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Abstract 

The production of electrical energy from renewable sources has become an efficient solution to deal with the lack of fossil 

fuels, and prevent the emission of greenhouse gases and global warming. Due to the existence of different loads in terms of 

feeding priority, consumers can help the microgrid control center in optimizing the use of the microgrid and supplying energy 

to critical loads by providing the amount of load that can be interrupted or moved at different prices. Consumer pricing can 

reduce operating costs, especially when market prices are high. At the same time, with this method, consumers can economize 

on unimportant loads. In this paper, the effect of consumer pricing on the use of microgrids is analyzed considering the types 

of consumers and load priorities. In addition, the economic impact of applying production adequacy restrictions, i.e. meeting 

the demand of a special part of the microgrid load by local production in case of microgrid islanding, is evaluated. The demand 

response program is achieved with the objective function of maximizing social welfare. on the other hand, the operation is 

principally concerned with flattening the load curve as much as possible. The flatter the load curve, the better the capacity 

installed in the network, and as a result, it postpones the development of generation and transmission. In this regard, an attempt 

is made to operate the microgrid in the presence of demand response, so that while increasing social welfare, the load curve is 

flat at an acceptable level. With these goals, the problem is formulated as a multi-objective objective function based on 

nonlinear programming GAMS optimization software used to solve the problem, and ε constraint will be used for multi-

objective optimization. 
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1. Introduction 

In recent years, providing solutions for optimal 

management of consumption, due to the increase in 

the use of renewable energy sources as electricity 

production units in modern networks, has gained 

momentum [1]. Demand response programs (DRP) 

as an essential part of demand side management 

(DSM) have always been one of the best ways to 

attract the participation of customers in modifying 

the consumption pattern. In general, the 

implementation of DR programs goes through 

electricity retail pricing. One of the factors affecting 

these prices in modern distribution networks with 

high penetration of renewable energy sources is the 

uncertainty of the production of these distributed 

generation units (DG’s) [2-3]. Therefore, in the 

smart energy network, large consumers can use 

various sources to supply their energy needs, such as 

the electricity market, power plants under their 

ownership, including thermal power plants, and 

renewable energy sources such as wind turbines and 

solar power plants, and supply a part of the energy 

demand through bilateral contracts. A large 

consumer can participate in demand response 

programs, yet by examining the amount of consumer 

participation in demand response programs and the 

amount of pre-signed contracts, it is clear that 

consumers cannot always act based on the signed 

contracts. Hence, the modelling uncertainty for this 

source is negligible. The plan adopted by a large 

consumer to supply its energy needs depends on the 
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extent of price reduction in the presence of 

uncertainties in the complex smart grid market [4-

6]. 

In [7], in addition to creating a new price 

optimization framework in the real-time pricing 

(RTP) method, an optimal combined tariff plan has 

been proposed and reviewed that is more compatible 

with the pricing principles than the RTP pricing 

method. To increase the validity of the proposed 

framework and the new pricing method presented, 

the uncertainty related to renewable products as well 

as all the limitations related to the operation of the 

microgrid in real conditions such as load spreading 

have been considered. In [8], a method is presented 

to evaluate the effect of demand response in 

microgrids. In addition, several cases are simulated 

to better understand the problem. Also, the 

combined optimization algorithm including the gray 

wolf optimization (GWO) algorithm and the shark 

smell optimization algorithm has been used to solve 

the multi-objective objective function under 

different constraints [9]. In this regard, to check the 

uncertainty in the production of renewable energy 

sources, the Monte Carlo method has been 

employed to generate scenarios. The objective 

function of the problem considered in this research 

includes network losses, production cost, and 

reliability index and voltage stability. In [10], a 

comprehensive energy management model for 

operating a modified 33-radial bus distribution 

system, considering smart homes, is presented. In 

the proposed model, smart home customers can 

participate in a demand response program and the 

welfare index of customers is considered the main 

condition. Moreover, in the mentioned model, the 

uncertainties of the amount of load demand, the 

amount of production of renewable resources, and 

the price of electricity are accommodated by the 

Monte Carlo method. 

This study aims to determine the optimal 

demand response program to reduce the power of 

the active power market and the cost of electricity at 

the same time as reducing power losses, in the 

presence of load uncertainty, from the point of view 

of the independent operator of the system [11]. In 

[12], the total price of electricity from the direct 

independent operator is calculated as the sum of the 

costs paid to producers in proportion to the price of 

electricity in the production bus and the cost paid to 

customers for their participation in the demand 

response program. In [13], the use of microgrids 

equipped with renewable resources and power 

storage resources has been investigated. Due to the 

increase in greenhouse gas emissions, the use of 

renewable resources, especially wind and solar 

resources is growing. One of the important 

characteristics of renewable resources is uncertainty 

in power generation, which is an inherent 

characteristic of these resources. The presence of 

these sources in the power system makes the 

operation of the power system face uncertainties, 

making it necessary to operate the microgrid and the 

amount of cost reduction has been investigated, 

which is due to the use of the microgrid demand 

response program in the state separated from the 

upstream network. In [14], the use of an incentive-

based demand response program, in the presence of 

wind resources and the uncertainties of these 

resources are discussed to manage congestion in the 

power network. In the simulation part, the particle 

swarm optimization (PSO) algorithm is adopted for 

the optimization operation.  

