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Abstract 

In this paper, a novel method named RHDINTPM (Removing High Density Impulse Noise via a Novel Two Phase Method) 

is proposed for de-noising digital images corrupted by impulse noise. The proposed method is based on cellular automata (CA) 

and fuzzy cellular automata (FCA). In this method, a given image is mapped to a CA. That is, every pixel of the image is 

associated with a cell of CA. RHDINTPM is composed of a two-phase filter. The first phase of the proposed method is a two-

step noise detector so in the first step the corrupted pixels are diagnosed by the intensity of the minimum value and average 

Moore neighborhood pixels for central Pixel. In the second step, in order to increase accuracy in improving noise detection, 

the uncorrupted pixels remained from the first step are investigated by cellular automata. In the second phase of the method, 

the defective pixels of two-dimensional fuzzy cellular automata are restored using the structure of the Moore neighborhood. 

The experimental analysis demonstrates that the proposed filter is robust enough to very high levels of noise as high as 90% 

and preserves the meaningful detail of the image. In addition, the proposed approach outperforms other representative filtering 

techniques in terms of image noise suppression and detail preservation. 
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1. Introduction 

Images are often corrupted by impulse noise 

(IN) and how to efficiently remove this kind of noise 

is an important research task. Impulse noise in a 

digital image may occur because of bit errors in 

transmission or maybe they are result of errors in the 

image during the acquisition process. Additionally, 

impulse noise maybe caused by errors during the 

data capture from digital cameras, faulty memory in 

hardware, and result of errors in data transmission 

generated in noisy sensors or noisy communication 

channels, and atmospheric turbulence [1-3].  

Random-valued noise and salt and pepper 

noise are two common types of impulse noises that 

can degrade the image quality and cause great loss 

of important details in the image. For images 

corrupted by random-valued noise, noisy pixels can 

take any random value between the minimum and 

maximum values in the dynamic range. For images 

corrupted by salt and pepper noise, noisy pixels can 

take only two values the highest and the lowest value 

in the dynamic range. So, the effective removal of 

noise from an image is an important issue and 

facilitates the performances of subsequent image 

processing operations, such as edge detection, object 

recognition, image segmentation and compression 

[1-3]. There are many techniques and methods on 

the restoration of images corrupted by impulse noise 

[4-6, 40-46]. Mean filter and least mean square 

(LMS) adaptive filter [3] are linear filtering 

techniques that are not effective in removing 

impulse noise from an image. Linear filtering 

techniques can damage the uncorrupted pixels and 

can tend to blur sharp edges and also destroy lines 

and other fine image details. Also, non-linear 

filtering techniques can be used for the restoration of 

images corrupted by impulse noise. The median 

filter is well-known and is one of the most popular 

nonlinear filters. For removing impulse noise from 

an image, the median filter is an effective noise 

removal method, which is computationally efficient 
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[7]. When the noise density is higher (over 50%), the 

median filter smears some of the details and edges 

of the original image [8]. Many techniques are based 

on median filter which are nonlinear filters such as: 

− Adaptive Median Filter (AMF) [9] which used 

variable window size for corrupted pixels 

removal 

− Center-Weighted Median Filter (CWMF) [10] 

which is a filtering technique that gives more 

weight only to the central value of a window,  

− Adaptive Center Weighted Median (ACWM) 

filter [36] and Recursive Weighted Median 

Filter (RWMF) [11],  

− Tri-State Median Filter (TSMF) [12] 

incorporates the standard median (SM) filter 

− Center-Weighted Median (CWM) filter to 

determine noise pixel.  

These filters are modified and improved by the 

performance of the median filter. Applying these 

filters would inevitably remove image details 

contributed from the uncorrupted pixels, destroy 

image quality and intensities and cause additional 

blurring. Recently, some techniques using the fuzzy 

systems and artificial neural networks are used for 

de-noising and specifications of impulse noise on 

different points of the image that have done an 

effective role in image noise detection and 

reduction. In [13], a novel adaptive iterative fuzzy 

filter for de-noising images corrupted by impulse 

noise is proposed that consists of two stages 

detection of noisy pixels with is an adaptive fuzzy 

detector. In [14], a novel filter called CM filter is 

presented that is novel adaptive detail-preserving 

filter based on the cloud model (CM) to remove 

impulse noise. In [15], a new fuzzy method is 

proposed for filtering color images corrupted with 

additive impulse noise, and an impulse noise 

detector is used initially to detect the impulse noise 

which is presented in the filter. A novel method for 

the removal of impulse noise is called CAFSM 

which is proposed in [16] that is composed of a 

cascaded easily to implement impulse detector and a 

detail preserving noise filter. Also, other different 

techniques such as fuzzy-based two-step filter [17], 

fuzzy wavelet shrinkage and fuzzy logic controller 

have been proposed for restoring images corrupted 

with additive impulse noises [18-19]. To detect the 

noise even at a high level, good filter have been 

used, but due to its major role and its effects in image 

details, two problems were identified. One problem 

was that the edges were not recovered clearly and 

secondly, there was a lack of complexity, especially 

at the highest noise level. 

