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Abstract 

This study investigated the effect of distributed generation resources and demand-response program on the placement of 

charging/discharging stations and optimal exploitation programming of electric vehicles in a distribution network. Effective 

factors in the sitting of stations and optimal charge/discharge power in stations are a combination of technical and economic 

parameters. Minimization of network losses, minimization of voltage loss in feeders, smoothing network load curve, and THD 

reduction were assumed as technical parameters. As to the economic scope, the placement of stations and charge/discharge 

power were considered the most effective parameters. In other words, the costs of charging/discharging operations needed to 

be minimized in the stations to reach the lowest costs spent on purchasing power. A price-based demand-response program 

was incorporated into the simulations to manage loads on the customer side and smooth the load curve. We implemented 

genetic, particle swarm optimization, and imperialist competitive hybrid meta-heuristic algorithms to find the optimum 

operating point. We performed simulations in an IEEE standard 69-bus network. The problem was solved using the former 

hybrid algorithm, and optimal sites of stations and exploitation program of charge/discharge were specified. This study 

evaluated the effects of renewable energy resources and price-based demand-response program on the optimal placement of 

stations and optimal exploitation program of stations. Furthermore, it addressed the effects of an increase in the number of 

stations and a rise in charge/discharge capacity. 
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1. Introduction 

Nowadays, the optimal sitting of charging / 

discharging stations and charging/discharging 

processes in different hours is highly incorporated 

into exploitation programs of electric vehicles in 

electric networks. One of the factors affecting the 

optimal placement of stations and exploitation 

programming is the demand-response program and 

load management on the customer side (Sabzehgar 

et al. 2020).Some designs included distributed 

generation resources and renewable energy 

resources for the optimal placement of charging 

stations (Jiang et al. 2017; Domínguez-Navarro et al. 

2019; Mouli et al. 2016; Tabatabaee et al. 2017; 

Hafez and Bhattacharya 2017). Furthermore, 

researchers determined the capacity of distributed 

generation resources and locations of electric 

vehicle charging stations by different optimized 

methods (Mirzaei et al. 2016; ISLAM et al. 2016). 

(Mendes et al. 2016; Luo et al. 2020) designed 

electric vehicle charging systems inside microgrid, 

and controlled vehicle-to-grid (V2G) interaction. 

The present study aims to obtain the optimal 

locations of electric vehicle charging stations in the 

network, considering distributed generation 

resources. The available stations have both charging 

and discharging capabilities, and defines the 
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objective function as a set of financial and technical 

parameters.  

2. Problem description 

Relation (1) defines the main objective 

function of this study by relation (1) regarding all of 

the concerned parameters. Relation (1) includes 

technical and financial items. 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛[(𝑊1 × 𝑓1 + 𝑊2 ×
𝑓2 + 𝑊3 × 𝑓3 + 𝑊4 × 𝑓4) + 𝑊5 × 𝑓5]  

(1) 

Where W1, W2, W3, W4, and W5 are weighting 

coefficients. f1 stands for the total losses in the 

network over 24 hours, as given below: 

𝑓1 = ∑ ∑ R𝑙𝑖𝑛𝑒𝑖
|I𝑙𝑖𝑛𝑒𝑖,𝑡|

2𝑙𝑖𝑛𝑒 𝑛𝑢𝑚𝑏𝑒𝑟

𝑖=1

24

𝑡=1

  
(2) 

Where Ilinei
 represents the passing current of 

the ith line at the tth hour and Rlinei
 denotes the 

resistance of the ith line. Also, 𝑓2 represents the total 

voltage losses in the network over 24 hours (after 

incorporation of renewable energy resources), 

which is defined by relation (3). 

