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Abstract 

In modern power networks, once the restructuring of production units is done, traditional power plants will operate as virtual 

power plants (VPPs), which are actually a collection of distributed generation (DG) units and energy storage systems (ESSs) 

that form an integrated power plant. Commercial VPPs can replace the current traditional power plants in the near future, 

because they have many advantages such as organizing distributed energy resources (DER) and hydrogen and electricity 

storage systems. Considering that energy management and planning of DER resources in VPP have challenging issues, 

therefore, thoughts such as changes in instantaneous power generation, consumption, energy price and availability of system 

components should be taken into consideration, so that simulations and future research with problems will not accompanied. 

Since microgrids (MGs) have the ability to monitor and control real-time power in power grids, determining the number of 

DER resources in VPPs is deliberated essential in order to reduce planning costs. For this purpose, in this paper, the optimal 

sizing of DERs is done using speed particle swarm optimization (SPSO) algorithm. In proposed optimization algorithm, the 

coefficients c1 and c2 are not constant and is changing according to the number of iterations, which makes the search in the 

problem solving space more efficient and its convergence is improved by 26% compared to the traditional PSO algorithm. 

Consequently, the number and sizing of solar photovoltaic (PV), wind turbine (WT), fuel cell (FC), electrolyzer, hydrogen 

storage and battery resources in a 20-year time horizon will be achieved with the lowest cost.  
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1. Introduction 

Nowadays, the power grids around the world 

have faced to several concerns such as fossil fuel 

reduction, low energy efficiency, and environmental 

pollution [1,2]. These problems have increased the 

tendency to generate power at the distribution level 

[3,4]. Specific resources used in distribution 

networks side include wind turbines (WTs), 

photovoltaic (PVs), fuel cells (FCs), combined heat 

and power (CHP) systems, micro turbines (MTs) 

and a combination of these technologies. These 

types of power generations at the distribution level 

are called distributed generations (DGs). The reason 

for this naming is to differentiate between these 

sources and conventional power plants [5,6]. With 

DG integration in conventional power grids, the 

traditional distribution networks have become active 

distribution networks [7].  

In recent years, a new architecture called the 

MG has been developed to maximize the potential 

of distributed energy sources [8,9]. MGs are a type 

of electrical system that uses renewable or non-

renewable energies to meet the demand for local 

loads and can operate in islanding or grid-connected 

states, where in both modes, a coordination and 

balance of power generated and demands are 

controlled and managed [10,11]. MGs are small-

scale and low-voltage (LV) power networks 

including renewable and non-renewable 

technologies to generate electrical and thermal 

power to provide heat and electrical loads such as 
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domestic, commercial and industrial constructions 

[12,13]. Some differences between the conventional 

networks and MGs are as follows [14,15]: 

The production resources in MGs have less 

capacity than the conventional generators used in 

upstream network. 

In MGs, the generated power at the distribution 

voltage level is directly injected into the local loads, 

while in conventional power networks the generated 

power is transferred though transmission systems. 

In MGs, the small DGs are installed near the 

customers, so that despite the conventional power 

networks, the thermal or electrical loads can be 

supplied without transmission line losses with the 

appropriate voltage profile and stable frequency. 

A) An overview of MG optimization 

In [16] an optimization Algorithm is proposed 

to optimize the VPP production scheduling. The 

results obtained by this algorithm have been 

validated by a similar operation based on the Particle 

Swarm Optimization (PSO) [17]. The outputs have 

represented that production costs are minimized as 

well as power losses are reduced along with power 

quality and reliability improvement of delivered 

power to the grid loads. The authors in [18] evaluate 

the role of VPPs in ancillary service improvement 

and their applicability. The presented model divides 

the tasks of transmission systems in incident 

management, reservation, reactive power control, 

execution of DRPs, etc. between two important parts 

of the network, namely transmission system 

operator (TSO) and distribution system operator 

(DSO). The framework proposed in [19] the 

formulation of risk and its effects on a VPP during 

the implementation of contingency management. 

Since the risk influences the behaviour of the market 

operator both mentally and objectively, thus 

choosing the right level of risk can increase the 

expected profit and minimize the power blackout. 

This paper deals with maximizing the objective 

function consisting of a constrained optimization 

and the risk function with additional variables. The 

additional variables included in the risk can greatly 

increase the role of the operator in the profitability 

of the system. The authors in [20] provide a 

definitive model and formulations for optimizing 

energy management in VPPs taking into account the 

reserve market laws. In this model, the flexibility 

indices refer to load controllability that can execute 

DRPs, while the uncertainties in the power system 

have also been solved with robust programming 

method considering the DG resources. Formerly, by 

improving the contingency planning, the output of 

these cases and the average amount of profit are 

compared. 

 

B) Motivations  

Human use of fossil fuels, despite the many 

benefits of fossil fuels, has caused excessive damage 

to the environment, as the release of pollutants such 

as climate change and greenhouse effects causing 

acid rain and etc. CO2 gas is the main cause of 

climate change [21]. Since virtual power plants 

(VPPs) are a set of DG units, demand response 

programs (DRPs) and energy storage systems 

(ESSs) that are operated as a single unit, integrating 

them to the MGs can reduce CO2 emissions and 

pollutions for the following reasons: 

Simultaneous use of electricity and heat due to 

the proximity of production units and consumers 

increases the efficiency of MGs performance, results 

in CO2 reduction. 

The use of renewable energy producers that 

have little or no environmental pollution, such as PV 

units, WTs and etc. 

Independent and coordinated control between 

DG sources, controllable loads and energy storage 

devices, performed by MG management units, are 

the main features of the VPPs. VPPs can be 

connected to the grid directly or indirectly. From the 

upstream network point of view, the VPP is seen as 

a controllable generator in the system which can be 

used as an auxiliary source to supply power to a part 

of the network in case of emergency (for e.g. peak 

load time) or safe case (for e.g. MGs). From the 

consumer's point of view, the VPPs are similar to a 

traditional LV distribution system that supply 

electrical and heating demands, as well as increasing 

their power supply reliability, reducing losses, 

improving power quality, and reduces energy prices. 

In fact, the purpose of operating a VPP is to use a set 

of DGs and loads that behave in a coordinated 

manner, instead of using many DGs that behave 

inappropriately and inconsistently [22]. Therefore 

the optimum sizing of DGs managed by a VPP is the 

main purpose of this research [23,24]. 

C) Research gap  

One of the future achievements of 

restructuring has been the creation of a competitive 

environment in the electricity generation sector, in 

this regard, a set of small-scale production units with 

loads and a covered network managed by a certain 

entity is called a virtual power plant, which can have 

an active presence in the wholesale market of energy 

and rotating storage, but in this field, the existing 

articles have less discussed the planning and 

sensitivity analysis of the input parameters and have 

mostly limited themselves to VPP operation. 