In this paper, a novel method is proposed for 

repairing images damaged by impact noise. The 

proposed method consists of a two-phase filter based 

on cellular automata and fuzzy cellular automata. In 

the first phase, the proposed two-step method is used 

to identify and detect corrupted pixels. In the first 

step of the first phase, the standard deviation ratio is 

used between the maximum value and the mean 

value of the central cell neighborhood, which is 

considered a determinant of the cellular automata 

transfers function and the central pixel status. In the 

second step of the first phase, to improve the 

accuracy of the corrupted pixels detection, the pixels 

that were previously identified as uncorrupted pixels 

are re-identified and checked for noises. To do this, 

a Gaussian membership function is used to identify 

and detect corrupted pixels. The second phase of the 

proposed method uses two-dimensional fuzzy 

cellular automata with neighborhood Moore 

structure to repair the defective pixels and the noisy 

pixels that are detected in the first phase. The 

advantage of the Gaussian membership function is 

the smoothness and non-zero values at all points. 

The efficiency of the proposed method is tested 

using standard images and compared with the other 

algorithms. 

2. Cellular automata and fuzzy cellular 

automata  

Ulam and Von Neumann [17, 18] described the 

cellular automaton (CA) and Stephen Wolfram 

developed the CA theory [19], which can be used as 

a model for investigating the behavior of complex 

systems. CA is discrete dynamic system, which its 

behavior is completely based on local relations and 

the collection of a regular spatial lattice of cells, 

which each can have a finite number of states. The 

time is discrete in CA and the state of a cell is a 

function of the previous states of its neighbor cells. 

Also, CA is an effective tool for image processing 

[20] based on its simplicity and parallelism. The cell 

states are updated in discrete time steps and defined 

by its original state and surrounding neighborhood 

of cells with the help of a specified transition local 

and uniform rule. The simplest form of CA is one-

dimensional CA and other models of CA can be 

defined such as two dimensional and three-

dimensional ones. Cellular Automata can be defined 

by four tuple {L, Q, r, f}, where “L” is the regular 

grid of cells, “Q” a finite set of states, “r” and “f” are 

neighborhood radius and transition function. In a 3-

neighborhood dependency, the next state 𝑄𝑖(𝑡 + 1) 
of a cell is assumed to be dependent only on itself 

and on its two neighbors (left and right) as equation 

(1). 

𝑄𝑖(𝑡 + 1) = 𝐹(𝑄𝑖−1(𝑡), 𝑄𝑖(𝑡), 𝑄𝑖+1(𝑡)) (1) 

Where F is transition function and referred to 

as the rule of the automata which depends on the 

current states of the neighbors, 𝑄𝑖   demonstrates the 
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state of the 𝑖𝑡ℎ cell at 𝑡𝑡ℎ instant of time. Any 𝑖𝑡ℎ 

cell, CA is configured with the rule 𝑅𝑖 (rule vector 

𝑅 = (𝑅1…𝑅𝑛)  , i=1…n) which 22
3
 distinct rules 

are in a 2-state 3-neighborhood CA. Types of 

different neighborhood structures are used for 

cellular automata, Von Neumann and Moore 

neighborhood structures are most commonly used 

(see fig.1). The generalized Von Neumann and 

Moore neighborhood of radius r=1 and r=2 has 

equation (2) and (3). 

𝑥(𝑖,𝑗) = {(𝑖
′, 𝑗′)𝜖𝐿 |  |𝑖′ − 𝑖| + |𝑗′ − 𝑗| ≤ 1}   ,   

𝑥(𝑖,𝑗) = {(𝑖
′, 𝑗′)𝜖𝐿 |  |𝑖′ − 𝑖| ˄ |𝑗′ − 𝑗| ≤ 1} 

(2) 

𝑥(𝑖,𝑗) = {(𝑖
′, 𝑗′)𝜖𝐿 |  |𝑖′ − 𝑖| + |𝑗′ − 𝑗| ≤ 1}   ,   

𝑥(𝑖,𝑗) = {(𝑖
′, 𝑗′)𝜖𝐿 |  |𝑖′ − 𝑖| ˄ |𝑗′ − 𝑗| ≤ 1} 

(3) 

Where, L is a regular lattice (the elements of L 

being called cells) and N is a finite set of 

neighborhood indices such that ∀r∈L. In CA, the 

local rules are all crisp, but the descriptions of many 

actual models are uncertain and difficult to calculate 

by using crisp data. So, FCA (Fuzzy cellular 

automata) which is a particular type of continuous 

cellular automata where the local transition rule is 

fuzzy which takes the current membership value of 

each neighbor and calculates the value of 

membership of the next state, where used. FCA was 

introduced in [21] and some of their properties have 

been studied in [22, 23]. CA is used as a method for 

noise removal in the corrupted image and improving 

image quality in [24]. CA and fuzzy logic theory in 

[25] was proposed to restore digital images 

corrupted by impulse noise which this method 

describes a local fuzzy transition rule which gives a 

membership value to the corrupted pixel 

neighborhood and assigns next state as the central 

pixel value. In [26] a hybrid method based on 

cellular automata (CA) and fuzzy logic were used as 

a filtering tool for impulse noise reduction from 

images. This research shows that FCA can be used 

as an efficient tool for image processing purposes 

such as the restoration of images corrupted by 

impulse noises.  