The approach presented in [15] to solve the 

problem is to use demand response programs to 

reduce the cost of power supply by the owners of 

wind farms. In the presented method, the owners can 

purchase a part of their committed power from 

consumers through demand response programs to 

avoid possible fines if the speed or intensity of the 

wind decreases. Therefore, every wind farm can 

make up for its production deficit by concluding a 

contract with a part of the customers and avoiding 

heavy fines imposed by the power production 

contract due to non-production of power. Therefore, 

in this article, with the presented approach, the 

appropriate location and capacity of demand 

response have been determined to lower power 

generation costs from the perspective of the wind 

farm owner. In [16], the use of a smart grid equipped 

with renewable resources and power storage 

resources, as well as the effect of adding cars in the 

presence of renewable resources, has been 

investigated. They investigated the use of the 

demand response program as a tool to manage the 

uncertainty of clean energy sources and reduce the 

amount of unsupplied power, and the amount of cost 

reduction due to the use of the demand response 

program. The authors in [17] present the 

simultaneous and coordinated power market of 

production and ancillary services based on the 

placement of DG units in based on security 

constraints to face the uncertainties of wind power 

and load forecasting. Case studies conducted on a 

standard network show the effectiveness of this 

method in the face of wind and load uncertainties. In 

[18], the error resulting from the prediction of wind 

speed and solar radiation is modeled by probability 

density functions and a probabilistic planning model 

is proposed to optimize the performance of the smart 

microgrid in the short term to minimize the cost of 

operation and pollution with the presence of 

renewable resources. To elaborate, the use of 

demand response programs by domestic, 

commercial and industrial participants is suggested 

to cover the uncertainty of production power from 

renewable sources [19]. For the implementation of 
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demand response programs, an incentive payment 

program has been proposed in the form of price and 

energy quantity proposals packages that are 

collected by demand response providers. In [20], the 

issue of network development planning in the 

presence of distributed production resources and the 

participation of the demand response program is 

modeled. The presented model, using Monte-Carlo 

and Hurwitz methods [21], considers the 

uncertainties caused by price elasticity, load 

forecasting and the production of scattered 

production resources in planning. On the other hand, 

according to the base load price as a variable with a 

limited fluctuation range, the presented model has 

accommodated necessary incentives to encourage 

the investor to follow upstream policies. The authors 

in [22] present an approach related to the 

cooperation between the renewable grid and the 

main grid, which is responsible for supplying the 

variable load demand through the energy 

management system. For this purpose, advanced 

management is introduced in a renewable grid, in the 

mode connected to the main grid, which can create 

an optimal exploitation strategy to minimize energy 

costs and maximize the output power from 

renewable sources, considering uncertainty. In the 

proposed method, the need for the reservation to 

compensate for the predicted renewable errors by 

demand response and distributed generation units is 

presented. 

According to the relevant research, the effect 

of change in demand response and probabilistic 

uncertainty method has not been investigated, 

neither has. the constraint of epsilon, which can lead 

all optimizations to a more accurate answer. More 

specifically, the market clearing price in this work is 

determined in the day-ahead market. Although 

participation in these programs is optional, 

participants must respond to requests and distribute 

instructions. Participating in this program does not 

require physical contribution and only interval 

measurement is sufficient. The reduction in demand 

is measured against a pre-defined baseline. If a 

participant fails to reduce the demand from the 

baseline as planned, the penalty during the planned 

reduction period is greater than the day-ahead price 

and the real-time price. In most electricity markets, 

consumers have a more limited role than producers. 

The active participation of consumers in the 

electricity market can bring many benefits, which 

can be mentioned as follows: 

− Consumers who can shift their load from 

expensive hours to cheap hours will reduce the 

cost of their energy consumption. 

− Shifting the load will flatten the daily load curve 

and reduce the total cost of energy production. 

− Consumers who do not adjust their 

consumption level in response to the price of 

electricity also benefit from it, because the 

reduction of the total cost of energy production 

leads to a reduction in the price of electricity. 

− Producers' ability to exercise market power 

decreases. 

On the other hand, the more flexible the loads 

become, the lower the producers' profit is. 

Therefore, it is necessary to pay attention to the 

behaviour of consumers and to model how 

consumers respond to the hourly prices of electric 

energy. Consumers temporarily reduce their 

consumption when faced with a sudden increase in 

electricity prices; but, in the long run, when faced 

with periodic fluctuations in electricity prices, they 

are willing to shift their consumption in a way that 

reduces their costs. If the consumers want to play an 

active and effective role in the electric energy 

market, the market clearing mechanism should be 

designed to consider the price-sensitive offers of the 

consumption side and load shifting of the 

consumers. These give consumers a chance to apply 

restrictions on their hourly and daily energy 

consumption; accordingly, producers can apply 

restrictions for the operation of their units every 

hour and day. It is worth mentioning that the 

optimization problem is going to be solved using 

social spider algorithm (SSA). 

The sections of the present article are 

organized as follows: the problem formulations for 

market clearing price mechanism, priceable and 

flexible consumers within price sensitivity are 

elaborated in Section 2. A brief description of SSA 

is represented in Section 3. The simulations and 

discussion in several case studies are presented in 

Section 4 and finally, the conclusions are drawn in 

Section 5. 

2. Problem Formulation 

In this section, the market clearing mechanism 

in which consumers are allowed to submit proposals 

is discussed. The day-ahead market includes 

production and consumption pricing and its goal is 

to maximize social welfare. Therefore, the market 

operator must perform a multi-round optimization to 

determine the optimal production and consumption 

schedules as well as the market clearing price 𝜋𝑡 in 

each period. It is assumed that the final producer unit 

is used to balance the market. A "side payment" is 

added to the marginal cost of that producing unit to 

determine the market clearing price 𝜋𝑡. This side 

payment allows the final producing units to meet the 

no-load cost (a fixed cost borne by the producing 

units regardless of their production level) and a start-

up cost (a fixed cost borne by the producing unit 

when synchronization suffers), to compensate again. 
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This encourages manufacturers to bid their true cost. 