𝑓2 = ∑ ∑ |1 − V𝑖,𝑡|
𝑏𝑢𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑖=1

24

𝑡=1
  

(3) 

Where Vi,t denotes the voltage at the ith bus at 

the tth hour. Further, f3 is the energy consumption 

cost function, which comprises three main parts, as 

defined in what follows.  The cost of consumption 

in the network that needs to be paid to the 

distribution company. In this regard, first, the total 

receiving power from the substation must be 

calculated. According to the renewable energy 

resources and electric vehicles in the network, we 

calculated the input power provided by the 

substation at the tth hour as follows: 

𝑃𝑠𝑢𝑏,𝑡 = ∑ 𝑃𝑑 𝑖,𝑡
𝑁𝑏𝑢𝑠
𝑖=1 + ∑ 𝑃𝑙𝑜𝑠𝑠 𝑗,𝑡

𝑁𝑙𝑖𝑛𝑒
𝑗=1 −

∑ 𝑃𝑑𝑖𝑠𝑐ℎ 𝑘,𝑡
𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛
𝑘=1 + ∑ 𝑃𝑐ℎ 𝑘,𝑡

𝑁𝑠𝑡𝑎𝑡𝑡𝑖𝑜𝑛
𝑘=1 −

𝑃𝑤𝑖𝑛𝑑,𝑡 − 𝑃𝑝𝑣,𝑡   

(4) 

Where: 

Psub,t: Input power provided by the substation 

at the tth hour (kW) 

Pd i,t: Demand active power at the ith bus and tth 

hour (kW) 

Ploss j,t: Power losses in the ith line at the tth hour 

(kW) 

Pdisch k,t: Discharged power from electric 

vehicles to the network at the kth station and tth hour 

(kW) 

Pch k,t: Charged power from the network to 

electric vehicles at the kth station and tth hour (kW) 

Pwind,t: Generated power in the wind section of 

the renewable energy production unit at tth hour 

(kW) 

Ppv,t : Generated power in the solar section of 

the renewable energy production unit at tth hour 

(kW) 

Nbus   ، Nline و   Nstation are the number of 

busses, line, and electric vehicle 

charging/discharging stations in the network, 

respectively.  

Given the input power calculated by relation 

(4), the cost to be paid to the distribution company 

is calculated by relation (5), assuming that the 

distribution company takes a 20% profit. 

  𝑓6 = ∑ 1.2 ∗ 𝑃𝑠𝑢𝑏,𝑡
24
𝑡=1 ∗ 𝐶𝑡  (5) 

Where Ct represents the cost of purchased 

energy by the distribution company at the tth hour 

from the network power plant units. Table 1 lists the 

energy price per hour ($/hour), considering three 

temporal periods (off-peak, average, and peak 

hours). The electric vehicle charge/discharge costs 

at the stations include two other parts due to the 

presence of electric vehicles in the network.  

− The cost to be received from vehicle owners 

during the charging process at the stations 

− The cost to be paid to vehicle owners once 

discharging vehicle batteries to the network 

The sum of these costs is calculated by relation 

(6). As can be observed in this relation, to encourage 

customers (vehicle owners), the discharge cost paid 

to them is 10% higher than the charge cost that the 

main network receives, which could be a tempting 

profit at peak hours.  

𝑓7 = ∑ (𝐶𝑡 ∗ ∑ 𝑃𝑐ℎ 𝑘,𝑡
𝑁𝑠𝑡𝑎𝑡𝑡𝑖𝑜𝑛
𝑘=1 − 1.1 ∗ 𝐶𝑡 ∗24

𝑡=1

∑ 𝑃𝑑𝑖𝑠𝑐ℎ 𝑘,𝑡
𝑁𝑠𝑡𝑎𝑡𝑖𝑜𝑛
𝑘=1 )  

(6) 

Table 1 lists the profit and cost of electric 

vehicles for the customers. As can be seen in Table 

1, vehicle owners can purchase electrical energy 

during off-peak and average hours (when the energy 

price is lower) and sell it during peak hours (when 

the energy price is higher). 

Table.1. 
Calculation of the profit offered to electric vehicle owners 

Period Off-peak Average Peak 

Hour [23-9] [10-18] [19-23] 

Power price per kW.h ($) 10 15 20 

Price of power purchased by 

vehicle owners from 
distribution company per 

kW.h ($) 

12 18 24 

Price of power sold by 
vehicle owners to distribution 

company per kW.h ($) 

11 16.5 22 

In relation (1), f3 represents the cost function 

and is defined as follows: 

𝑓3 = 𝑓6 + 𝑓7  (7) 
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Since the parameters used in the objective 

function (including cost, power loss, and voltage 

loss) are not of the same type, the objective function 

needs to be corrected by pre-uniting these quantities 

relative to the initial state, when there is no electric 

vehicle charging station. 

