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Abstract 

Simultaneous routing and resource allocation has been considered in wireless networks for its performance improvement. In 

this paper we propose a cross-layer optimization framework for worst-case queue length minimization in some type of 

FDMA based wireless networks, in which the the data routing and the power allocation problem are jointly optimized with 

Fuzzy distributed H∞ control strategy . with the presented formulation based on the minimization of the queuing length in 

each node, the routing and resource allocation problem is formulated as a decentralized fuzzy H∞optimal control problem for 

a wireless mesh network. the presented control strategy determines the transmit power in FDMA systems in which each node 

has fixed set of powers to be allocated to its outgoing links. Using the proposed control strategy a robust routing performance 

will be achieved in the presence of unknown network delays in network modeling. also with using fuzzy decision rules in the 

proposed H∞ controller strategy, we try to improve the network performance criteria and avoid packet loss in the network.  
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1. Introduction 

In wireless data networks, routing is generally 

a function of the link capacities which are 

determined by wireless channel variations and the 

corresponding allocated radio resources, e.g. power, 

frequency, and time slots. So the optimal 

performance of wireless mesh network can achieve 

with simultaneous resource allocation and routing 

strategy [1]. Furthermore, due to limitations of 

different radio resources, efficient resource usage 

plays an important role in the efficiency and 

performance of wireless network. In this paper we 

investigate joint routing and radio resource 

allocation for optimal system performance. The 

routing problem is usually implemented based on 

different objectives such as achieving the shortest 

path between the source and destination, 

minimizing congestion, minimizing end-to-end 

delay, or controlling the packet loss, see, e.g. 

[2],[3],[4], [5]. The choice of routing objective is in 

fact related to the network and service parameters. 

In wireless data networks, capacity of data 

links are not necessarily fixed, and link capacities 

are determined by the allocated communication 

resources (e.g., power, frequency, or time slots) 

among the various links [6].so change in resource 

allocation will result in link capacity variation, and 

has influence on the routing decision. In particular, 

the optimal routing problem in the network layer 

and resource allocation problem in the radio control 

layer are coupled through the link capacities, so the 
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optimal performance can only be achieved by joint 

optimization of routing and resource allocation [1]. 

Therefore, recently the joint resource allocation and 

routing optimization problem has been one of the 

most intensively studied areas. Solution approaches 

may be roughly classified as being static, e.g., [1], 

[7], [8], dynamic, e.g., [9], [10], or quasi-static [6]. 

In some references such as [1],[7], [8] the joint 

routing and resource allocation (JRRA) problem is 

formulated as a convex optimization problem over 

the network flow variables and the communications 

resource variables. In wireless networks cross-layer 

routing and resource allocation is considered for 

performance improvement. While in existing work 

usually the delayed dynamic model of network is 

not considered so routing strategy must be robust 

with respect to this uncertainty. Therefore, in this 

paper, we propose a optimization strategy that 

achieves robust performance under delayed 

dynamic model of each node. In particular, it 

achieves optimal performance under a worst-case 

queue length in each node. Our main focus in this 

paper is to extend the model in [11], [12], for 

FDMA wireless networks. Further we propose a 

distributed fuzzy routing algorithm for joint 

resource allocation and routing based on the 

queuing dynamics, where the presented fuzzy 

routing strategy guaranties both reliability and 

flexibility in the dynamic routing controller design 

procedure. In this algorithm each node makes its 

own power allocation decisions and constructs its 

own routing tables based on information from its 

adjacent nodes. 

In this paper we focus on wireless FDMA 

networks in which each node has fixed set of 

transmit power to be allocated to its outgoing links. 