3. Method 

In the proposed method, a novel impulse noise 

reduction from images is proposed. The proposed 

noise detector, which is the main contribution of this 

paper, consists of two steps. The corrupted pixels 

identified by the double noise detector were restored 

using fuzzy cellular automata based on their 

neighbor uncorrupted pixels. The flow chart of the 

proposed method is shown in Fig (4). 

A) First phase  

 In this phase, a window of size 3*3 is used and 

𝐶𝑖,𝑗 is centered at (i,j) coordination  (see fig.2). The 

goal of the first phase is detecting corrupted pixel in 

a selected window. Each corrupted pixel in image is 

corrupted by impulse noise has a significant change 

compared with its neighbors.  

In the first phase, the double noise detector 

consists of two steps. At first, noise candidates are 

identified with the two dimensional cellular 

automata with Moore neighborhood (see fig.2). The 

state of cell at time 𝑡 + 1 depends on the states of 

itself and the neighborhood cells at time “t”. It is 

based on transition function F and the cell states are 

updated in discrete time steps based on transition 

function F. 𝐶𝑖,𝑗
𝑡+1is the next state of cell in (i,j) 

coordination that can define (𝑡 + 1)𝑡ℎ state and 

transition function based on time and neighborhood 

pixels for Moore neighborhood as equation (4). 

Eq.(4) shows 𝐶𝑖,𝑗
𝑡+1 which is the next state of cell in 

(i,j) coordination with states that are updated in 

discrete time steps based on transition function F. 

C(i,j)
(t+1)

= F(
C(i+1,j)
(t) , C(i+1,j−1)

(t) , C(i,j−1)
(t) , C(i−1,j−1)

(t) ,

C(i−1,j)
(t) , C(i−1,j+1)

(t) , C(i,j+1)
t , C(i+1,j+1)

(t)
) (4) 

Where, 𝐶(𝑖,𝑗)
(𝑡+1)

  is the next state of cell in (i,j) 

coordination. In the first step, standard deviation 

between the maximum and average of neighborhood 

cells in the CA is calculated using equations (5). 

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑑 =

1

𝑁
∑(

𝐶𝑖−1,𝑗−1, 𝐶𝑖−1,𝑗 , 𝐶𝑖−1,𝑗+1, 𝐶𝑖,𝑗−1
𝐶𝑖,𝑗+1, 𝐶𝑖+1,𝑗−1, 𝐶𝑖+1,𝑗 , 𝐶𝑖+1,𝑗+1

)  

𝑢, 𝑣𝜖{−1,0,1}   
(5) 

𝐶𝑖,𝑗
𝑀𝑎𝑥  = max (𝑐𝑖−1,𝑗−1, 𝑐𝑖−1,𝑗 , 𝑐𝑖−1,𝑗+1, 𝑐𝑖,𝑗−1 

𝑐𝑖,𝑗+1, 𝑐𝑖+1,𝑗−1, 𝑐𝑖+1,𝑗 , 𝑐𝑖+1,𝑗+1) 
(6) 

ST = √
1

2
(Ci,j

Max − Caverage
d )2         (7) 

𝐶𝑖,𝑗
𝑀𝑎𝑥 demonstrates maximum intensity in 

neighborhood cells within a selected window around 

central pixel ( 𝐶𝑖,𝑗). Then, the ratio of ST and 

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑑  are used, which specifies the coefficient of 

variation between the maximum and average of 

values neighborhood cells in a selected window 

around central pixel as (8). Eq. (8) shows the 

existence of a noisy pixel in (i,j) coordination in 

Moore neighborhood structure. 𝜀 is the constant 

value in (0.1,0.001) interval. 𝜔 is the threshold value 

for noisy pixel existence which obtains as (9) , (10) 

and (11). 