Moreover, f4 stands for the total harmonic 

distortions of current and voltage over 24 hours of a 

day at charging station and W4 is the weighting 

coefficient considered for distortion. Thus, f4 is 

calculated as follows: 

𝑓4 = ∑ ∑ (𝑇𝐷𝐷𝑖,𝑡
𝑏𝑢𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑖=1

24

𝑡=1
+ 𝑇𝐻𝐷𝑖,𝑡)(  

(8) 

Where TDDi,t and THDi,t represent the 

harmonic distortions of current load and voltage, 

respectively, at the ith bus and tth hour of the day. 

TDDi,t And THDi,t are calculated by relations (9) 

and (10), respectively.  

𝑇𝐷𝐷𝑖,𝑡 = (
8

1500
) ∗ 𝐶𝐻𝑖,𝑡  (9) 

𝑇𝐻𝐷𝑖,𝑡 = (
5

1500
) ∗ 𝐶𝐻𝑖,𝑡 

(10) 

Similar to other parameters available in the 

objective function, f5 was pre-united relative to its 

maximum value feasible in simulations. The 

maximum values of f5 occurs at the highest possible 

power of electric vehicle charging (1.5 MW for each 

station), at both stations during 24 hours of the day. 

In this paper, we assumed the charging power at the 

stations as entirely standard. IEEE519-1992 is one 

of the standards that has addressed the harmonic 

distortion induced by electric vehicle charging. 

Relations (9) and (10) have been presented in the 

IEEE519-1992 standard regarding the reasonable 

maximum values of THD and TDD. Also, a direct 

relationship has been assumed between the electric 

vehicle charged/discharged power and harmonic 

distortion.  

Moreover, f5 indicates the effects of 

constraints imposed by electric vehicle 

performance. If the problem constraints are 

resolved, f5 takes a zero-value. Generally, f5 is 

calculated by relation (11).  

𝑓5 = 𝑛 ∗ 𝑘𝑒𝑟   (11) 

Where n is the number of unsatisfied 

constraints and ker is a constant value that is usually 

considered higher than the values of main parts of 

the objective function. f4 was defined to be able to 

solve the problem by meta-heuristic algorithms and 

incorporation of constraints into the objective 

function. The constraints imposed on the problem 

are as follows: 

 

3. Charge/discharge power 

The charge/discharge power at any station 

must always be lower than the capacity of the station 

at any time.  
0 ≤ 𝐶𝐻𝑖,𝑡 ≤ 𝐶𝑎𝑝𝑖                  𝑖 = 1: 𝑛 

0 ≤ 𝐷𝑖𝑠𝐶𝐻𝑖,𝑡 ≤ 𝐶𝑎𝑝𝑖            𝑖 = 1: 𝑛  

(12) 

Where CHi,t and DisCHi,t denote the charge 

and discharge values at the ith station and tth hour, 

respectively. Capi Represents the capacity of the ith 

station, and n is the number of charging and 

discharging stations.  

A) Sum of charge and discharge power 

Several charging and discharging devices are 

used at any station that some of them might be 

charging, and some others might be discharging 

electric vehicles during each hour. The total 

exchanged electric power in these devices is not 

allowed to exceed the total capacity of the station. 

The sum of charge and discharge power needs to 

lower than the station’s capacity (relation (13)). 

0 ≤ 𝐶𝐻1𝑖,𝑡 + 𝐷𝑖𝑠𝐶𝐻1𝑖,𝑡 ≤ 𝐶𝑎𝑝𝑖         𝑖 = 1: 𝑛 (13) 

B) Prediction of the electric power exchange 

between the network and electric vehicles  

The total power charged to electric vehicles 

(from the network) minus the total discharged power 

from the network (to electric vehicles) need to 

equate to the predicted power. The following 

relation expresses this constraint: 

∑ 𝑃𝐶ℎ 𝑖,𝑡

𝑛

𝑖=1

− ∑ 𝑃𝐷𝑖𝑠𝐶ℎ 𝑖,𝑡

𝑛

𝑖=1

= 𝑃𝑝𝑟𝑒𝑑𝑖𝑐,𝑡 
(14) 

Where Ppredic,t is the predicted consumed-

power for the set of electric vehicles at the tth hour.  

C) Implementation of the demand-response 

program 

In the model of the price-based demand-

response program proposed in this paper, load shift 

and load interruption can simultaneously occur. 