Therefore, in this article, in addition to providing a 

comprehensive formulation for the planning of 

VPPs, with the approach of sensitivity analysis, 
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different conditions are presented for the 

construction of a virtual power station. 

D) Contributions 

The main contributions of this research are: 

− Energy optimization in VPPs including several 

scenarios such as wind speed variation, 

converter loss increment and so on. 

− Determining the number of DERs and optimal 

capacity of them in the virtual power plant.  

While list measurable outcomes and objectives 

that are expected to in this paper achieve are listed 

below:  

− Modelling and coding the smart grid resources 

and loads in MATLAB software. 

− Using speedy particle swarm optimization 

(SPSO) algorithm to optimize the objective 

function including the costs of distributed 

energy resources (DERs) installation costs, 

operation and maintenance and so on. 

− Investigating the effects of battery efficiency on 

best solutions of DERs optimization. 

E) Paper organization and structure 

This paper is organized as follows: in Section 

1 the main introduction to VPPs, the benefits, 

contributions and motivations are mentioned. The 

VPP structures and energy management advantages 

in it is expressed in Section 2. Section 3 describes 

the problem formulations including the main DERs 

and modelling of power exchanges. The proposed 

PSO algorithm used in this optimization problem to 

achieve the best solution of DER numbering and 

sizing is introduced in Section 4. The simulation 

results consist of several case studies are presented 

in Section 5 and finally, the conclusion is shown in 

Section 6.  

2. VPP structures  

The concept of the VPP was first introduced in 

1994 with the goals of utilizing DGs, providing a 

suitable interface for local operators, activating 

distributed control strategies, and managing these 

facilities as shown in Figure (1) [25]. The VPP 

structures can be divided into two important 

categories [26]: 
− Commercial VPP (CVPP) type 

− Technical VPP (TVPP) type 

VPPs always sell the electricity generated by 

internal sources to the upstream electricity grid and 

make money by uniform managing of all DG units. 

It should be noted that the cost of power flowed in 

transmission lines should also be reduced from the 

revenue earned. 

A) CVPP structures 

The highest aim of CVPP structures is to 

generate revenue and gain profit from the electricity 

market. In these VPPs, the main focus of the 

network operator is on optimizing the size of 

resources, storages, selling more power to the 

upstream network and reducing operating costs. 

Such problems in these areas are usually solved with 

intelligent algorithms and cost constraints are 

involved. The use of probabilistic and stochastic 

methods to model and solve nonlinear behaviours of 

WTs and PVs are also inevitable. There are several 

papers that have investigated about optimizing 

CVPP integrating DERs structures and have tried 

different optimization methods [27,28]. 

B) TVPP structures 

This structure of the VPPs deal with technical 

issues in safe operation and load balancing, such as: 

network monitoring, debugging and fault detection, 

telecommunication protocols, connecting and 

disconnecting to MG, protection systems, cyber and 

infrastructure attacks, telecommunication hacking, 

etc. This issue has been investigating in numerous 

literatures [29,30].  

C) Comparison between CVPP and TVPP 

structures 

The electricity price in these two structures is 

different, which is determined by the energy 

management module (EMM).The discussion about 

price and load forecasting in the first structure shows 

itself more and looks at the electricity market as a 

stock market.In the CVPP structure, the price 

bidding is set by the producers, while in the TVPP 

structure the electricity price will be determined by 

the network operator according to the technical 

constraints of the network.The TVPP structure is 

more secure and shows more stability against 

intentional and unintentional events. Uncertainty of 

resources in the TVPP structure can be modelled, 

which helps to facilitate the operation. However, in 

CVPP structure, unpredictable resource models are 

not easily implemented and the solutions obtained 

will not be accurate. 

D) Energy management in VPPs 

Authors in [31] investigate the effect of 

flexible loads such as demand response (DR) in VPP 

and their effect on the market clearing price and 

energy efficiency. The data mining method based on 

DR incentive programs can generate an applicable 

platform between the VPP energy management 

system and the users. The data mining in this paper 

has mentioned the categorization of available 

demand by price, which can facilitate the optimal 

selection in production.  
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Fig. 1. A sample of VPP considering DGs [27] 

 

In [32] the authors examine the availability of 

VPP in the presence of time transferable loads. In 

this paper, flexible loads are distributed in several 

modes. The control strategies used for VPP in this 

paper have been compared with similar references 

and the comprehensiveness of the proposed method 

has been determined. The introduced objective 

function includes wind, solar, storage and diesel 

generator sources. It also includes the effect of load 

flexibility index and DR. 

The operational scheduling based on industrial 

VPPs has been evaluated in [33], which also take 

advantage of using wind energy to generate power. 

The objective function is to maximize the combined 

profit of production units considering VPP 

efficiency. In VPP, the net profit is the difference 

between revenue (selling of power to the network 

through DR, PVs and WTs) and costs (production 

costs, load shedding and shortcomings caused by 

uncertainty of the units). 

In [34] the authors deal with VPP optimization 

using the deterministic and interval hybrid 

optimization algorithm. This paper states that due to 

the uncertainty of resources in VPP, economic load 

dispatch cannot be done by probabilistic and robust 

methods. The proposed combined method not only 

estimates the deterministic benefit of VPP under the 

several scenarios, but also extremely maximizes 

social welfare to overcome uncertainties. The 

proposed method, by providing appropriate 

weighting coefficients, performs the optimization 

among the DGs such as CHP, electric vehicles, PV 

and upstream network.   

The authors in [35] study on the behaviour of 

DR programs in MG including VPP, in which the 

main focus is on commercial buildings and the 

participation of DGs. The objective function 

(including wholesale market, heating, ventilation, 

and air conditioning (HVAC) systems and DERs) is 

going to be optimized based on linear programming, 

which leads to the following results: Improving VPP 

profit by increasing the influence of DERs 

penetration, reducing electricity bills by optimizing 

the consumption of HVAC systems and increase the 

efficiency of commercial buildings by using DRPs.  

The authors in [36] focus on the performance 

area of VPPs on the P-Q plane and the limitations of 

active and reactive power. This paper states that 

practically, each DG has many power generation 

limitations and it is not possible to extract power 

from each source up to its maximum nominal 

capacity. It goes on to illustrate the limitations of 

power generation in VPPs by presenting the 

operating range of diesel generators, batteries and 

PV systems. The useful activity ranges of DG units 

for power generation and expressing the difference 

between flexibility and feasibility is one of the most 

important results of this paper. 