Also we propose the H∞ fuzzy control strategy for 

routing problem based on minimization of the worst 

case of queue length. Our methodology is geared 

towards development of a decentralized routing 

algorithm for wireless mesh networks. Hence, each 

node in the network requires only its own local 

information to route the received messages. The 

contributions of this paper are the following: i) here 

unlike the related literature, we consider description 

of the traffic model (network flow model) in terms 

of the queuing delayed dynamics, ii) according to 

the presented distributed algorithm the 

computational complexity of the proposed 

methodology is lower compared to centralized 

algorithms, iii) the proposed cross layer 

optimization problem presented as a linear 

stabilization problem of network dynamic model 

with fix controller in which presented robust fuzzy 

controller, guarantees the overall network stability 

and minimizes the worst-case queue length. The 

paper is organized as follows. Section II describes 

the routing problem based on the network dynamic 

and resource model. According to the presented 

uncertain network dynamic model and resource 

model, cross layer optimization problem is 

presented in section III. For the presented cross 

layer optimization problem, in section IV new 

fuzzy control strategy to solve the resource 

allocation and routing optimization problem is 

introduced. In section V we implement the 

proposed algorithm in FDMA wireless networks for 

power allocation problem and the simulation. 

2.Network dynamic Model 

2.1  Network Linear dynamic Model 

We represent a mesh communication network 

by a graph 𝑉 = (𝐍, 𝐋), where 𝐍 is the set of 𝑛 

network nodes, and 𝐋 is the set of 𝑙 directed links. 

Corresponding to each packet a predefined 

destination has been assigned which is a node in the 

network. At each node, data packets to be sent to 

their final destination are subject to several types of 

delay until they reach their final destinations . 

In each node 𝑖, corresponding to each destination, 

𝑑, a queue is considered and at time instant 𝑡, 𝑞𝑖
𝑑(𝑡) 

denotes the number of packets in that queue. 

Assume that at time instant 𝑡, 𝑓𝑖
𝑑(𝑡) is the flow rate 

of external data packets with destination 𝑑 entering 

the network at node 𝑖, and 𝑢𝑗𝑖
𝑑(𝑡) is the flow rate of 

messages from node 𝑖 to 𝑗 destined to node 𝑑. 

For ∀𝑖 ∈ 𝐍 and 𝑑 = 1,2, … , 𝑛, we can define  

𝐱𝑖(𝑡) =  𝑣𝑒𝑐 {𝑞𝑖
𝑑} ∈ ℜ𝑛, 𝑑 = 1,2, … , 𝑛.                        (1)  

𝐮𝑖(𝑡) =  𝑣𝑒𝑐 {𝑢𝑖𝑗
𝑑 } ∈ ℜ𝑙𝑖 , 𝐰𝑖(𝑡) =  𝑣𝑒𝑐 {𝑓𝑖

𝑑} ∈ ℜ𝑛,     (2) 

where for 𝜃𝑖 , 𝑖 = 1, … , 𝑛, 𝑣𝑒𝑐 {𝜃𝑖}: =
[𝜃1, … , 𝜃𝑛]𝑇, 𝐱𝑖(𝑡) is a vector of the queue lengths 

of packets in node 𝑖 destined to node 𝑑, 𝑑 =
1,2, … , 𝑛, 𝐮𝑖(𝑡) consists of the flows sent from 

node 𝑖 to node 𝑑 through the downstream node with 

a time delay and 𝑙𝑖 is the number of outgoing links 

from node 𝑖. also interactions vector 𝐰𝑖(𝑡) consists 

of the flow rate of external data packets entering the 

network at node 𝑖[1], [5], [12].  

Based on the above definitions, the queue dynamic 

model of wireless mesh network in each node is 

then presented as the following state space model:  

𝐱̇𝑖(𝑡) = 𝐵𝑖𝐮𝑖(𝑡) + ∑𝑗∈𝔘𝑖
𝐵𝑑𝑖𝑗𝐮𝑗(𝑡 − 𝜏𝑖𝑗) +

𝐵𝜔𝑖
𝐰𝑖(𝑡), (3) 