𝐶𝑖,𝑗 =    

{
  
 

  
 
 𝐶𝑖,𝑗  is a corrupted pixel       

𝐹(𝑖, 𝑗) =  
𝑆𝑇

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑑 + 𝜀

 ≤  𝜔    

𝐶𝑖,𝑗
′ is not a corrupted pixel  

𝐹(𝑖, 𝑗) =  
𝑆𝑇

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
𝑑 + 𝜀

  > 𝜔  

 

 

(8) 

𝐶𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑇 =

1

𝑁
∑

(𝐶𝑖−1,𝑗−1, 𝐶𝑖−1,𝑗 . 𝐶𝑖−1,𝑗+1, 𝐶𝑖,𝑗−1
𝐶𝑖,𝑗+1, 𝐶𝑖+1,𝑗−1, 𝐶𝑖+1,𝑗 , 𝐶𝑖+1,𝑗+1)

 (9) 

𝑆𝑇𝑇 = √
1

2
(Ci,j

MaxT − 𝐶𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑇  )2     (10) 
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𝜔 =
𝑆𝑇𝑇

𝐶𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑇 + 𝜀

 (11) 

 

 

 

Fig. 1. CA Neighborhood model for Von Neumann (left) and 

Moore (right) neighborhood of r=1 and r=2. The nearest 

neighborhood comprises the center cell. 

𝑐𝑖−1,𝑗−1 𝑐𝑖−1,𝑗 𝑐𝑖−1,𝑗+1 

𝑐𝑖,𝑗−1 𝑐𝑖,𝑗 𝑐𝑖,𝑗+1 

𝑐𝑖+1,𝑗−1 𝑐𝑖+1,𝑗 𝑐𝑖+1,𝑗+1 

Fig. 2. Centeral cell position in Moore neighborhood model. 

Eq.(9) “N” indicates the total number of pixels 

in selected window (N=8). Ci,j
Max𝑇 shows maximum 

intensity within a selected window. At first step, 

detected pixels may be uncorrupted pixels (𝐶𝑖,𝑗
′ ). So, 

in order to improve accurate rate of noise detection, 

the first detection pixels are judged again by local 

fuzzy membership function, which is calculated 

using equations (12) and (13). 

𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
′ =

1

𝑁
∑𝐶𝑖+𝑢,𝑗+𝑣

′     ,  𝑢, 𝑣𝜖{−1,0,1} (12) 

𝜎′ = √
1

𝑁
∑(𝐶𝑖+𝑢,𝑗+𝑣

′ − 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
′ )2 (13) 

 

Let 𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒
′  is average of pixels around 

uncorrupted pixel (𝐶𝑖,𝑗
′  center pixel). “N” indicates 

the total number of pixels in selected window (N=8). 

𝜎′ is standard deviation of the pixels in selected 

window. The fuzzy membership degree 𝜇𝑖(𝑐𝑖,𝑗
′ ) of 

the center pixel 𝑐𝑖,𝑗
′  in the block is defined as 

equation (14). 

𝜇𝑖(𝑐𝑖,𝑗
′ ) =  𝑒

( − 
(𝑐𝑖,𝑗
′ −𝐶𝑎𝑣𝑒𝑟𝑎𝑔𝑒

′ )
2

2𝜎′
2 ) 

  
(14) 

The noise candidates are judged again based on 

the local fuzzy membership function using 

following equation (15). 

𝑐𝑖,𝑗
′ =    

{
 
 

 
 

𝑐𝑖,𝑗
′  is a corrupted pixel 

 F( 𝜇(𝑐𝑖,𝑗
′ ) )    >  𝛼         

𝑐𝑖,𝑗
′  is not a corrupted pixel =  𝐶𝑖,𝑗

′′  

 F( 𝜇(𝑐𝑖,𝑗
′ ) )   ≤ 𝛼  

 

  

(15) 

 

Fig. 3. Gaussian membership function (where  𝜇𝑖 and 𝜎𝑖 are the 

center and width of the 𝑖𝑡ℎ fuzzy set Ai, respectively). 

𝑐𝑖,𝑗
′  demonstrates the existence of noise in i,j 

coordination. 𝜇(𝑐𝑖,𝑗
′ ) is the fuzzy membership 

degree of the center pixel 𝑐𝑖,𝑗
′  in the selected 

window. 𝛼 is the threshold value for noise existence 

which obtains with using equations (16) , (17) and 

(18). 

𝛼=(1-𝐿𝑖,𝑗)𝛿           𝐿𝑖,𝑗=
𝑁

𝑁∗𝑁
 (16) 

𝐶𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑇1 =

1

𝑁 − 1
∑

(𝐶𝑖−1,𝑗−1, 𝐶𝑖−1,𝑗+1, 𝐶𝑖,𝑗−1, 𝐶𝑖,𝑗+1
𝐶𝑖+1,𝑗−1, 𝐶𝑖+1,𝑗, 𝐶𝑖+1,𝑗+1)

 (17) 

𝜎 = √
1

N − 1
∑(C𝑖+𝑢,𝑗+𝑣 − 𝐶𝐴𝑣𝑒𝑟𝑎𝑔𝑒

𝑇1  )2
𝑁

𝑖,𝑗

       

 𝑢, 𝑣𝜖{−1,0,1} 

(18) 

 

“N” indicates the total number of pixels in 

selected window (N=9). CAverage
T1  shows 

demonstrates average value of neighborhood cells 

within a selected window around central pixel ( 𝐶𝑖,𝑗). 