3. Problem Formulations  

Figure (2) represents the structure of a VPP 

that exchanges electrical power to the upstream 

electricity market. As it is observed, the system 

under consideration includes WT units, PV units, 

electrolyzers, hydrogen storage tanks (HSTs), FCs, 

batteries, DC-AC inverters, DC-DC converters, AC-

DC converters and several local loads. The power 

generated by solar units and WTs are injected to the 

DC bus, where some part of that is stored in the 

battery, directly, the remained part will energize the 

electrolyzer or transfer to the DC-AC inverter for 

supplying the local loads and selling to the upstream 

network if possible. 
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Fig. 2. Structure of the VPP under consideration [14] 

A) Solar Unit 

The solar cells generate electrical power after 

absorbing the sun's irradiation. Given that the 

irradiance power used in this paper is shown in 

Figure (3) over a year (8760 hours), so that the 

output active power of PV cells would be calculated 

using the following equation [37].  

𝑃PV =
𝐺

1000
𝑃PV,rated𝜂PV,conv (1) 
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where in equation (1), the parameter 𝐺 

represents the irradiance power received to the array 

surface normally in (W/m2) as shown in Figure (3) 

and 𝑃𝑃𝑉,𝑟𝑎𝑡𝑒𝑑 is the rated power of every single 

array, that is gotten using PV catalogues. 

𝜂𝑃𝑉,𝑐𝑜𝑛𝑣  stands for the total efficiency of PV cells 

with the equivalent model of DC-DC converter 

connected to the PV source and the consistent node. 

Since the vertical and horizontal components of the 

irradiance power can be divided from each other, for 

every instant, the effective power can be received 

(vertically) to the surface of PVs with the 

constructed angle of 𝜃𝑃𝑉 is considered in line with 

equation (2):  

𝐺(t,θPV)=G𝑉(𝑡)cos(𝜃PV)+G𝐻(𝑡)sin(𝜃PV) (2) 

Where parameters 𝐺𝑉(𝑡) and 𝐺𝐻(𝑡) are the 

model of vertical and horizontal components of 

irradiance power received in (W/m2), 

correspondingly. 

 
Fig. 3. The solar radiation used in this study [37] 

B) Wind Turbine Unit 

In recent decades, due to the growing need for 

demand and energy shortages around the world, 

efforts have been made to generate electricity from 

renewable energy sources. The only source of 

renewable energy that is economically comparable 

to fossil fuels is wind energy. This is because the 

energy received is mechanical and easily converted 

into electrical energy with minimal conversions and 

losses. The behavior of power-velocity 

characteristic of the wind turbine is usually provided 

by the manufacturer company of turbines which 

expresses the real power flow from the turbine to the 

DC node. The parameter (𝑃WT) or output power can 

be found by changing the wind speed (𝑣𝑊) in 

equation (3) where the velocities 𝑣𝑐𝑢𝑡𝑖𝑛, 𝑣𝑐𝑢𝑡𝑜𝑢𝑡 and 

𝑣𝑟𝑎𝑡𝑒𝑑  are low cut-in, high cut-off and rated velocity 

(m/s) of the wind rotating the turbine, respectively. 

The maximum output power of the turbine is 

modelled by 𝑃𝑊𝑇,𝑚𝑎𝑥 (kW) while the output power 

at high cut-off speed is represented by 𝑃𝑓𝑢𝑟𝑙 . In this 

research, the constant m is measured to be equal to 

3.12. The wind data used in this study is shown in 

Figure (4). 

𝑃𝑊𝑇

=

{
 
 

 
 

0 ;𝑣𝑤 ≤𝑣𝑐𝑢𝑡𝑖𝑛, 𝑣𝑤 ≥ 𝑣𝑐𝑢𝑡𝑜𝑢𝑡

𝑃𝑊𝑇𝑚𝑎𝑥 × (
𝑣𝑤 − 𝑣𝑐𝑢𝑡𝑖𝑛

𝑣𝑟𝑎𝑡𝑒𝑑 − 𝑣𝑐𝑢𝑡𝑖𝑛
)
𝑚

; 𝑣𝑐𝑢𝑡𝑖𝑛 ≤𝑣𝑤 ≤ 𝑣𝑟𝑎𝑡𝑒𝑑

𝑃𝑊𝑇𝑚𝑎𝑥 +
𝑃𝑓𝑢𝑟𝑙 − 𝑃𝑊𝑇𝑚𝑎𝑥
𝑣𝑐𝑢𝑡𝑜𝑢𝑡 − 𝑣𝑟𝑎𝑡𝑒𝑑

× (𝑣𝑊 − 𝑣𝑟𝑎𝑡𝑒𝑑) ; 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣𝑤 ≤ 𝑣𝑐𝑢𝑡𝑜𝑢𝑡

 

 

(3) 

  
Fig. 4. The wind speed data used in this study [26] 

C) Electrolyzer Unit 

One of the most essential elements for the 

operation of fuel cells is hydrogen. This required 

hydrogen can be provided in various ways, the most 

important of which is: extracting hydrogen from 

fossil fuels or obtaining it from the electrolyte. The 

electrolyte process of water is the only possible way 

to obtain the constituents of water without the use of 

fossil fuels. The hydrogen obtained from the water 

electrolyte can be stored in a very compact form and 

has a very high purity. Of course, the amount of this 

purity varies depending on the type of electrolyzer 

used. The compressor-free design reduces energy 

consumption, although the software developed is 

very flexible and the compressor model can be 

easily added to process. The electrochemical 

interactions in the water electrolyzer are as follows 

[38]:  

𝐻2𝑂 →
1

2
𝑂2 + 2𝐻

+ + 2𝑒− (4) 

To model the electrolyzer in power system of 

VPP, the efficiency is an input parameter that plays 

an important role. With the present knowledge, we 

know that an electrolyzer is an electrochemical 

device that behaves inversely to the function of a 

fuel cell, because it produces hydrogen when an 

electric current enters, during a chemical reaction. 

But the rate of hydrogen production by the 

electrolyzer, according to Faraday law, is directly 

related to the transfer of electrons. The following 

equation shows the relationship between the 

electrolyzer current and the rate of hydrogen 

production: (5).The number of 𝐻2 generated to 

transfer to the HSTs is calculated in (6). 