Since these costs are assumed to be fixed. 

Participating in the day-ahead market allows 

consumers to adjust their activities (for example, 

planning their industrial production) when the 

market is balanced. The number of consumers who 

can essentially respond to price signals issued closer 

to real time is probably much smaller. In this 

formulation, for the simplicity of the model, the 

congestion of the transmission network is ignored 

and it is assumed that ancillary services such as 

revolving storage are traded in another market. 

Similarly, if the amount of production or 

consumption of the participants in the market 

deviates from the determined optimal value, this 

difference is adjusted in the balancing market, which 

is separate from the day-ahead market. 

The objective function is to maximize social 

welfare, which means the difference between the 

value of purchased electrical energy for consumers 

and the cost of producing this energy. Social welfare 

is defined as follows: 

( )
1

max  
T

t t

t

GS OC
=

−
 

(1) 

Where the first term is the consumer's gross 

surplus 
tGS  and the second term is the operating cost 

tOC  in the interval 𝑡 and 𝑇 is the number of hours of 

the optimization period. In continuation, 

manufacturers provide proposals that include 

operating costs and related restrictions. Therefore, 

the operating cost is modeled as follows: 
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i b
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(2) 

Where, 𝐼 is the number of producing units; 𝐵 

represents the number of parts of the manufacturer's 

offer curve; 
,i bMC  is the marginal cost of producing 

the ith unit in the bth part of the supply curve; and 

finally, 
, ,i b t

segP
 represents the production power of the 

ith unit in the bth section of the supply curve at time 

𝑡.The restrictions on the operation of the production 

units are considered as follows: 
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Where, 
,i b

offerP
 proposes power of the ith unit in 

the bth part of the bidding curve; 
,i t

Gu
 is a state 

variable of the ith unit at time 𝑡 (1: on, 0: off); 
,i tP  

shows production power of the ith unit at hour 𝑡 and 

iP
 is the minimum production power of the ith unit. 

Since not necessarily all consumers have the ability 

or the motivation to adjust the level of consumption 

based on the price, a part of consumption remains 

completely inflexible. Figure (1) shows the 

consumer pricing used in this model. 
Price

Power

Demand

Curve

price taker

Production

Curve

price responsive

 

Fig. 1. Priceable and flexible consumer demand curve 

Equation (6) describes how to calculate the 

consumer's gross surplus based on accepted offers 

and the marginal value of these offers. This 

relationship is limited to the consumers who adjust 

their consumption level based on the price, because 

it is assumed that the limit value of the priceable load 

is infinite. To simplify the model, it is assumed that 

the gross surplus of priceable loads is a fixed number 

and is not included in the optimization model: 

, , ,

1 1

K J
t k j k j t

seg seg

k j

GS MB D
= =

= 
 

(6) 

Where, 𝐾 is the number of price-responsive 

consumers; 

,k j

segMB
 is the marginal profit of the 

responsive consumer at the kth price in the jth 

section of the supply curve; and 

, ,k j t

segD
 donates the 

consumption load of the consumer responding to the 

kth price in the jth section of the supply curve at hour 

𝑡. Since active consumer's pricing suggestions can 

be flexible, these suggestions can be a combination 

of the following: 

− Volume-price order in each period 

− Minimum energy consumption in each period 

− Maximum energy consumption in each period 

− Total energy consumption during the planning 

period 

− Priced orders for inflexible loads 

In the model used to settle the market, the 

features mentioned for the proposals can be 

expressed as constraints on the amount of load 

consumed in each period (7) and the amount of 

energy consumed in the entire planning period (8). 

The last constraint should be given unequally, as an 

offer from the consumption side is acceptable if it is 

not lower than the minimum offer from the 
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producer. Otherwise, some of the load will not be 

supplied. These cases are modeled as follows: 

, , , , ,k t k t k t k t k t

D Du D D u D     (7) 

,

1

0
T

k t k

t

D E
=
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Where, 
,k t

Du
 is the state variable of the 

consumer responding to the kth price at hour t (1: on, 

0: off); 
,k tD is the minimum consumption power of 

the responsive consumer at the price k at hour t; 
,k tD  

is the maximum consumption power of the 

responsive consumer at the kth price in hour t;  
,k tD  

is the power consumption of responsive consumer at 

price k at hour t; 
kE  is the maximum energy required 

by the responsive consumer at the kth price during 

the planning period; and 
,k j

segd
 is the upper limit of the 

power offered by the responsive consumer at the kth 

price in the jth part of the supply curve. Another 

constraint is the stipulation of equality of production 

and consumption power: 

, , ,

1 1 1

I K Z
i t k t z t

T

i k z

P D D
= = =

= +  
 

(13) 

Where 𝑍 is the number of price-sensitive 

consumers and 
,z t

TD  represents the consumption 

power of the priceable consumer 𝑍 at hour 𝑡. 

 

2-1- Demand response model 

   The load ratio that responds to price changes 

affects the load demand curve. As seen in Figure (2), 

the load contribution factor can be defined as the 

ratio of the flexible load to the total load. 