Therefore, by assuming a threshold (obtained from 

the experiments), the noisy points can be 

approximately detected. In equation (16) φ * φ the 

total number of pixels in the window is 3 * 3. In 

equation (18) 𝜎 is the standard deviation of the 

pixels around the central cell in the Moor 

neighborhood. 

B) Second phase (The restoration of the 

corrupted pixels) 

The goal of this phase is restoration of the 

corrupted pixels which uses a two dimensional fuzzy 

cellular automata with Moore neighborhood 

structure. In this phase, the cells state is updated in 

discrete time steps based on transition function F 

which depends on the current states of the neighbors. 

Therefore, after determination of the corrupted pixel 

at the first phase, the neighborhood pixels values 

around the corrupted pixel can define a membership 

degree in relation to noisy set based on Moore 

neighborhood structure by using selected Gaussian 

membership function. The advantage of Gaussian 

membership function (see fig.3) is that it is smooth 
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and nonzero at all points then it will assign a non-

zero value for each pixel in that window. See 

equations (19), (20) and (21). 

In this phase, the cells state is updated in 

discrete time steps based on transition function F 

that depends on the current states of the neighbors. 

Therefore, after determination of the corrupted pixel 

at the first phase, the neighborhood pixels values 

around the corrupted pixel can define a membership 

degree in relation to noisy set based on Moore 

neighborhood structure by using selected Gaussian 

membership function. The advantage of Gaussian 

membership function (see fig.3) is that it is smooth 

and nonzero at all points then it will assign a non-

zero value for each pixel in that window. See 

equations (19), (20) and (21). 

M′ =
1

N
∑Ci+u,j+v

′′′      𝐶𝑖+𝑢,𝑗+𝑣
′′′ = 𝐶𝑖+𝑢,𝑗+𝑣

′      𝑢, 𝑣𝜖{−1,0,1} (19) 

σ′
2
=
1

N
∑(Ci+u,j+v

′′′ −M′)2        u, vϵ{−1,0,1} (20) 

𝜇𝑖(𝐶𝑖+𝑢,𝑗+𝑣
′′′  ) = 𝑒

( − 
(𝐶𝑖+𝑢,𝑗+𝑣

′′′ −𝑀′)
2

2𝜎′
2 )

     

  𝑢, 𝑣𝜖{−1,0,1} 

(21) 

𝑀′ and 𝜎′
2
are the average and the square 

deviation of the pixels in Moore neighborhood of the  

𝐶𝑖+𝑢,𝑗+𝑣
′′′  , respectively. Also, for defuzzifying and 

replacement value based on the average center of 

gravity using the following equation:  

𝑍𝐶𝑖+𝑢,𝑗+𝑣 =
∑𝜇𝑖(𝐶𝑖+𝑢,𝑗+𝑣

′′′  )𝐶𝑖+𝑢,𝑗+𝑣
′′′

𝜇𝑖(𝐶𝑖+𝑢,𝑗+𝑣
′′′  )

  (22) 

Z is the new value of the pixel and can be used 

as our local state rule function, F of cellular 

automaton using equation (23). 

F(𝐶𝑖,𝑗) = 𝑍𝐶𝑖+𝑢,𝑗+𝑣   ≡  
∑ 𝜇𝑖(𝐶𝑖+𝑢,𝑗+𝑣

′′′  )𝐶𝑖+𝑢,𝑗+𝑣
′′′

𝜇𝑖(𝐶𝑖+𝑢,𝑗+𝑣
′′′  )

     (23) 

 

 
 

Fig. 4. The flow chart of proposed method. 

 
 

4. Experimental results 

In this section, the proposed method is applied 

with noise density varied from 10% to 90% with 

increments of 10% on the 90 test images (see fig.11) 

such as Lena, Bridge, Peppers and Baboon images 

by different values of salt and pepper noise. In 

addition, quantitatively measured performance of 

the proposed method in comparison with the other 

methods is evaluated by Peak Signal-to-Noise Ratio 

(PSNR) which is calculated by Eq (24). 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸 
)  (24) 

Where 255 is the maximum pixel intensity for 

8-bit gray scale images, MSE is the mean square 

error, which is inserted between the original and 

restored images, which is calculated by Eq (25): 

𝑀𝑆𝐸 =
1

𝑚 ∗ 𝑛
∑∑(𝑂𝑖𝑗

𝑛

𝑗=1

− 𝑅𝑖𝑗)
2

𝑚

𝑖=1

 (25) 

“O” is the original image (𝑜𝑖𝑗  pixel of the 

original image) and R is the restored image (𝑅𝑖𝑗 

pixel of the "restored image). In addition, “m” and 

“n” are the width and height of the image.  