𝑃𝑒𝑙𝑒𝑐,𝑚𝑖𝑛 ≤ 𝑃𝑒𝑙𝑒𝑐(𝑡) ≤ 𝑃𝑒𝑙𝑒𝑐,𝑚𝑎𝑥  (5) 

𝑁𝐻2 =
𝜂𝑃𝑉,𝑐𝑜𝑛𝑣𝑃𝑒𝑙𝑒𝑐(𝑡)

𝑁𝐻
 (6) 

D) Hydrogen storage tank unit 
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To reduce the system cost, the maximum 

pressure of the hydrogen tank is assumed equal to 

the electrolyzer operating pressure. The energy that 

has been stored in the tank (𝐸𝑡𝑎𝑛𝑘(𝑡)) can be 

calculated for each time step from (7) [37]. 

𝐸tank(𝑡) = 𝐸tank(𝑡) + 𝑃𝑒𝑙𝑒𝑐−tank(𝑡)𝛥𝑡

−
𝑃𝐹𝐶−tank(𝑡)𝛥𝑡

𝜂𝑠𝑡𝑜𝑟𝑎𝑔𝑒
 

(7) 

In equation (7), 𝑃𝑒𝑙𝑒𝑐−𝑡𝑎𝑛𝑘 shows the transfer 

power from the electrolyzer to the hydrogen tank, Δ𝑡 
is the length of each time step and 𝑃𝐹𝐶−𝑡𝑎𝑛𝑘 

represents the transfer capacity from the hydrogen 

tank to the fuel cell. The parameter 𝜂𝑠𝑡𝑜𝑟𝑎𝑔𝑒  also 

represents the efficiency of the storage system, 

which can indicate leakage or pumping losses.  

The maximum quantity of hydrogen stored in 

a tank, is considered equal to its nominal capacity. It 

also assumed that not all stored hydrogen in tank, 

can be extracted due to some problems, including 

pressure drop inside the tank. The hydrogen in the 

tank will always have a high (𝐸𝑡𝑎𝑛𝑘(𝑡)𝑚𝑎𝑥
 ) and low 

(𝐸𝑡𝑎𝑛𝑘(𝑡)𝑚𝑖𝑛
 ) range.   

𝐸tank,𝑚𝑖𝑛 ≤ 𝐸tank(𝑡) ≤ 𝐸tank,𝑚𝑎𝑥  (8) 

E) Fuel Cell Unit 

Fuel cells are devices that convert the chemical 

energy of a fuel directly into electricity by 

electrochemistry. A fuel cell is similar to a battery in 

many ways, but it can provide electricity for a longer 

period of time. This is because the fuel cell is 

constantly supplied with fuel (or oxygen) from an 

external source, while a battery contains only a 

limited amount of fuel and oxidants that can be used 

to discharge it. . That's why fuel cells have been used 

for decades in space probes, satellites and manned 

spacecraft. Thousands of fixed fuel cell systems 

have been installed in primary power plants, 

hospitals, schools, hotels and office buildings for 

primary and backup power around the world. Many 

waste treatment plants use fuel cell technology to 

power the methane gas produced by waste 

decomposition. Each fuel cell has an electrolyte that 

transfers electrically charged particles from one 

electrode to another and is a catalyst that accelerates 

reactions at the electrodes. Hydrogen is the main 

fuel, but fuel cells also need oxygen. One of the great 

attractions of fuel cells is that they generate 

electricity with very little pollution - most of the 

hydrogen and oxygen used to generate electricity 

eventually combine to form a harmless by-product, 

water. The purpose of fuel cells is to generate an 

electric current that can be directed out of the cell to 

do the work, such as powering an electric motor or 

turning on a light bulb. Due to the behaviour of 

electricity, this current returns to the fuel cell and 

completes an electrical circuit. The chemical 

reactions that produce this flow are the key to how 

fuel cells work. PEMs have a relatively fast dynamic 

response, about 1 to 3 seconds. The power output of 

these fuel cells can be calculated as a function of the 

input power of the hydrogen as well as its efficiency 

(𝜂𝐹𝐶), which can be assumed to be constant. 

Therefore, the output power extracted from fuel cell 

stacks (𝑃𝑡𝑎𝑛𝑘−𝐹𝐶 ) could be represented with (9) in 

which 𝑃𝑡𝑎𝑛𝑘−𝐹𝐶 is gross productive power of fuel 

cells [39]. 

𝑃𝐹𝐶−𝑖𝑛𝑣 = 𝑃tank−𝐹𝐶𝜂𝐹𝐶 (9) 

F) Energy Storage (Battery) Unit 

Batteries and fuel cells have a similar function 

in terms of generating electrical power, and both 

obtain this power through chemical reaction. In the 

battery, chemical reactants are stored in the battery 

and these materials are used during the reactions and 

the battery must be recharged or discarded if the 

battery is not rechargeable. But in a fuel cell, the 

reactors or the same fuels are stored outside the cell, 

so electricity generation will continue until the fuel 

is supplied. For example, a fuel cell car needs 

refuelling instead of recharging. The battery source 

in VPP is used to provide the load in the absence of 

renewable energy sources. The difference between 

the power produced and the load power required 

indicates whether the battery should be charged or 

discharged. The amount of charge of the battery 

bank is obtained in time horizon t using the 

following [37]: 

𝐸𝑏𝑎𝑡(𝑡) = 𝐸𝑏𝑎𝑡(𝑡) + 𝑃𝑔𝑒𝑛(𝑡)𝛥𝑡𝜂𝑏𝑎𝑡

−
𝑃𝑏𝑎𝑡−𝑖𝑛𝑣(𝑡)𝛥𝑡

𝜂𝑑𝑖𝑠
 

(10) 

where, 𝐸𝑏𝑎𝑡(𝑡) represents the amount of 

battery electric energy at time t. Δ𝑡 is the time step, 

𝑃𝑔𝑒𝑛 shows the received power from DC bus and 

𝑃𝑏𝑎𝑡−𝑖𝑛𝑣 is the power transferred from battery to 

inverter. By the way, 𝜂𝑏𝑎𝑡 and 𝜂𝑑𝑖𝑠, are the charge 

and discharge efficiency of the battery bank, 

respectively. It is worth mentioning that in batteries, 

the chemical reactions in the battery are stored and 

used during the reaction operations, and if the 

battery is rechargeable, this operation is performed 

again, and if it is not rechargeable, it is discarded. 

But in fuel cells, the reactors, or in other words, the 

same fuels are stored outside the cell, due to this 

issue, the production of electricity continues until 

the required fuel is supplied. 