Also, the behavior of customers can be optimized by 

pricing consumption periods and transferring 

demand from peak to off-peak hours. The effect of 

the price-based demand-response program on 

customer satisfaction can be defined by the elasticity 

coefficient as follows: 

𝑒𝑠𝑡 =
∆𝐿𝑠 𝐿𝑠

0⁄

∆𝑃𝑡 𝑃𝑡
0⁄

{
𝑒𝑠𝑡 ≤ 0,    𝑖𝑓   𝑠 = 𝑡
𝑒𝑠𝑡 ≥ 0,    𝑖𝑓   𝑠 ≠ 𝑡

} 
(15) 

Where s stands for time (s=1,2,3, … , T) and 

other parameters are defined as follows: 
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∆Ls : Variations in consumed load after 

implementing the price-based demand-response 

program   

LS
0  : Consumed load before the price-based 

demand-response program 

∆Pt : Variations in electricity price after 

implementing the price-based demand-response 

program 

Pt
0 : Electricity price before the price-based 

demand-response program. 

If the electricity price varies in different 

periods, the customer response can be expressed in 

two forms. As the first response, a customer can 

activate those loads that cannot be transferred to 

other periods (i.e., lighting loads). Such loads that 

are sensitive only to one period are called self-

elasticity, whose elasticity coefficient is always 

negative. In the second response, some loads can be 

transferred from the peak period to off-peak periods. 

Such behavior is called multi-stage elasticity and is 

evaluated by the cross-elasticity coefficient, which 

is always positive. The mathematical description of 

the problem is offered in detail in what follows. 

− When s = t, est is called self-elasticity. Only 

load interruption can occur and est is always 

negative. 

− When s ≠ t, est is called cross-elasticity. In this 

mode, the load shift can occur, est is always 

positive, and load variations will be positive as 

well.  

We calculated Load variations (Lt) after 

implementing the price-based demand-response 

program by relation (16). 

𝐿𝑡 =  𝐿𝑡
0 × {1 + 𝑒𝑡𝑡 ×

[𝑃𝑡−𝑃𝑡
0]

𝑃𝑡
0 + ∑ 𝑒𝑠𝑡  ×24

𝑠=1
𝑠≠𝑡

[𝑃𝑠−𝑃𝑠
0]

𝑃𝑠
0 }  

(16) 

The profit made by selling electricity varies 

using the price-based demand-response program. 

The difference in profits made by selling electricity 

before and after implementing the time-dependent 

load response program (πt
PB  ) is calculated by 

relation (17).  

𝜋𝑡
𝑃𝐵 = 𝑃𝑡

0𝐿𝑡
0 − (𝑃𝑡

0 + ∆𝑃𝑡)𝐿𝑡  (17) 

In the demand-response program, the 

coefficient of load elasticity to temporal price 

variations plays a key role in the calculations. This 

coefficient that is attributed to the reaction of 

customers to price change depends on some 

important parameters, including social, cultural, and 

economic behavior. The elasticity coefficient in the 

present paper was obtained from Ref. (Sabzehgar et 

al. 2020). Since one can divide the consumption in a 

24-hour cycle into three periods, i.e., off-peak, 

average, and peak, we took 9 states into account for 

the elasticity coefficient (Table 2).  

Table.2. 
The coefficient of load elasticity to temporal price variations 

during different periods 

 Off-

peak 

hours 

Average 

hours 

Peak hours 

Off-peak hours -0.2 0.008 0.006 

Average hours 0.01 -0.2 0.008 

Off-peak hours 0.012 0.016 -0.2 

 

The maximum allowable load variations in the 

demand-response program must be limited to avoid 

excessive load transfer to off-peak hours since it 

would cause a new peak period. In the present study, 

the maximum allowable load variations in the 

demand-response program were limited to 10% of 

the predicted initial load. In other words, loads are 

permitted to increase or decrease by 10% during 

different hours of the day. 

4. Problem-solving in the sample test network 

We selected the standard 69-puls IEEE 

network as the test network in the present study. 