The structural similarity (SSIM) index is a 

method for measuring the similarity between two 

images and is designed to improve on traditional 

methods like peak signal-to-noise ratio (PSNR) and 

mean squared error (MSE), Structural Similarity 

(SSIM) index is calculated by Eq (26).  

𝑆𝑆𝐼𝑀 =
(2𝜇𝑂𝜇𝑅 + 𝑐1)(2𝜎𝑂𝑅 + 𝑐2)

(𝜇𝑂
2 + 𝜇𝑅

2 + 𝑐1)(𝜎𝑂
2 + 𝜎𝑅

2 + 𝑐2)
 (26) 

 

Where, 𝜎𝑂 = √
1

𝑛−1
∑ (𝑂𝑖 − 𝜇𝑂)

2𝑛
𝑖=1  and 𝜇𝑂 =

1

𝑛
∑ 𝑂𝑖
𝑛
𝑖=1  

are the variance and average of original image,  𝜎𝑅 =

√
1

𝑛−1
∑ (𝑅𝑖 − 𝜇𝑅)

2𝑛
𝑖=1   and 𝜇𝑅 =

1

𝑛
∑ 𝑅𝑖
𝑛
𝑖=1  are the variance 

and average of restored image. 𝜎𝑂𝑅 =

√
1

𝑛−1
∑ (𝑂𝑖 − 𝜇𝑂)(𝑅𝑖 − 𝜇𝑅)
𝑛
𝑖=1   is the covariance of 

original and restored image. L is the dynamic range 

of the pixel values that for an 8-bit grayscale image 

composed of 0-255 gray-levels, 𝑐1 = (𝑘1𝐿)
2  and  𝑐2 =

(𝑘2𝐿)
2 , where 𝑘1 ≪ 1 and 𝑘2 ≪ 1  are small constants 

[27].   

Table.1. 
Different CA rules performance on images corrupted 70% noise. 

Rules  Baboon 

PSNR 

Peppers 

PSNR 

Lena 

PSNR 

Rule 508 23.7 22.7 31.6 

Rule 305 22.18 21.18 28.93 

Rule 164 18.98 20.98 27.81 

Rule 74 16.01 20.01 24.02 

Rule 271 20.19 22.28 25.19 



182                                  International Journal of  Smart Electrical Engineering, Vol.10, No.4, Fall 2021                     ISSN:  2251-9246  

EISSN: 2345-6221 

 

Table.2. 
Comparison of various filtering techniques and proposed filter 
base on PSNR values of different noise density for the Lena 

512*512 pixel images (Rule 508). 

Method Noise Ratio% 

10 20 30 40 50 60 70 80 

PSMF 31.1 29.2 27.2 24.1 20.4 15.8 11.3 8.7 

TSMF 24.1 26.8 20.6 16.9 13.8 11.1 9.0 7.8 

SWMF 33.6 29.3 24.2 19.5 16.3 13.6 11.1 9.3 

H.Deng 39.7 37.7 36.5 34.7 33.2 31.8 30.2 28.1 

IFCF 32.8 29.3 25.1 21.5 18.4 15.8 13.9 11.9 

NSDD 37.4 33.5 30.1 27.7 25.4 24.1 21.4 19.1 

FMF 36.4 30.1 23.8 18.7 15.4 12.5 10.6 8.7 

ACWMF 30.8 29.3 27.4 22.5 18.7 14.3 11.1 8.5 

A.Selmani 40.2 37.6 36.7 34.8 33.1 31.9 30.7 28.9 

FRINR 30.3 27.4 25.3 22.7 20.7 19.1 17.1 13.4 

IRF 30.6 27.4 22.8  18.3 15.1 12.4  9.9  8.3 

Proposed 40.1 37.8 36.9 34.7 33.7  32.4 31.6 29.2 

Table.3. 
Comparison of various filtering techniques and proposed filter 

base on PSNR values of different noise density for the Baboon 

512*512 pixel images (Rule 508). 

Method Noise Ratio% 

10 20 30 40 50 60 70 80 

PSMF 28.1 26.7 25.4 23.2 19.8 15.9 11.3 8.7 

TSMF 25.2 22.8 19.2 15.9 13.2 10.8 8.9 7.4 

SWMF 29.5 26.1 22.3 19.1 15.7 12.9 10.7 8.7 

H.Deng 34.8 32.3 29.6 27.9 26.2 24.4 23.0 21.7 

IFCF 23.3 22.2 20.4 18.2 15.9 14.3 12.9 12.1 

NSDD 31.4 28.3 26.5 24.4 21.1 20.3 18.4 17.1 

FMF 27.1 24.4 20.8 18.1 15.4 12.9 11.4 9.8 

ACWMF 26.2 24.1 20.5 18.4 16.3 14.5 13.7 10.8 

A.Selmani 34.9 32.2 29.5 28.1 26.4 24.5 23.1 21.8 

FRINR 26.3 24.8 21.3 19.8 18.5 17.2 15.1 13.8 

IRF 25.9 24.3 21.4 17.9 14.8 12.6 10.2 8.4 

Proposed 35.1 32.4 29.4 28.3 26.3 24.9 23.7 22.6 

 
Fig. 5. PSNR values of different filtering techniques at 

different noise densities for restored Lena image. 