𝐿𝑃𝐹 =
𝐷𝑅

𝐷𝐹
 (14) 

 The 𝐷𝐹  parameter changes in each period due 

to the load change. On the other hand, LPF and 𝜋𝐿 

and 𝜋𝐻 parameters remain constant during the 

planning period. Since consumers can shift their 

load from hour to hour, demand response can affect 

the price and load profile throughout the 

optimization period. On the other hand, if a 

consumer's price offer is too small, it may not be 

possible to move that part of the load. Thus, the 

benefits of load shifting should be evaluated 

considering these limitations. Common economic 

indicators such as consumer surplus can measure 

total consumption benefits, but these indicators 

cannot help to calculate the amount of profit 

obtained from the consumption of one-megawatt 

hour. For this reason, it is suggested here to calculate 

the average price during the planning period. 

 
Price

Power

1LPF 2LPF

H

L

1TD

2TD 2RD

1RD

FD  

Fig. 2. Figure (2): The relationship between load participation 

coefficient and demand 

The average market clearing price can be 

considered as the average market clearing prices in 

each period: 

1

1 T
t

avg

tT
 

=

= 
 

  
(15) 

But it is better to express the marginal cost of 

each group of participants in the market as a 

weighted average, whose general relationship is as 

follows: 

1

1

T
t t

t

T
t

t

X Y

Y

 =

=



=



 

(16) 

Where 𝑋𝑡  is the set of costs or prices and 

𝑌𝑡  weighting coefficients of consumed or produced 

energy in the relevant period. Thus, the average 

marginal cost for all price-responsive consumers can 

be calculated as the following weighted average: 

,

1 1

,

1 1

K T
t k t

k t
R K T

k t

k t

D

D



 = =

= =



=



 

(17) 

Similarly, the average marginal cost for price-

sensitive consumers is obtained as T . In addition, 

by placing the total consumption load in equation 

(17), the average marginal cost D  for all 

consumers can be obtained. The average marginal 

cost for producers can likewise be calculated as 

follows: 
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(18) 

Where 
,i tMC  is the marginal cost of the ith 

producer at hour 𝑡. It is similarly possible to obtain 

the weighted average income of producers P  by 

placing the market clearing price 
t  instead of the 

marginal cost in (18). The profit from the demand 

response for each consumer can be calculated as 

follows: 

( ) ( ) ( )0LPF LPF LPF  = = −
 

(19) 

Based on this general definition, the resulting 

changes in demand response to cost or income for 

different market participants can be shown as 

follows. Due to the balance between production and 

consumption, we have: 

D P =
 (20) 

So 

D P =
 (21) 

The relationship shows that the amount of 

profit from load shifting for flexible consumers is 

equal to the amount of income reduction of 

producers. The difference in the total profit of 

producers can be shown as follows: 

-TG G P  =  (22) 

This relationship indicates that producers 

benefit from load shifting when the reduction in 

operating costs due to load shifting is greater than 

the reduction in their income. The overall additional 

benefit that can be achieved on the consumer side 

(affordable and flexible) is calculated as follows: 

TD D =
 (23) 

The overall additional benefit that can be 

achieved for both the producer and consumer can be 

obtained by adding the last two relations, which is 

equal to the change in total social welfare: 

TA D G P   = + −  (24) 

 

As a result, we will have: 

TA G =  (25) 

It means that load-shifting spreads the amount 

of profit from reducing the operating cost of 

producers among all market participants. In the 

above equation, 𝜆𝑅 is the change in the cost of price-

responsive consumers due to load shifting, 𝜆𝑇 shows 

the change in the cost of affordable consumers due 

to load shifting, 𝜆𝐷 represents the change in load 

demand cost, 𝜆𝐺 is the change in the operating cost 

of all producers, 𝜆𝑃 shows the change in total 

revenue for producers, 𝜆𝑇𝐴 represents the change in 

the social welfare of all market participants, 𝜆𝑇𝐷 is 

the change in total profit for all consumers, and 𝜆𝑇𝐺 

represents the change in total profit for all producers. 

 

2-2- Overcoming uncertainty with a probabilistic 

approach 

In the proposed stochastic method, the 

phenomenon of uncertainty is dealt with from a 

statistical point of view, in which probability density 

functions (PDF) are used. PDF is created for 

consumers' load according to the past collected data. 

To do this, every year is divided into four seasons 

and each season will be represented by a full day. 

So, every year is expressed by four days. Therefore, 

with 24 hours each day, there are a total of 96 (

seasons per Year hour per day4 ×24 ) hours in each year. These 96 

hours represent all the different moods in a year. 

Notably, in some references, the whole year is 

expressed by 12 days, each day representing one 

month. The number of days to express a year 

depends on the volume of calculations, the speed of 

processing and the data available in the past.  

Assuming there are 96 hours in the whole year, 

if the data of the last 𝑛 years are available in the 

desired location, for each hour, there are 90𝑛 (

years days per month months per seasonn ×30 ×3 ) data for the consumers' 

load. For example, for 12:00 to 13:00 in the spring 

season, the data of the last n years of the same hour 

and on 90 different days of the spring season are 

collected. According to the measured data, the 

probability density function of consumer load is 

obtained for each hour. The probability density 

function of load is expressed by normal PDF. 

In order to create yearly scenarios that include 

the combination of different events of consumers 

load, the probability density functions of the 

consumer load which are continuous are divided into 

four discrete intervals (four events). Assuming that 

the variables of consumer load are independent of 

each other, there are 16 (4 x 4) combined scenarios 

for each hour, where the probability of each scenario 

is equal to the probability of occurrence of each 

event. Therefore, there are 1536 ( scenario per hour hour per year16 ×96

) scenarios in the whole year. With these 1536 

scenarios, we consider all possible situations that 

may occur in a whole year. In case of a great number 

of scenarios, we can reduce them using scenario 

reduction methods. Finally, we solve the 

optimization problem by obtaining the scenarios 

using the following objective function. 
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min( )s ss
f  (26) 

Where sf  is the objective function for the load 

values of the consumers in the specific scenario 𝑠, 

and the probability of that scenario is s  

corresponding to each one. The above objective 

function states that the priority (importance degree) 

of the objective function sf  for minimization is 

higher for scenarios with higher probability s . 