Also, we used the genetic, particle swarm 

optimization (PSO), and imperialist competitive 

meta-heuristic algorithms to solve the problem 

mentioned above. In this regard, we solved the 

problem first by the genetic algorithm, and the 

obtained results were then used as the input data for 

the PSO and imperialist competitive algorithms. The 

problem variables included the possibility of 

establishing charging/discharging stations and 

charging/discharging status at the stations. Two 

renewable energy resources were assumed to be 

available at buses 61 and 63. In addition, the total 

consumed power by the set of electric vehicles in the 

network was definite at each moment and included 

in the problem data. We disregarded the uncertainty 

of renewable energy resources, and the profile of 

electric power generation by wind and solar 

resources was assumed as shown in Fig. 1. Each 

renewable unit included both wind and solar 

resources. We set he maximum possible power in 

the entire wind and solar resources at 1MW (solar 

and wind resources with the maximum power of 0.5 

MW each). The renewable energy resources were 

located using the genetic algorithm to minimize 

power and voltage losses in the network. 
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Fig. 1. Generation power in the renewable energy resource (kW) 

at different times of the day 

In the concerned test network, we assumed two 

electric vehicle charging stations with a capacity of 

1.5MW. Fig. 2 indicates the total consumed load by 

electric vehicles. In this figure, the negative amount 

of consumed power by electric vehicles implies that 

they are injecting active power to the network. 

Similarly, a positive amount of consumed power by 

electric vehicles indicates that they are receiving 

energy from the network. In the 69-bus network, the 

active power consumption (during 24 hours) is 

73MW when there is no renewable energy resource 

and electric vehicle, and the demand-response 

program is not implemented. When we consider two 

renewable energy resources, the demand power 

supplied by the network decreases to 47MW. In this 

study, given the base load of 47MW (during 24 

hours), electric vehicles were used such that the 

minimum frequency fluctuations and the smoothest 

load curve were reached. In other words, we 

programed the behavior of electric vehicles 

regarding the minimization of frequency deviation 

and the smoothing process of the load curve. 

In this paper, we carried out the optimal 

placement of charging/discharging stations and 

optimal electric vehicle programming by genetic, 

PSO, and imperialist competitive meta-heuristic 

algorithms. We divided the problem’s objective 

function into three main parts; then optimized each 

part by one of the former algorithms. The 

optimization process was performed first by the 

genetic algorithm, then PSO algorithm, and the 

imperialist competitive algorithm in the end. We 

used the obtained results in each section as the input 

data to the next section. 

 
Fig. 2. Electric vehicle consumption and other loads in the 

standard 69-bus IEEE network 

 

5. Problem-solving 

In the simulations of this study, we 

implemented the binary genetic algorithm and used 

the PSO algorithm was used in the binary state as 

well. Six scenarios were defined to investigate the 

effect of the demand-response program and 

distributed resources. 

A: Absence of distributed resources; without 

the implementation of the demand-response 

program 

B: Absence of distributed resources; with the 

implementation of the demand-response program 

C: Presence of distributed resources; without 

the implementation of the demand-response 

program 

D: Presence of distributed resources; with the 

implementation of the demand-response program 

E: Increase in the number of stations 

F: Increase in the capacity of devices 

Figs. 3-10 present the results obtained during 

the simulations of the last part of the triple algorithm 

for six scenarios. Since the imperialist competitive 

part included all of the parameters of the objective 

function, the figures show the simulation results for 

the imperialist competitive section. In the scenario 

F, the number of stations increased from 2 to 4 and 

the charging/discharging capacity of stations was 

raised from 1.5 to 1.8MW in the scenario E. Fig. 3 

shows the objective function in the six scenarios. As 

can be observed, the objective function offered a 

descending trend in all scenarios, and its size was 

reduced as the algorithm approached the optimal 

point. Also, when we did not incorporate the 

distributed resources into the simulations, the size of 

the objective function substantially increased 

compared to other modes. The objective function 

took the minimum optimal value In scenario D. Figs. 

4 and 5 depict the charge/discharge cost curves 

during the imperialist competitive algorithm. As can 

be observed, In scenario B, electric vehicle 

charge/discharge costs were dramatically lower than 

that of other states. On the contrary, In scenario D, 

electric vehicle charge/discharge costs increased. 

The decrease in charge/discharge costs might be due 

to the decrease in the amount of charge and 

discharge, particularly during peak hours. In other 

words, by implementing the demand-response 

program, loads were transferred from the peak to 

off-peak hours (i.e., smoothing of load curves). 