Table.4. 
Comparison of various filtering techniques and proposed filter 
base on PSNR values of different noise density for the Peppers 

512*512 pixel images (Rule 508). 

Method Noise Ratio% 

10 20 30 40 50 60 70 80 

PSMF 31.3 28.7 26.3  23.8 19.7 15.8 12.1 10.3  

TSMF 30.1 27.3 22.8 18.2 14.5  11.2 10.4  8.1  

SWMF 32.5 28.1 23.3 18.4 15.8 12.3  9.8  8.5 

H.Deng 33.8 31.4  28.6  26.7 25.1 23.3 21.9 20.6 

IFCF 27.2 22.8 19.4 18.3 17.4 15.7 11.9 11.3 

NSDD 30.4 27.4 25.5 23.3 20.1 19.3 17.3 16.1 

FMF 32.2 29.4 25.5 21.3 17.8 13.5 11.6 10.1 

ACWMF 30.7 28.2 23.4 21.8 18.3  15.3 10.7 9.8 

A.Selmani 33.9 31.3 28.5 27.2 25.4 23.5 22.1 20.7 

FRINR 29.6 25.7 22.5 21.3 19.7 18.5 16.1 14.1 

IRF 30.4 25.5  21.8 17.9 14.9  11.8   9.5 7.9  

Proposed 34.1 31.5 28.4 27.3 25.3 23.9 22.7 21.6 

Table.5. 
Comparison of the SSIM values for Lena and Peppers and 

Baboon 512*512 pixel images, for 70% impulse noise ratio and 

proposed method (Rule 508). 

 

Methods 

Lena 

SSIM 

Peppers 

SSIM 

Baboon 

SSIM 

PSMF 0.52 0.44 0.48 

TSMF 0.43 0.32 0.34 

SWMF 0.54 0.42 0.49 

H.Deng 0.854 0.806 0.829 

IFCF 0.67 0.59 0.60 

NSDD 0.74 0.63 0.64 

FMF 0.51 0.43 0.46 

ACWMF 0.53 0.42 0.47 

A.Selmani 0.859 0.809 0.831 

FRINR 0.72 0.61 0.62 

IRF 0.43 0.34 0.36 

Proposed 0.863 0.817 0.34 

 

Fig. 6. PSNR values of different filtering techniques at 

different noise densities for restored Baboon image. 
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Table.6. 
Comparison of various filtering techniques and proposed filter 
base on PSNR values of different noise density for the Peppers 

256*256 pixel images (Rule 305). 

Method Noise Ratio% 

10 20 30 40 50 60 70 80 

PSMF 29.2 26.6 24.2  21.7 17.6  14.7  11.1 9.3 

TSMF 28.0 25.2 20.7  6.1 12.4 10.6 9.4  7.1 

SWMF 30.4 26.0 21.2  6.3 13.7 11.2  8.7  7.5 

H.Deng  2.5 30.1 29.4  5.9 24.4 22.4 21.1  20.1 

IFCF 25.1 20.7 17.3 16.2 15.7 14.6 10.9 10.3 

NSDD 29.4 26.1 24.5 22.3 18.9 18.1 16.2  4.8 

FMF 30.1 27.3 23.4  19.2 15.7 12.4   10.6 9.1  

ACWMF 28.6 26.1 21.3 19.7 16.2 14.2 9.7  8.7 

A.Selmani 32.4 30.2 29.5 26.0 24.3 22.5 21.2 20.1 

FRINR 27.5 23.6 20.4 19.2 17.6 17.4 15.1 13.1 

IRF 28.3 23.4  19.7  15.8 12.8  10.7  8.5  6.8  

Proposed 32.3 30.4 29.6 26.1 24.2   22.8  21.8   20.4  

 

Fig. 7. PSNR values of different filtering techniques at 

different noise densities for restored Peppers image. 

 

Fig. 8. Restored images of different filters for Lena 512*512 

pixel image for 70% impulse noise. 

 

Fig. 9. Restored images of different filters for baboon 512*512 

pixel image for 70% impulse noise. 

 

Fig. 10. Restored images of different filters for Peppers 512*512 

pixel image for 70% impulse noise. 

 

Fig. 11. Example of 350 test images. 

 

Fig. 12. Restoration images for Lena, Babbon, Peppers and 

Bridge 512*512 pixel images for 90% impulse noise. 
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Fig. 13. Restored Peppers image for different algorithms with 

256 * 256 pixel images for 70% impulse noise. 

 

Fig. 14. PSNR values of restored Peppers image for different 

algorithms with 256 * 256 pixel image. 