G) Objective function 

Life cycle cost analysis evaluates the costs of 

covering all processes experienced during the 

activity period. The net present cost (NPC) is used 
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as the charge of the system life cycle. The NPC 

includes initial installation costs, replacement costs, 

operation and maintenance of the equipment and the 

revenue of selling electrical power to the grid. In 

NPC calculations, the costs are considered positive 

and earnings are considered negative. The main 

challenge in relation to new and renewable energies 

is the entry of a large number of such low-capacity 

products into the current network. The virtual power 

plant has provided a way to integrate this type of 

production. In this complex, while implementing a 

virtual power plant by distributed generation, the 

concept of decentralized energy management has 

been used to feed local consumers of the virtual 

power plant and optimize energy consumption; so 

that by setting priorities for the units in the VPP, the 

connection of the units with the national network 

have been minimized. By implementing a virtual 

power plant with a distributed management system, 

the load is fed completely locally by local 

controllers, and each unit feeds its scattered load, 

otherwise, according to the implemented logic, 

communication with adjacent units and the network 

is established. In this case, due to the reduction of 

the connection between the distributed generation 

units of the virtual power plant, energy consumption 

will be saved and energy loss will be prevented to a 

large extent. 

All costs and expenses are assessed at a fixed 

interest rate throughout the year. In this type of 

assessment, in order to inflation rate (ir) in 

calculations at the end of the process of analysis and 

review of the system, it should be applied to the NPC 

[40]. The NPC value of each equipment can be 

calculated according to the following equation: 

𝑁𝑃𝐶𝑖 = 𝑁𝑖(𝐶𝐶𝑖 + 𝑅𝐶𝑖𝐾𝑖 + 𝑂𝑀𝐶𝑖𝑃𝑊𝐴) (11) 

The problem is formulated and solved in the 

form of a correct mixed linear programming. In the 

proposed model, the main goal is to manage energy 

resources for the coming years. The energy sources 

of the virtual power plant include various types of 

distributed generation sources such as dispatchable 

units and non-dispatchable units such as PVs and 

wind turbines and responsive loads. The virtual 

power plant is also able to exchange energy with the 

main network; Therefore, the operator of the virtual 

power plant is able to provide loads by using the 

generation capacity of distributed generation 

sources, discharging batteries and purchasing power 

from the main network. It can also sell surplus power 

to the main network. This is planned in such a way 

that the profit of the virtual power plant is 

maximized. In the above statement, N is the number 

of each equipment or capacity (kW or kg), 𝐶𝐶𝑖 is 

initial capital cost ($/unit), 𝑅𝐶𝑖 stands for 

replacement cost, 𝑂&𝑀𝐶𝑖 is annual operation and 

maintenance cost of each equipment ($/unit-yr) at 𝑅 

project lifetime (in this study is 20 years). PWA and 

K are respectively the annual and constant payments 

current value, which are defined as follows [41]: 

𝑃𝑊𝐴(𝑖𝑟, 𝑅) =
(1 + 𝑖𝑟)𝑅 − 1

𝑖𝑟(1 + 𝑖𝑟)𝑅
 (12) 

𝐾𝑖 = ∑
1

(1 + 𝑖𝑟)𝑛×𝐿𝑖

𝑦𝑖

𝑛=1

 (13) 

where y and L are the number of replacements 

and useful life of the equipment, respectively. 

H) Power Selling Revenue 

Since the main goal of DG sizing is to 

minimize the planning costs of objective function, 

we introduce negative revenue from the trade of 

electricity to the upstream network in the 

calculations. The NPC of electricity sold to the 

upstream network is [41]: 

𝑁𝑃𝐶𝑠𝑎𝑙𝑒 = ∑
(𝑃𝑠𝑎𝑙𝑒(𝑡) ×

𝐶𝑠𝑎𝑙𝑒(𝑡) × 𝑃𝑊𝐴(𝑖𝑟, 𝑅))

8760

𝑡=1

 (14) 

where Csale is the electricity costs (kW/hr), 

while it depends on the time of the power exchange 

and the price of energy at that period. Given the 

costs and income mentioned above, the objective 

function is defined as (15). 

𝐽 = 𝑚𝑖𝑛𝑥 {∑𝑁𝑃𝐶𝑖 − 𝑁𝑃𝐶𝑠𝑜𝑙𝑑
𝑖

} (15) 

where, i represents the desired equipment and 

X is a vector of optimization variables. This 

equation can be extended to equation (16). 

𝐽

= 𝑚𝑖𝑛
𝑁𝑃𝑉 ,𝑁𝐹𝐶,𝑁𝐵𝑎𝑡,𝑁𝑊𝑇,𝑀𝐻𝑆𝑇,𝑁𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟

{
 
 
 
 

 
 
 
 
∑𝑁𝑃𝐶𝑃𝑉,𝑖

𝑁𝑃𝑉

𝑖=1

+∑𝑁𝑃𝐶𝐹𝐶,𝑗

𝑁𝐹𝐶

𝑗=1

+ ∑ 𝑁𝑃𝐶𝐵𝑎𝑡,𝑟

𝑁𝐵𝑎𝑡

𝑟=1

∑𝑁𝑃𝐶𝑊𝑇,𝑘 + ∑ 𝑁𝑃𝐶𝐻𝑆𝑇,𝑖

𝑀𝐻𝑆𝑇

𝑚=1

𝑁𝑊𝑇

𝑘=1

+ ∑ 𝑁𝑃𝐶𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟,𝑛

𝑁𝐸𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑧𝑒𝑟

𝑛=1

− 𝑁𝑃𝐶𝑠𝑜𝑙𝑑
}
 
 
 
 

 
 
 
 

 (16) 

I) Constraints 

At any given interval, the total production 

capacity of the hybrid production system should be 

equal to the total demand which is calculated by the 

following equation [41]:  

∑𝑃𝐷𝐺𝑠,𝑖𝑛𝑣(𝑡) =
𝑃𝑠𝑜𝑙𝑑(𝑡) + 𝑃𝑙𝑜𝑎𝑑(𝑡)

𝜂𝑖𝑛𝑣
 (17) 

Accordingly, 𝑃𝑙𝑜𝑎𝑑(𝑡), 𝑃𝑠𝑜𝑙𝑑(𝑡) and 

𝑃𝐷𝐺𝑠,𝑖𝑛𝑣(𝑡) represent the total demand, the power 

sold to the upstream network and the power 

transmitted from DGs to battery and the DC-AC 

inverter, respectively. In this case, the power 

capacity to be sold to the upstream network should 
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not exceed a certain limit, which is determined by 

prior agreements [41]: 

𝑃𝑠𝑜𝑙𝑑(𝑡) ≤ 𝑃𝑠𝑜𝑙𝑑,𝑚𝑎𝑥 (𝑡) (18) 

The proposed formulation is optimized using 

the PSO algorithm. The capacity of DGs is constant 

while the number of DGs is variable. In the other 

words our variables that should be optimized are the 

number of DGs using the PSO. 