Here, weight has the same role for different 

scenarios in optimization. 

 

2-3- Optimization 

   In this section, the method of modeling with 

a multi-purpose objective function using the multi-

purpose programming method has been studied. In 

general, in solving optimization problems with a 

multi-objective objective function, there is no single 

solution that optimizes all the objective functions at 

the same time, and therefore, in such problems, a set 

of solutions is usually obtained for each of these 

solutions, the Pareto solution (It is called non-

dominant answer). Each of the Pareto solutions is 

the optimal solution for one of the objective 

functions, but at least one of the other objective 

functions cannot be addressed by the optimal 

solution. To solve the problem of exploitation with 

the presence of demand response, the ratio of F1 and 

F2 should be optimized. The epsilon limit method 

has been employed to solve the problem. In this 

method, one of the objective functions is taken as the 

main objective function and other objective 

functions are considered constraints in the 

optimization problem. 

Therefore, through the following relationship 

we can solve the multi-objective optimization 

problem with 𝑝 as the objective function using the 

epsilon constraint method: 

1

2 2 3 3

( )

( ) , ( ) , , ( )p p

Minimize F x

subject to F x e F x e F x e  

 
(27) 

To apply the epsilon limitation method, the 

range of changes in the objective functions 𝐹2 to 𝐹𝑝 

should be determined and 𝑒2 to 𝑒𝑝 should be 

determined in these ranges. The most common 

approach to calculate these intervals is to use the 

final result table, which will be explained below. 

Assume that the optimization problem has 𝑝 as 

the objective function. Therefore, 𝑝 − 1 of the 

function should be considered a constraint. 

Basically, to prepare the final result table for 𝑝 − 1 

objective function, first, the optimal value of each 

objective function is calculated separately. For the 

ith objective function, this value is called 𝐹𝑖
∗. Then, 

for the solution that has optimized the ith objective 

function (𝑖 = 2, . . . , 𝑝) the value of other objective 

functions is calculated. Therefore, the ith row of the 

final table will be 

i i * i i

p i 1 i i 1 2F , ,F ,F ,F , ,F+ − . The 

final result is calculated in a similar way to the other 

rows of the table. The jth column of the mentioned 

table is the calculated value for the objective 

function 𝐹𝑗. The maximum and minimum value of 

this column will be the range of changes of the 

objective function 𝐹𝑗. Then, the range of changes in 

objective functions 𝐹2 to 𝐹𝑝 are divided into 𝑞2 to 𝑞𝑝 

respectively. Therefore, a network of points (𝑞2 −
1), (𝑞3 − 1), . . . , (𝑞𝑝 − 1) is obtained. Considering 

the minimum and maximum values for the objective 

functions 𝐹2 to 𝐹𝑝 which are respectively (𝑞2 +

1), (𝑞3 + 1), . . . , (𝑞𝑝 + 1), thus the optimization 

problem turns into (𝑞2 + 1) × (𝑞3 + 1)  ×. . .×
(𝑞𝑝 + 1) sub-problems, which the answer of each of 

them must be obtained. Therefore, the problem will 

be modeled in the following closed form: 

1

2 2 3 3

2 2
2 2 2

2

3 3
3 3 3

3
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( ) ( )
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Max F Min F
e Max F i i q

q

Max F Min F
e Min F j j q

q

Max F Min F
e Max F l l q

q

  

 −
= −  = 

 

 −
= +  = 

 

 −
= −  = 

 
 

 

(28) 

In the above problem, it is assumed that 𝐹2 and 

𝐹𝑝 should be minimized and 𝐹3 should be 

maximized. In the above problem, it is assumed 

that 𝐹2 and 𝐹𝑝 should be minimized and 𝐹3 should be 

maximized. Correspondingly, 𝑀𝑖𝑛(. ) and 𝑀𝑎𝑥(. ) 

are the minimum and maximum values of the 

objective function. By solving each sub-problem, a 

Pareto solution will be obtained, or the problem may 

not be converged and a possible solution for the 

problem not be obtained. The more point the 

intervals of the objective function are divided into, 

the more Pareto solutions are obtained for the 

optimization problem with the multi-objective 

objective function; however, because of a larger 

number of calculations, the operation will take 

longer. For this purpose, there should be a trade-off 

between the number of each interval of the objective 

function and the calculation time. After solving all 

the sub-problems and obtaining all the Pareto 

solutions to the problem, the decision maker must 

choose one of the Pareto solutions as the final one 

among the obtained Pareto solutions according to 

the priorities and applications. For this purpose, a 

fuzzy approach with a linear membership function is 

employed for decision-making. The membership 
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function of the fuzzy method is defined as equations 

(29) and (30): 
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(30) 

 

In these relationships, 𝐹𝑖𝑘 is the value of the 

objective function 𝐹𝑖 in the kth Pareto solution and 

the membership function 𝐹𝑖 in the kth Pareto 

solution. It indicates the degree of optimality of the 

objective function in the Pareto k solution. The 

overall membership function 
k

 is called the 

Pareto solution k and is calculated as follows:  
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(31) 

where 𝑤𝑖  is the weight coefficient of the ith 

objective function and 𝑀 is the total number of 

Pareto solutions. The values of the weight 

coefficients are determined according to the 

importance of each objective function. The objective 

functions corresponding to the highest value of 
k

 

among all the solutions obtain the optimal value 

corresponding to multi-objective programming. In 

this article, the social welfare function is selected as 

the main objective function and the constraints 

corresponding to the   values in each interval on 

the objective function of minimizing the load 

deviation from the average value are added to the 

model in the form of the following: 

