊) 
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𝐸𝑝(𝑡) 
Emissions of pollutant (𝑝) at 

time (𝑡) (𝑘𝑔) 

𝑈𝑤(𝑡) 
Uncertainty factor for wind 

power at time (𝑡) 

𝑈𝑠(𝑡) 
Uncertainty factor for solar 

power at time (𝑡) 
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