4. Optimization Algorithm 

The PSO algorithm and how to use it in 

optimization problems is presented in this chapter. 

In order to validate the proposed algorithm, several 

mathematical problems will be solved using 

different methods and the final solutions will be 

compared with the PSO algorithm. It is then 

observed that the PSO algorithm, regardless of the 

complexity of the mathematical optimization 

methods, finds the global optimal answer in certain 

iterations with an acceptable error. The search 

process based on the above concepts can be 

described as a group of particles in a community 

seeking to optimize a specific objective function. 

Every particle in this community knows the best 

solution to their history and current position (𝑃𝑏𝑒𝑠𝑡). 
In addition, everyone is aware of the best answer in 

the history (𝐺𝑏𝑒𝑠𝑡). The modified position vector for 

each particle can be obtained from the following 

equation [42]: 

𝑣𝑖
𝑘+1 = 𝑤𝑖𝑣𝑖

𝑘 + 𝑐1. 𝑟𝑎𝑛𝑑. (𝑃𝑏𝑒𝑠𝑡,𝑘 − 𝑥𝑖
𝑘)

+ 𝑐2. 𝑟𝑎𝑛𝑑. (𝐺𝑏𝑒𝑠𝑡,𝑘 − 𝑥𝑖
𝑘) 

(19) 

Where 𝑣𝑖
𝑘  and 𝑣𝑖

𝑘+1 are the velocity vector of 

the 𝑖𝑡ℎ particle in the 𝑘𝑡ℎ and (𝑘 + 1)𝑡ℎ iterations, 

𝑟𝑎𝑛𝑑 is a random number between 0 and 1, 𝑥𝑖
𝑘 

represents the current position of 𝑖𝑡ℎ particle in the 

𝑘𝑡ℎ iteration, 𝑤𝑖  is the weight coefficient for the 

velocity vector of the 𝑖𝑡ℎ particle, calculated in (19), 

and 𝑐1 and 𝑐2 are the PSO algorithm coefficients 

which are often choses as 2 [42]. Using the above 

equation, the new position of the particle which is 

specifically going to be closed to 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡 , 
can be calculated in (21).  

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑚𝑎𝑥
𝑖 (20) 

𝑥𝑖
𝑘+1 = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+1 (21) 

Where 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛  are the maximum and 

minimum of weight coefficient of velocity and 𝑖𝑚𝑎𝑥  

represents the maximum number of iterations. The 

modification in PSO is done as shown in equation 

(22) to ignore the initial negative effects of 𝑐1 and 𝑐2 

on the convergence. 

𝑐1 = 𝑐1(𝑖) = 𝑐1
𝑜𝑙𝑑(1 −

𝑖

𝑖𝑚𝑎𝑥
𝑒−𝑖) 

𝑐2 = 𝑐2(𝑖) = 𝑐2
𝑜𝑙𝑑(1 −

𝑖

𝑖𝑚𝑎𝑥
𝑒−𝑖) 

(22) 

These modifications case the PSO (new 

algorithm is called speedy PSO or SPSP) converges 

faster to 26% than conventional PSO. 

A) SPSO Validation 

To prevent premature convergence of 

algorithm and improve the precision of solution, a 

modified particle swarm optimization algorithm 

based on velocity update mechanism is introduced 

in this paper. One of the weaknesses of the PSO 

algorithm is that it has more search ability at the 

beginning of the execution, but in the final stages, 

the local search ability decreases. Therefore, in 

solving problems that have many local optima, it is 

likely that PSO will be caught by local optima in the 

final stages of execution. Of course, there is also a 

possibility that if the PSO parameters are not 

selected correctly, this algorithm will converge to 

local optima in the very early stages of execution 

and will suffer leading convergence. Therefore, 

speed of convergence and prevention of falling into 

local minima are two attractive goals in improving 

the PSO algorithm. Consequently, the coefficients 

of the algorithm should be selected small at first, and 

after several iterations, their weighting coefficients 

are weakened and return to the conventional PSO 

algorithm. For this purpose, the authors have 

included the coefficients of the algorithm according 

to the changes of the iterations, which has achieved 

better results. Several case studies selected 

according to mathematic benchmarks, conducted 

out as below: 

B) Case 1:Minimizing 𝑓1(𝑥): 

𝑓1(𝑥) =
1

400
(𝑥1

2 + 𝑥2
2) − 𝑐𝑜𝑠 (

𝑥1

√1
) 𝑐𝑜𝑠 (

𝑥2

√2
) + 1 

s.t.: 
𝑔1(𝑥) = 𝑥1 − 3 = 3 

ℎ1(𝑥) = 2 − 𝑥2 < 0 

−10 < 𝑥𝑖 < 10 , 𝑖 = 1,2 

After 150 iterations, SPSO reaches 0.0065, but 

PSO reaches 0.0265. 

C) Case 2:Minimizing 𝑓2(𝑥): 

𝑓2(𝑥) =
−𝑠𝑖𝑛(2𝜋𝑥1)

3𝑠𝑖𝑛(2𝜋𝑥2)

𝑥1
3(𝑥1 + 𝑥2)

 

s.t.: 
ℎ1(𝑥) = 𝑥1

2 − 𝑥2 + 1 < 0 

ℎ2(𝑥) = 1 − 𝑥1 + (𝑥2 − 4)
2 < 0 

0.1 < 𝑥1 < 10 , 0 < 𝑥2 < 10 

After 150 iterations, SPSO reaches 0.00287, 

but PSO reaches 0.0943. 

D) Case 3:Minimizing 𝑓3(𝑥): 

𝑓3(𝑥) = 𝑥1
2 + 𝑥2

2 

s.t.: 
𝑔1(𝑥) = 𝑥1 − 3 = 3 

ℎ1(𝑥) = 2 − 𝑥2 < 0 
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−10 < 𝑥𝑖 < 10 , 𝑖 = 1,2 

After 150 iterations, SPSO reaches 12.978, but 

PSO reaches 12.946. 

5. Simulation Results with SPSO 

The simulation of the mathematical models 

presented for DG resources mentioned in part 3 is 

implemented in MATLAB software and then the 

energy optimization will be done using the SPSO 

algorithm in this chapter. The validity of the SPSO 

algorithm was fully proven in chapter 4, and in this 

part of the paper, the results of DER sizing 

optimization in a VPP are presented. 

A) Base case scenario 

Suppose that to build a new MG, we need to 

provide a certain demand of 500 kW. Therefore, the 

General Manager of the Electricity Network asks us 

to supply the desired demand power using 

renewable energies. To this end, building a VPP 

consisting of DERs is much more cost-effective than 

construction of a traditional fossil power plant. 