Restoration performance of RHDINTPM is 

applying for the several popular test images 

corrupted by different magnitudes of impulse noise. 

it is compared with restoration performance of the 

various filters such as progressive switching median 

filter (PSMF) [28], tri-state median filter (TSMF) 

[29], switching median filters (SWMF) [30], 

H.Deng’s method [31], a fuzzy logic control-based 

approach for image filtering (IFCF) [32], NSDD 

[33], fuzzy median filter (FMF) [34,35], adaptive 

impulse detection using center-weighted median 

filters (ACWMF) [36], A.Selmani’s method [37], 

fuzzy random impulse noise reduction method 

(FRINR) [38] and impulse rejecting filter (IRF)[39]. 

Table 1 shows how a cellular automaton works 

in the proposed method by different types of rules. 

Table 1, shows that the rule of 508 has better PSNR 

value than the other rules for Lena, baboon and 

peppers images. In addition, to reduce computation 

time, the rule of 305 can be chosen instead of 508 

without losing information and image quality. 

Tables 2–5 indicates the proposed method 

performance in terms of the SSIM index and PSNR 

values. Among the filters, the proposed method 

produces the highest PSNR values and TSMF 

produces the lower PSNR values (see tables 2-4). 

Table 5 shows that the proposed filter gives better 

SSIM index values for the Lena, Baboon and 

Peppers images compared to the other filters. Figs. 

5-7 shows that the proposed method provides better 

PSNR curves resulted compared to the other 

algorithms on ‘‘Lena’’, ”Baboon” and “Peppers” by 

different noise intensities ranging from 10% to 90 

%, respectively. 

Table.7. 
Comparison of de-noising time in seconds for the images “Boat” 

and “Bridge”. 

Image Impulse noise Method Time cost (s) 

Boat 0.2 H. Deng’s  124.89 

Boat 0.2 NSDD  41.43 

Boat 0.2 NFDMF 40.11 

Boat 0.2 Proposed method 39.08 

Bridge 0.2 H. Deng’s method  128.18 

Bridge 0.2 NSDD  49.08 

Bridge 0.2 NFDMF 45.96 

Bridge 0.2 Proposed method 44.81 

 

In addition, figs. 8-10 presents test images 

corrupted with 70% impulse noise for standard test 

images that these are showed subjective visual 

qualities for qualitative analysis of the proposed 

method and other filtering techniques. TSMF and 

PSM suppress much of the noise where they fail to 

preserve edge information while maintaining details 

of the image.  Fig.12 demonstrates subjective 

quantitative measure as visual by proposed filter 

with a high noise probability of 90% for “Lena”, 

“Baboon”, “Peppers” and “Bridge" standard test 

images, respectively. 

Figures 13 and 14 show the subjective visual 

qualities and graphical carnations of PSNR for the 

proposed method. In other sections, it shows other 

methods for the image of pepper damaged by the 

noise of 256 x 256 pixels. As shown in Figure 14, 

the proposed method provides a better PSNR graph 

compared to other known filtering methods. 

Table 6 shows the measure of PSNR for the 

proposed method and previous methods for the 

image of peppers with a size of 256 * 256 pixels so 

that the proposed method shows a better result than 

the others. At the same images with different sizes, 

smaller images contain much less information than 

larger images. Therefore, different values and 

results are obtained when applying the same images 

with different sizes or filtering methods. Table 7 

shows the processing time of the proposed method 

for boat and bridge images with a size of 256 * 256 

pixels and a density of 0.2 so that the processing 
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time of the proposed method is faster than the other 

three methods. Therefore, the proposed method 

presented in this article to restore images damaged 

by impulse noise can be implemented with 

acceptable computation time. 

5. Conclusion 

In this paper, a novel method for removing 

impulse noise is presented. The proposed method, 

RHDINTPM, is based on cellular automata (CA) 

and fuzzy logic which the statistical features-based 

filtering technique have been proposed for removing 

impulse noise from corrupted digital images. The 

proposed method consists of two phases, which is 

the special contribution of the new approach to the 

detection of impulse noise and the restoration of the 

damaged images. RHDINTPM method is applied to 

the 90 test images used for evaluation. Numerical 

measures such as PSNR, SSIM have been computed 

and values demonstrate that the proposed 

RHDINTPM method gives better compared to other 

filtering techniques and can restore meaningful 

image details at levels of corruption as high as 90%. 

The main advantage of RHDINTPM is simplicity 

and parallelism to restore a wide variety of images 

corrupted by impulse noise. Also, other advantages 

of the proposed method are the ability to 

appropriately preserve edges as well as details of the 

images and robust performance in varying noise 

intensities ranging from 10% to 90%. Applying 

other fuzzy filtering methods combined with cellular 

automata to improve the filtering performance in the 

presence of different types of high-density noises 

will be the plan of our future work. 
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