( )
1

T

t t

t

Dev Dev + −

=

+   
(32) 

3. Social spider algorithm (SSA) 

The searching behavior of a social spider can 

be described as the collective movement of spiders 

toward the location of a food source. The spider 

receives and analyzes the vibrations emitted in the 

search space to determine the potential direction of 

a food source. We use this natural behavior to 

perform optimization in the search space using the 

SSA method. In SSA, we consider the search space of 

the optimization problem as a multidimensional 

spider's search space. Each function in the search 

space represents a practical solution for the 

optimization problem, and each practical solution 

for the optimization problem in question is a 

position in the search space. The search space 

likewise acts as a medium for transmitting the 

vibrations produced by the spider. Each spider in the 

search space has a position and a quality (fitness), 

which indicates the potential of finding a food 

source at that location. The spider can move freely 

in the search space, but it cannot leave the search 

space. When a spider moves to a new location, it 

produces a vibration that spreads throughout the 

search space. A spider has information from a spider 

and others receive this vibrational information. 

 

3-1- Vibration 

Vibration is a significant concept in SSA. It is 

one of the key features that differentiate SSA from 

other meta-heuristic processes. In SSA, two assets 

are utilized to describe a vibration, specifically the 

source location and the source intensity of the 

vibration. The source location is investigated by the 

meaningful space of the optimization problem, and 

then the intensity of vibration in the range [0, +∞) 

is defined. When each spider transfers to an 

innovative location, it produces a vibration at its 

present location. The position of spider 𝑎 at time 𝑡 is 

𝐿𝑎(𝑡), or simply as 𝐿𝑎, if the time argument 𝑡 will 

be defined later. Further, 𝑉(𝐿𝑎 , 𝐿𝑏 , 𝑡) is used to 

signify the vibration intensity detected by a spider at 

location 𝐿𝑏 at period 𝑡 and the source of the vibration 

is at location 𝐿𝑎. With these symbolizations, 

𝑉(𝐿𝑎 , 𝐿𝑏 , 𝑡) is defined to characterize the intensity 

of the vibration made by spider 𝑠 at the source 

location. This vibration intensity at the source 

location is connected with the fitness of its location 

𝑔(𝐿𝑠), and thus the intensity rate is introduced as 

follows: 

𝑉(𝐿𝑎, 𝐿𝑏 , 𝑡) = log (
1

𝑔(𝐿𝑠) − Ψ
+ 1) (33) 

Where Ψ is a positively small persistent such 

that all conceivable fitness standards are superior to 

Ψ. As a procedure of energy, vibration weakens over 

distance. This animal portent is accounted for in the 

plan of SSA. The distance between spider 𝑥 and 𝑦 is 

assumed as 𝐻(𝐿𝑥 , 𝐿𝑦) and we have: 

𝐻(𝐿𝑥, 𝐿𝑦)  = ||𝐿𝑥 − 𝐿𝑦|| (34) 

The standard deviation of all spider locations 

along each dimension is signified as 𝜉. With these 

descriptions, the vibration weakening over distance 

is calculated as follows: 

𝑉(𝐿𝑎, 𝐿𝑏 , 𝑡)  =
𝑉(𝐿𝑎, 𝐿𝑏 , 𝑡)

𝑒

||𝐿𝑥−𝐿𝑦||

𝜉×𝑞𝑎

 
(35) 
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In the above formula, a user-controlled 

parameter 𝜉 ∈ (0, ∞) is shown which controls the 

weakening rate of the vibration intensity over 

distance. With larger parameters, there will be 

weaker attenuation imposed on the vibration. Then 

the locations are updated as below and then the 

algorithm will find the global best all over the search 

space: 

𝑉𝑠(𝑡 + 1)  = 𝑉𝑠 + 𝑟𝑎𝑛𝑑(. ) × (𝑉𝑠 − 𝑉𝑠(𝑡 − 1))

+ (𝑉𝑠
𝑓

− 𝑉𝑠) ⊗ ℜ 
(36) 

Where, ⊗signifies element-wise 

multiplication and ℜ is a vector of random float-

point numbers produced from zero to one uniformly, 

and 𝑟𝑎𝑛𝑑(. ) denotes a random number in (0,1) 

interval. The optimization flowchart is depicted in 

Figure (3). 
start

Population size (p)
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Fig. 3. The optimization flowchart for problem under 

consideration 

4. Simulations 

Briefly, the model of renewable energy 

resources is taken from [23-25] . Also, the other 

input parameters of microgrid, such as load profiles 

and mathematic formulation of renewable to 

generate power are extracted from [26-27]. In this 

regard, Figure (4) shows the effect of increasing 

consumer participation on the daily demand curve. 

As can be seen, the load demand is shifted from peak 

hours to low peak hours and fills the valleys of the 

curve. As the consumer participation factor 

increases, the daily demand curve approaches a flat 

curve. 

 

Fig. 4. system demand curve 

 Furthermore, in Figure (5), you can see the 

changes in daily demand during the optimization 

period, compared to the increase in the consumer 

participation factor. As shown in this figure, the 

changes in demand in the early hours of the day 

against lower price of electricity are larger than zero 

and negative in the hours when the price of 

electricity is high. In other words, consumption has 

increased during cheap hours and decreased in 

expensive hours. 