 Where ,𝔘𝑖:={𝑗|There exists a link from 𝑗 to 𝑖}. also 

𝐵𝑖 ∈ ℜ𝑛×𝑙 and 𝐵𝑑𝑖𝑗 ∈ ℜ𝑛×𝑙 represent network 

connectivity,where 𝐵𝑖  (𝐵𝑑𝑖𝑗)elements are equal to -

1(1) if node 𝑗 is a downstream (upstream) neighbor 

of node 𝑖 and is zero otherwise [1]. In addition, 𝐵𝜔𝑖
 



International Journal of  Smart Electrical Engineering, Vol.3, No.2, Spring 2014                    ISSN:  2251-9246  
                 EISSN: 2345-6221 

 

 

 

115 

is equal to an identity matrix and 𝔇𝑖 assumes as set 

of downstream neighbors of node 𝑖. The unknown 

differentiable function 𝜏𝑖𝑗(𝑡), denote the time-

varying delays ,and considered as the sum of the 

following delays: transmitting delay (the time 

between starting and ending the transmission of a 

packet from node 𝑖 to node 𝑗), propagating delay 

(the time required for propagating a packet on each 

link) and processing delay (the time required for 

each packet to be processed in node 𝑖). also time-

varying delay 𝜏𝑖𝑗(𝑡), for all 𝑡 ≥ 0 satisfies  

0 ≤ 𝜏𝑖𝑗(𝑡) ≤ 𝑑𝑖𝑗 < ∞, 0 ≤ 𝜏̇𝑖𝑗(𝑡) ≤ 𝜇𝑖𝑗 < 1,      (4) 

where 𝑑𝑖 = max𝑗(𝑑𝑖𝑗), 𝜇𝑖 = max𝑗(𝜇𝑖𝑗). This 

mainly justifies assuming 𝜏̇𝑖𝑗(𝑡) < 1 in most 

practical applications.  

2.2. Communication Resource Model 

Let ℏ𝑖 be a vector of communication variables 

allocated to the links of 𝑖𝑡ℎ node and ℏ𝑙𝑖
 will be a 

vector of communication variables associated with 

link 𝑙𝑖. in this paper we will focus on the case 

where the link capacity 𝑐𝑖𝑗  is only a function of the 

local resources ℏ𝑖 , i.e., 𝑐𝑖𝑗 = 𝜑𝑖(ℏ𝑖). 

In our optimization strategy for Gaussian 

channel with FDMA, a disjoint bandwidth, 𝑊𝑖𝑗 and 

power, 𝑃𝑖𝑗  are pre-assigned to 𝑗𝑡ℎ link of node 𝑖. 

The received power at node 𝑗 is 𝛿𝑖𝑗𝑃𝑖𝑗 , where 𝛿𝑖𝑗 is 

the channel gain corresponding to the wireless link 

(𝑖, 𝑗). The receiving node 𝑗 is also subject to 

independent additive white Gaussian noise 

(AWGNs) with power spectral density 𝑁0
𝑗
. The 

Shannon capacity of link (𝑖, 𝑗) is a concave and 

increasing function of (𝑃𝑖𝑗 ,𝑊𝑖𝑗):  

𝑐𝑖𝑗(𝑃𝑖𝑗 ,𝑊𝑖𝑗) = 𝑊𝑖𝑗 log2 (1 +
𝛿𝑖𝑗𝑃𝑖𝑗

𝑁0
𝑗
𝑊𝑖𝑗

) , 𝑗 =

1, . . . , 𝑙𝑖 .(5) 

2.3. Network and communication constraints 

2.3.1. Network physical constraints 

Assuming a fully connected network, in a 

network with 𝑛 nodes, there are 𝑛 − 1 destination 

nodes. In a wireless mesh network, we need to also 

consider certain physical characteristics of the 

wireless networks which impose extra constraints. 