Therefore, the main goal is to spend the minimum 

cost for the purchase, installation and maintenance 

of the VPP components, and in return, the demand 

is fully provided. Since the sources considered in 

this paper are PV, WT, FC, HST, Battery and 

Electrolyzer, so first we perform the first simulation 

according to the initial values given in Table (1) and 

call it "base case". Table (2) also represents the wind 

turbine speed characteristics in the operation range. 

The converter efficiency is also assumed to be 90%. 

Other simulations and analyses will be compared 

with this mode to be evaluated. 

The simulation results in this case are assumed 

to be acceptable after 300 iterations as the 

convergence diagram is shown in Figure (5) and the 

results are shown in Table (3). The convergence 

diagram represents that after about 130 iterations, 

the optimal solution is obtained, which is equal to $ 

5.46158e7 as can be seen visually. The number of 

iterations has been set to 300 to ensure that the 

optimal solution would not change and to prevent 

the algorithm from getting stuck at local optimal 

points. It is worth noting that the initial population 

is 50 particles, which this can be generalized to all 

scenarios. The cost of buying the converters and 

extra power for selling to the upstream network 

which is assumed to be 0.4 $/kWh are calculated in 

MATLAB code. 

Altogether, the total cost of building a VPP 

with miscellaneous costs is precisely equal to $ 

5.46158e7. The ability to sell power to the upstream 

network is available but it depends on operation 

condition which is not considered in planning. Since 

it is assumed that the capacity of the converter is 

equal to all DER sources to be able to convert their 

generated DC electricity to AC, so that according to 

the SPSO outputs, the cost of purchasing converters 

is also equal to $ 5.2610e+05. 

Table.1. 
Data used for DERs sizing  

DERs Nominal 

Power  

Capital 

Cost ($) 

RC ($) O&M 

Cost ($) 

Life ime 

(years) 

PV 2 kW 8000 6000 20 20  

WT 7.5 kW 19400 15000 75 20  

FC 2 kW 3000 2500 175 4.5  

HST 1 kg 1300 1200 15 20  

Battery 9.64 kW/h 1250 1100 30 4  

Electrolyzer 1 kW 2000 1500 20 7  

Converter 1 kW 800 800 0 15  

Table.2. 
Wind speed data  

Parameters  Value (m/s) 

Cut-in speed 3.1  

Cut-off speed 25  

Rated speed 11  

Table.3. 
Number of DERs in base case    

DER WT PV El. HST FC Bat. 

No.  9 596 5008 272 61 804 

Cost($) 1.4e6 9.7e6 1.7e7 1.9e6 1.1e7 2.9e6 

 

 
Fig. 5. The SPSO algorithm convergence diagram of base 

case 
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B) Wind speed change scenario 

In this scenario, the cut-in speed of the wind is 

assumed to increase from 3.1 m/s used in the base 

case to 5 m/s. The output results in this scenario are 

given in Table (4). Comparing it with the base case, 

it turns out that the total cost is calculated at $ 

6.71193e+07, which is more than the base case. But 

overall, the number of wind turbines and PVs has 

decreased, indicating a less interest in generating 

power at low wind speeds and using irradiation 

power more than previous. This has led to increase 

in the number of electrolyzers and hydrogen. In this 

case, the cost of buying converters is calculated at $ 

5.2610e+05 obtained from the SPSO algorithm. The 

convergence diagram of this case is also shown in 

Figure (6), which indicates that the total costs in 

converged after about 40 iterations. 

C) Investment cost of PV decrement 

In this scenario, it is assumed that the cost of 

PV investment will reduce from $ 8000 to $ 6000. 

This means that we are actually buying cheaper PVs, 

which directly influence in PV capital cost. A 

summary of the output results is shown in Table (5) 

that states that the total cost is $ 4.84408e+07, which 

is desirable compare to base case. The decreasing 

cost of investing in PVs has led to an increase in the 

number of solar arrays compared to base cases. This 

means that more power is produced by PVs. Then 

the cost of the converters is calculated at $ 

5.2610e+05. The convergence diagram of the in this 

case that has been obtained after about 50 iterations 

is shown in Figure (7). 

Table.4. 
Number of DERs in scenario of cut-in speed = 5 m/s 

DER WT PV El. HST FC Bat. 

No.  5 561 9406 1738 6 112 

Cost($) 8.1e5 9.2e6 3.e7 1.2e7 1.1e6 4.1e5 

 

 
Fig. 6. The SPSO algorithm convergence diagram in 

scenario of cut-in speed = 5 m/s 

Table.5. 
Number of DERs in scenario of PV capital cost increment 

DER WT PV El. HST FC Bat. 

No.  7 1091 2017 1396 7 1609 

Cost($) 1.0e6 1.3e6 1.3e7 1.0e7 1.3e6 5.9e6 

 

 
Fig. 7. The SPSO algorithm convergence diagram in 

scenario of PV capital cost increment 

D) Electrolyzer efficiency increment 

In this scenario, we increase the efficiency of 

the electrolyzer from 0.9 to 0.95. The output results 

shown in Table (6) show that the interest in using 

them increases. Therefore, the total cost of planning 

is equal to $ 3.68314e+07, which is increased 

compared to the base case. The reason is to buy 

higher quality and more efficient electrolyzer 

equipment. The optimization results show that 

increasing the efficiency of electrolyzers reduces the 

number of PVs and WTs, which will decrease the 

planning cost as obtained in the SPSO outputs, 

correspondingly. This indicates that the construction 

of VPP with existing equipment and electrolyzers 

with higher efficiency is economically viable. The 

cost of buying converters is $ 5.2610e+05. The 

convergence diagram in this case is represented in 

Figure (8) in which implies that only after about 40 

iterations, the optimal solutions are achieved. 

E) FC efficiency increment 

At this part, we increase the efficiency of the 

fuel cell from 0.9 to 0.95. The output results shown 

in Table (7) represent that, as before, the interest in 

using them increases. Therefore, the total cost of 

planning is equal to $ 4.75944e+07, which is again 

decreased compared to the previous cases. Overall, 

increasing equipment efficiency reduces the cost of 

purchasing VPP components, which is also evident 

in the output of optimization results. Therefore, this 

mode is desirable and the base case does not provide 

better results. The cost of buying converters is $ 

5.2610e+05. The convergence diagram in this case 
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study is shown in Figure (9), where the convergence 

is obtained after about 60 iterations. 