 

Fig. 5. System demand change curve 

Figures (6) and (7) show the effect of 

increasing the load participation factor on the market 

clearing price. The decrease in load demand during 

peak hours has reduced the market clearing price. 

Furthermore, with the shift of the load to low 

consumption hours and the increase in consumption 

in these hours, the market clearing price has also 

increased in these hours. 

 

Fig. 6. Market clearing price 

 

Fig. 7. Changes in the market clearing price 

 Figures (8) and (9) show the effective cost and 

profit from moving the load for flexible and 

affordable consumers. As can be seen, with a small 

increase in the consumer's participation coefficient, 

the effective cost of the flexible consumer is greatly 

reduced. Figure (9) similarly shows that the profit 

from increasing participation coefficient compared 
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to the case without load displacement. The positivity 

of the priceable consumer's profit in most cases 

indicates the benefit of load shifting even for these 

consumers. To explain, with the shifting of the load, 

the clearing price of the market is reduced during the 

peak hours, which reduces the costs for all 

consumers. 

 

Fig. 8. Effective cost for flexible and affordable consumers 

 

Fig. 9. Profit from load handling 

Further, in Figure (10), the change is shown in 

the total social welfare due to the increase in the 

participation rate. As can be seen, in general, with 

the increase of this coefficient, the change in social 

welfare increases. Importantly, at the end of the 

range of the consumer participation coefficient, 

there is no change in social welfare, which is due to 

the constant marginal cost of producers. As it was 

observed in this modeling method, the participation 

of consumers in the movement of load increases the 

amount of social welfare, which is caused by the 

reduction of the cost of operation, hence this 

reduction in the operating cost can benefit all market 

participants. In other words, price-sensitive 

consumers who have not participated in demand 

response programs see a reduction in their costs. The 

reason for this is the reduction in the cost of 

electricity. It should be noted that with the excessive 

increase in the participation of consumers, the total 

price increases so much in non-peak hours that 

ultimately the overall profit of price-responsive 

consumers decreases. 

 

Fig. 10. Change in total social welfare 

The next case study represents the effect of 

buying and selling power on the main grid. Since 

power is either sold/bought to/from the grid at each 

hour, the saved cost resulting from this task is 

obtained by calculating the total daily cost. 

Therefore, in addition to the load profile given in the 

previous section, the energy cost in the electricity 

market in a day is required (Table 1). 

Table.1. 
Cost of each kWh energy in the electricity market 

Hour Load (kW) Hour Load (kW) 

1 0.033 13 0.215 

2 0.027 14 0.572 
3 0.020 15 0.286 

4 0.017 16 0.059 

5 0.017 17 0.086 

6 0.029 18 0.059 

7 0.033 19 0.050 

8 0.054 20 0.061 
9 0.215 21 0.181 

10 0.572 22 0.077 

11 0.572 23 0.043 
12 0.572 24 0.037 

 

To study the effect of buying/selling energy 

from/to the main grid, the renewable energy 

resources are eliminated. The parameter that should 

be determined as a result of adding the main grid is 

the capacity of the line connected to the grid. It is 

assumed that there is a load that varies at different 

hours, and there is the possibility to exchange power 

with the main grid. Using the proposed algorithm, 

some tests are carried out to determine the cost 

changes of the microgrid resulting from various 

capacities of the line connected to the grid. It can be 

concluded that as the capacity of the line connected 

to the grid increases, the energy exchange with the 

main grid is more likely to increase and the 

microgrid costs to decrease. When the capacity of 

the line connected to the grid is zero, or the main 

microgrid is isolated, the daily cost of the microgrid 

will be 5267.15$ and when the capacity of the line 

is 1100 kW, the daily cost of the microgrid 

2431.05$, which saves 53.86% compared to the 

islanded mode. Figure (11) shows that cost 

reduction at the beginning of the curve is high. To 
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elaborate, cost reduction is high at lower 

transmission line capacity compared to the 

independent mode and as the transmission line 

capacity is enlarged, the cost reduction decelerates, 

as. it is assumed that all DGs are on and operate 

between their minimum and maximum power range. 

Assume that we are at an hour when the power 

generation cost by DGs is cheaper than the cost of 

buying power in the main grid; therefore, according 

to the proposed algorithm, the DGs increase their 

power generation and sell the excess power to the 

main grid to save cost. But the maximum range of 

DGs’ power generation does not allow us to 

generate a desirable amount of power. Thus, even if 

the line connected to the grid has the capacity, the 

DGs cannot generate such power. This also 

constrains buying power from the main grid at hours 

when the power generation cost of DGs is higher 

than the cost of buying power from the grid. Thus, 

increasing the capacity of the transmission line 

reduces costs to some extent, which is evident in the 

figure below.  

 

 

Fig. 11. Cost variations vs. capacity variations of the line 

connected to the grid 

In this section, to demonstrate the 

comprehensiveness of the proposed method, a test is 

carried out in the presence of all elements to show 

the power exchange of different elements of the 

microgrid. In this test, we studied three scenarios for 

connecting the microgrid to the main grid and the 

power of the elements of the microgrids at different 

hours of the day. The tested system is a microgrid 

including 15 units, where the coefficients of the cost 

functions are given in [28]. The solar panels are used 

as renewable energy resources in the microgrid, 

where 4 of them are 90 kW panels given in Table 1. 

The system load is likewise the load given in Figure 

(12). For energy storage elements, a set of batteries 

with 1000 kWh capacity with an initial charge of 

500 kWh is used with a maximum power exchange 

of 250 kW; in other words, the battery can be 

charged/discharged completely in 4 hours. The 

capacity of the line connected to the main grid is 750 

kW.  