Therefore, electric vehicle owners would have fewer 

customers during peak hours and, in turn, the 

amount of electric vehicle charge/discharge would 

decrease, leading to lower charge/discharge costs. 

Under the available conditions of the concerned 

network, as the load curve becomes more smoothed 

and price difference becomes higher between 

different hours, vehicle owners would be directed to 

0
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the power trade in the network, attempt to buy power 

in off-peak hours, store it, and sell it in peak-hours 

to make a higher profit. The demand-response 

program prevents load accumulation in peak hours 

and, thus, the demand is reduced in peak hours. 

Therefore, electric vehicles have lower participation 

in the network (lower energy exchange). In scenario 

D, a great portion of the power generated by 

renewable resources was injected into the network, 

which could be purchased by vehicle owners in off-

peak hours and sold in peak hours. Hence, charge 

and discharge costs significantly increased 

compared to other states. In scenario D, charge and 

discharge costs were at the middle level (compared 

to the scenarios B and C) so that the increase in the 

number of stations and charge/discharge capacity 

changed charge and discharge costs negligibly. 

 
Fig. 3. Objective function in the imperialist competitive part of 

the triple algorithm 

 
Fig. 4. Electric vehicle charge cost in the imperialist competitive 

part of the triple algorithm 

 
Fig. 5. Electric vehicle discharge cost in the imperialist 

competitive part of the triple algorithm 

 
Fig. 6. Total cot in the imperialist competitive part of the triple 

algorithm 

Fig. 6 illustrates the total cost in the imperialist 

competitive part of the triple algorithm. As can be 

observed, when distributed generation resources 

were not available in the network, the total cost was 

considerably lower than that of other states, and the 

implementation of the demand-response program 

had an insignificant effect on the total cost. In other 

words, in the absence of distributed generation 

resources, the required power must be purchased 

from the distribution company and, thus, the total 

cost was escalated. Furthermore, the increase in the 

number of stations led to a decrease in costs as well. 

According to Figs. 4 and 5 and regarding the 

ultimate optimal response, when there were four 

stations, the charge cost was higher than the 

discharge cost; therefore, the profit earned by 

vehicle owners was reduced, i.e., lower total cost. 

Fig. 7 presents the voltage loss in the imperialist 

competitive part of the triple algorithm. As can be 

seen, the absence of distributed generation resources 

caused a rise in the voltage loss in the network, 

whereas the implementation of the demand-response 

program degraded the conditions. In scenario C, the 

minimum voltage loss was obtained. In scenario D, 

the increase in the number of charging and 

discharging stations resulted in the elevations of 

voltage loss in the network; however, the increase in 

the capacity of stations negligibly affected the 

voltage loss in this state.   

 
Fig. 7. Voltage loss in the imperialist competitive part of the 

triple algorithm 
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Fig. 8 shows the power losses in the imperialist 

competitive part of the triple algorithm. As can be 

seen, similar to the results of voltage loss, the 

absence of distributed generation resources led to an 

increase in the power losses in the network, while 

the implementation of the demand-response 

program degraded the conditions (i.e., increasing 

power losses). In scenario D, the minimum power 

losses were obtained in the network. In scenario D, 

the increase in the capacity of charging and 

discharging stations reduced power losses in the 

network; however, the increase in the number of 

stations augmented power losses. Figure 9 shows the 

input power to the network in the imperialist 

competitive part of the triple algorithm. As can be 

observed in this figure, for scenarios with no 

distributed resources, the input power to the network 

(purchased power from the distribution company) 

was markedly higher than that of the scenarios with 

distributed resources. 

 
Fig. 8. Power losses in the imperialist competitive part of the 

triple algorithm 

 
Fig. 9. Input power in the imperialist competitive part of the 

triple algorithm 

Fig. 10 depicts the harmonic distortions 

induced by exploiting charging and discharging 

stations in the imperialist competitive part of the 

triple algorithm for all of the six scenarios. In 

scenario A, the energy exchange between the 

network and electric vehicles was raised. Thus, the 

harmonic distortions induced by vehicles were 

elevated, which can be validated by the consistency 

between Figs. 4, 5, and 9. The implementation of the 

demand-response program led to a decrease in the 

harmonic distortions in the network, and the 

increase in both the number and capacity of stations 

further reduced harmonic distortions triggered by 

the operations of electric vehicles in the stations. It 

is worth noting the increase in the number of stations 

was more effective than the increase in their capacity 

in reducing harmonic distortions.  