F) Battery charging efficiency increasing 

In this scenario, we increase the battery charge 

efficiency from 0.8 to 0.9 to take into account the 

impact on the number of other sources. The 

simulation results presented in Table (8) show that 

the tendency in using high-efficiency batteries 

grows up. Therefore, the desired load can be 

provided with a more number of batteries due to loss 

reduction. Consequently, the total cost of planning 

is equal to $ 4.53407e+07, which is still lower than 

the base case. The cost of purchasing the converters 

is $ 5.2610e+05. The convergence in this case is 

obtained rapidly after about 30 iterations in which 

the diagram is represented in Figure (9). 

G) Demand increasing  

To provide the required power of the virtual 

power plant, it is assumed that in the basic state, the 

maximum power will increase by 20% (600 kW), so 

in this case, the number of production resources will 

be as described in the table below. In this case, the 

total costs increases to $ 7.15429e7. 

Table.6.  
Number of DERs in scenario of electrolyzer efficiency 

increment 

DER WT PV El. HST FC Bat. 

No.  4 11 463 1626 46 1321 

Cost($) 6.1e5 1.8e5 1.6e6 1.1e7 8.4e6 4.8e6 

 
Fig. 8. The SPSO algorithm convergence diagram in 

scenario of electrolyzer efficiency increment 

Table.7. 
Number of DERs in scenario of FC efficiency increment 

DER WT PV El. HST FC Bat. 

No.  3 22 2998 1819 67 313 

Cost($) 5.7e5 3.6e5 1.0e7 1.3e7 1.2e7 1.1e6 

 
Fig. 9. The SPSO algorithm convergence diagram in 

scenario of FC efficiency increment 

Table.8. 
Number of DERs in scenario of battery charging efficiency 

increment 

DER WT PV El. HST FC Bat. 

No.  14 76 6811 89 19 1092 

Cost($) 2.1e6 1.2e6 2.4e7 6.4e5 3.5e6 4.0e4 

 
Fig. 10. The SPSO algorithm convergence diagram in 

scenario of battery charging efficiency increment 

Table.9. 
Number of DERs in scenario of PV capital cost increment 

DER WT PV El. HST FC Bat 

No. 9 1142 2283 1498 16 1823 
Cost($) 1.6e6 1.9e6 1.8e7 1.8e7 1.9e6 6.8e6 

 

6. Discussion   

The concept of virtual power plant was first 

presented in 1994 with the goals of visibility of 

distributed production resources, providing a 

suitable interface for local components, activating 

distributed control strategies and optimal use of 

existing capacity. The set of scattered production 

units, responsive loads and energy storage systems 

that are operated as a single entity is called a virtual 

power plant. Due to the advantages of distributed 
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generation resources, responsive loads and energy 

storage system, a virtual power plant can be a 

suitable alternative to conventional fossil power 

plants. The need to modify, change, and relocate 

electrical energy consumption has drawn attention 

to load response as an efficient solution. Responsive 

load pursues network security objectives such as 

balancing, system reliability and risk management 

by reducing or increasing demand in a short period 

of time and reducing the development of additional 

generation and transmission capacity in a long 

period of time. The use of responsive loads is 

proposed as a solution to increase the penetration 

and integration of scattered production sources in 

the power system in the form of a virtual power plant 

and as a tool to facilitate energy management to 

overcome the challenges caused by the random 

nature of renewable energy sources. 

Energy management is a general and very 

broad concept and includes all measures that are 

planned and implemented to ensure the consumption 

of the minimum amount of energy in various 

activities. Business, industry and organizations have 

been under a lot of economic and environmental 

pressure in the last two decades. Economic 

competition in the global market and increasing 

environmental laws and standards in order to reduce 

air pollutants have been the most important factors 

included in the investment and operation costs of all 

organizations. Energy management is an important 

tool in helping various organizations to reduce costs 

in order to meet these necessary goals in order to 

survive and succeed in the long term. 

 The energy management of the virtual power 

plant faces fundamental challenges that make this 

issue complicated. Among these challenges, we can 

mention the uncertainty in the amount of production 

and consumption, the price of energy and the 

availability of network components. Smart grids 

increase the ability of the energy management 

system in the fields of overcoming uncertainty, 

aggregating renewable resources, load response, and 

network monitoring and control. By continuously 

monitoring and measuring the state of network 

operation, the smart network provides users with 

valuable real-time information about the state of the 

network, such as the amount of production and 

consumption, the power of lines, and the availability 

of network components. Therefore, by establishing 

a two-way communication between the energy 

management system and microgrid users such as 

producers and energy applicants, it provides a 

suitable platform for more effective use of the virtual 

power plant. Meanwhile, in this article, the 

appropriate sizing of DJ resources in a VPP has been 

analysed, in which the cost of establishing a virtual 

power plant has been considered in the case studies. 

Considering these issues, sensitivity analysis has 

been done for many variables in this network and 

they have been specified with input parameters, 

system cost and the number of production resources. 

Determining the best case in this situation is not 

possible, because a compromise must always be 

made between the costs paid and the quality of the 

equipment. Hence, for example, the higher the 

efficiency of the battery, the higher its cost; But their 

number will decrease, because casualties are 

reduced and this is desirable. Therefore, this article 

states what kind of network can have the best 

productivity according to the budget and the 

available conditions and equipment. 

7. Conclusions  

From the studies conducted out, the following 

results can be concluded briefly as following: 

One of the main solutions to the problem of 

energy uncertainty is the use of supportive 

production systems or ESSs, in which the battery 

and hydrogen tank are used as the storage systems in 

order to provide optimal energy availability.  

Combining different ESSs for those energies 

that have complementary production characteristics 

(such as wind and sun) are considered as a 

convenient and inexpensive way to improve system 

reliability. The proposed grid has such a structure to 

overcome the above problems. 

Using high the capacity batteries as ESSs in a 

VPP system would increase the planning costs by 

increasing the system's ability to track the load. The 

results show that simultaneous use of FCs as a 

storage medium in the hybrid system, in addition to 

reducing costs, also increases the system's ability to 

track the load. Selling additional power to the 

upstream network will reduce the costs in a VPP. 

Increasing the battery charge efficiency increases 

the number of batteries and consequently has 

reduced the total cost. Since increasing the cut-in 

wind speed of increases the total cost, it is not 

recommended to use turbines with higher cut-in 

speed. Decreasing the investment cost of PVs has 

reduced the number of batteries, which will increase 

the total cost. Increasing the efficiency of 

electrolyzers, converters and FCs has led to an 

increase in the use of large numbers of electrolyzers, 

converters and FCs, respectively, which increases 

the total cost and is not desirable. As shown in the 

case studies conducted out, the convergence of the 

SPSO algorithms usually is achieved in a few 

iterations, so that this algorithm is very useful in 

scientific optimization problems. 
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