 

 

Fig. 12. Power generation of a 90 kW PV panel at different 

hours of the day 

The error resulting from load prediction and 

renewable energy resources is considered to be 5%. 

Power exchange with the main grid imposes some 

costs and requires specific facilities and conditions. 

If we merely want to buy energy from the main grid, 

one-directional converters are required that pass 

energy only in one direction; if we exchange power 

with the main grid, more costly bidirectional 

converters are required. Consequently, exchanging 

power with the main grid, or buying and selling 

energy with the main grid required contracts and 

conditions that should be agreed upon with the main 

grid. According to the above discussion, connection 

to the main grid and power exchange with it is 

considered in three scenarios, which are given in the 

following:  

A) The microgrid operates independently and 

exchanges no power with the main grid. In this 

scenario, there is no power exchange with the main 

grid; it is not required to store power in the energy 

storage elements. The power exchanged with the 

main grid and energy storage elements is zero. 

B) The microgrid is only able to purchase 

energy from the main grid. At hours when the cost 

of buying energy is lower than its generation cost 

(beginning and ending hours of the day), electric 

power is purchased from the main grid, and at the 

middle hours when the cost of buying energy is high, 

no power is exchanged with the main grid. Since the 

battery has to store the energy bought from the main 

grid at cheap-energy hours, at the beginning hours, 

the energy bought from the main grid is stored in the 

battery such that the battery is charged completely. 

Since it is not possible to sell energy to the main 

grid, and the cost of generating energy by the DGs 

is considered to be constant, the battery is not 

discharged and its energy can be used when a failure 

occurs and the DGs are disconnected.  

C) The microgrid can cooperate with the main 

grid in selling/buying electric power. In this 

scenario, at the beginning hours when the power 

should be bought from the main grid, the condition 

is similar to the second scenario. But in the middle 

hours when the energy cost increases, the energy 

stored in the battery is sold to the main grid. Since 

the cost of generating energy by the DGs is lower 

than the electricity market cost, the power generated 
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by the DGs increases, and its excess power is sold to 

the main grid. The capacity of the line connected to 

the grid imposes some limitations. As the line 

capacity is considered to be higher, the revenue of 

selling energy to the main grid increases. In the final 

hours unlike the second scenario, since the battery’s 

energy is discharged, some of the energy bought 

from the main grid is stored in the battery. The 

obtained results demonstrate the good performance 

of the proposed method. At higher possibility of 

power exchange with the main grid, the power 

fluctuations of the micro grid’s elements at different 

hours increases, resulting in optimal microgrid 

performance and higher cost-effectiveness. In Table 

2, the daily cost of a microgrid in three scenarios is 

given. 

In Table 2, their methods and their cost 

effectiveness are compared. According to the table, 

not using elements indicated load supply using DGs 

only without renewable energy storage elements and 

the main grid. The results show that if the third 

scenario is used, 51.45% cost-effectiveness might be 

achieved. For fair comparison of various methods, 

the obtained results are compared with up-to-date 

customers and the results are given in Table 3. 

Correspondingly, it is seen that the proposed method 

benefits to other customers. The closest reference to 

the proposed method is [27], which has obtained an 

improvement of 25.6 %. 

Table.2.  
Comparison of the daily cost of a microgrid in three scenarios 

Scenario No use of 

DGs 
First 

scenario 
Second 

scenario  
Third 

scenario  

Daily cost ($) 5273.54 5016.42 4188.31 2549.89 

     

Cost-effectiveness 

compared to when 

DGs are not used 

0 4.87 20.58 51.64 

Cost effectiveness 

compared to the first 

scenario 

0 0 16.59 49.16 

Table.3. 
Comparing the improvement of the methods 

Parameter Proposed 

method 
[25] [26] [27] [28] 

Daily cost  5273.54 $ 6415.18 

$ 

7325.84 

$ 

6147.59 

$ 

6498.62 

$ 

improvement 51.64% 21% 13.75% 25.6% 21.1% 

5. Conclusions 

The results of this article showed that the 

participation of the price-responsive consumer 

reduces costs for other price-sensitive consumers in 

addition to reducing the energy supply costs for 

himself due to the shift of the load from high 

consumption and expensive hours to cheap hours 

and as a result of reducing the cost of energy in these 

hours. By defining consumer pricing for different 

load priorities, a new method of load management 

by the consumer was presented in this research. 

Load priorities can be defined in any quantity and at 

any price. Moreover, there are different methods of 

modeling priorities for consumers. In general, 

demand response improves market efficiency and 

operational reliability. If implemented correctly, it 

limits the electricity market's exposure to energy 

shortages and improves operational reliability with 

variable generation frequency. The design of 

demand response programs depends on the 

prevailing market conditions of a particular region. 

It can be concluded that exploitation has a much 

higher efficiency than the objective function of 

demand response by considering the objective 

function of demand response and flattening. A 

striking feature of the proposed method is its ability 

in modifying the generated power and compensating 

for the fault resulting from load and renewable 

energy resource prediction. In the proposed model, 

various simulations were carried out and the 

comparison results of energy management of the 

proposed algorithm with the direct search method 

and the multi-level direct search method indicate its 

superiority. In addition, the effect of the presence of 

various elements in the microgrid on the power 

generation cost of the microgrid was studied. The 

cost reduction with the addition of each element was 

studied on a system including multiple microgrids 

connected and connected to the main grid. Finally, 

the effect of the power transmission capacity of the 

lines between the microgrids on the power 

generation cost of the microgrid was studied, and the 

power generated by different elements at all hours of 

a day was shown.   
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