 

 
Fig. 10. Harmonic distortions in the imperialist competitive part 

of the triple algorithm 

Table 3 lists the ultimate optimal responses for 

the six scenarios obtained by the algorithm. This 

table also presents the optimal locations predicted by 

the algorithm to establish charging and discharging 

stations in each scenario. As can be observed, busses 

4 and 61 are the optimal locations to found charging 

and discharging stations In scenario D. Moreover, 

the absence of the demand-response program and 

distributed generation resources along with the 

increase in the capacity of charging and discharging 
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for the 24-hour charging/discharging programming 

at the two stations. As can be observed, the demand-

response program had a significant effect on the 

optimal charging /discharging pattern at the stations. 

In scenario D, the triple algorithm offered an entirely 

different pattern for the optimal 

charging/discharging program at the stations. 
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B, and C), identical behavior can be observed at the 

stations in terms of optimal charge/discharge power. 

Based on the obtained results, various states of 

optimal charging/discharging program can be met at 

the stations to reduce costs and optimize 

qualitative/quantitative parameters. 

6. Conclusions 

This study has proposed an initial pattern for 

total charge and discharge power in the network. We 

have set the total charge and discharge power so that 

the absorbed power in the entire network would be 

uniform. However, before the charging/discharging 

program, we used the distributed generation 
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resources and implemented the demand-response 

program d as well. The use of distributed generation 

resources has led to a decrease in the input power to 

the network and allowed reaching the paper 

objectives, namely reduction of power losses, 

voltage loss, and exploitation costs. Then, 

considering charging stations in several points of the 

network, we determined the optimal location of 

stations and charge/discharge power in each station 

per hour to reduce the power losses of the network, 

voltage loss, and costs paid to purchase the 

network’s total consumption power. This problem 

was addressed in a standard 69-bus IEEE network. 

We implemented three meta-heuristic algorithms to 

solve the problem, including genetic, PSO, and 

imperialist competitive. First, we solved the 

problem with the genetic algorithm concerning all 

components of the objective function. Then, we 

solved the problem by the genetic algorithm by 

considering a part of the objective function and used 

the obtained results as the input data to the PSO and 

imperialist competitive algorithms. In other words, 

in addition to the genetic algorithm, the problem was 

solved by triple algorithms. 

Table.3. 
Comparison of the obtained results in different scenarios using 

the triple algorithm 
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Fig. 11. Ultimate optimal response as to the charging process at 

station No. 1 in different scenarios 

 
Fig. 12. Ultimate optimal response as to the charging process at 

station No. 2 in different scenarios 

 
Fig. 13. Ultimat optimal response as to the discharging process 

at station No. 1 in different scenarios 

 
Fig. 14. Ultimate optimal response as to the discharging process 

at station No. 2 in different scenarios 
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establish the stations. The genetic-imperialist 

competitive algorithm outperformed the other two 

algorithms, with better power losses and voltage 

loss. Previous studies have used various parameters 

in the objective function to determine the optimal 

locations of electric vehicle charging stations, and 

their electric systems might differ from the 69-bus 

system proposed in this paper. Hence, it was 

difficult to compare the results of this study with the 

findings of previous studies. For instance, Ref. 

(Moradi et al. 2015) carried out the simultaneous 

siting of distributed generation resources and 

charging stations, and suggested buses 61 and 22 as 

the proper locations to establish charging stations. 

The curve of total charge and discharge of electric 

vehicles presented in Re. (Moradi et al. 2015) is 

different from that of the present paper. Therefore, 

the suggested site for the establishment of sites is 

different from the results obtained by the present 

study. In this study, we have considered the curve of 

total charge and discharge of electric vehicles so that 

the network load curve would be smooth. It is worth 

noting that this is the first study on the optimal 

charging/discharging programming at the electric 

vehicle charging/discharging stations using genetic, 

PSO, and imperialist competitive algorithms in 

hybrid modes, whereas previous studies 

implemented one algorithm or at most two 

evolutionary algorithms to solve the problem of 

optimal sitting of charging/discharging stations.  
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