A typical set of such constraints are as follows:  

𝐮𝑖(𝑡) ≥ 0, 𝑖 = 1, . . . , 𝑛,                                         (6) 

𝐱𝑖(𝑡) ≥ 0, 𝑖 = 1, . . . , 𝑛,                                         (7) 

𝐺𝑖𝐮𝑖(𝑡) ≤ 𝑐𝑖(ℏ𝑖) ∈ ℜ𝑙𝑖 ,                                        (8) 

𝐺𝑘𝑖
𝐮𝑖(𝑡) ≤ 𝑐𝑘𝑖

(ℏ𝑘𝑖
), 𝑖 = 1, . . . , 𝑛, 𝑘𝑖 = 1, . . . , 𝑙𝑖 , 

𝑄𝑑𝑖𝑗𝐱𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
, 𝑑 = 1, . . . , 𝑑̅,                       (9) 

where 𝑐𝑖 is the outgoing links capacity vector 

of 𝑖𝑡ℎnode. also 𝑐𝑘𝑖
 is the link capacity and ℏ𝑘𝑖

 is 

the vector of communication resources allocated to 

adjacent link to node 𝑖. Furthermore 𝑥𝑚𝑎𝑥𝑑𝑖
 is the 

buffer size limitation and 𝑑̅ is the number of 

destination nodes. 

Due to the physical constraints (6)-(7), the queue 

length at each node and the flow rate of packets in 

the network must be nonnegative. The capacity 

constraint in (8) states that the total flow in each 

link cannot exceed its capacity, 𝑐𝑘𝑖
. The last 

constraint, indicates that to avoid packet loss the 

length of the queue should always remain smaller 

than the maximum queue length, 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
. 

In this model 𝐺𝑘𝑖
 is defined such that 𝐺𝑘𝑖𝑗

 is equal 

to 1, if 𝐮𝑖𝑗 is a downstream flow of 𝐱𝑖 and has the 

same destination as the corresponding 𝑞𝑖
𝑑. 

Therefore, 𝐺𝑘𝑖
 is defined such that by multiplying 

𝐺𝑘𝑖
 to 𝐮𝑖, one yields the total flows that should go 

through the link 𝑘𝑖, and 𝑄𝑑𝑖𝑗  is defined such that 

𝑄𝑑𝑖𝑗𝐱𝑖 leads to the queueing length of the buffer 

𝑑𝑗𝑖, for 𝑑 = 1,… , 𝑑̅, 𝑖, 𝑗 = 1,… , 𝑛. 

2.3.2. Communication constraints 

The mentioned communication parameters are 

themselves limited by various resource constraints, 

such as limits on the total transmit power at each 

node or the total signal bandwidth available across 

the whole network. Generally in each node 𝑖,we can 

use the following generic model to relate the 

limitation of communications variables ℏ𝑖 in each 

node:  

𝐹𝑖ℏ𝑖(𝑡) ≤ 𝑔𝑖                                                                (10) 

ℏ𝑖(𝑡) ≥ 0,                                                               (11) 

The first set of constraints describe resource 

limits and second constraint specifies that the 

communications variables are non-negative. In 

Gaussian channel with FDMA, the transmit power 

allocated at node 𝑖 ∈ 𝑉 are constrained by the 

corresponding node powers limits,  

∑𝑗∈𝐿𝑈(𝑖) 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑚𝑎𝑥 , 𝑃𝑖𝑗 ≥ 0.                             (12) 

where 𝐋𝑈(𝑖) is the set of links that emanate 

from 𝑖. Constraints, (12) , indicate the limitation of 

allocated power of outgoing links in each node 

should always remain smaller than the maximum 

power (𝑃𝑖𝑚𝑎𝑥). Later in this paper we will show that 

this typical capacity functions for Gaussian 

channels with FDMA fit into our framework. 
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3.  Joint Congestion Control and Resource 

Allocation 

A model for the wireless mesh network can be 

obtained by combining the network queue dynamic 

model(3), the communication model (5), network 

physical constraintsand communication constraints 

(10) described in the previous section. In wireless 

data network, the link capacities, among other 

things, depend on the allocation of communication 

resources, and the overall optimal performance of 

the network can be achieved by joint optimization 

of routing and resource allocation.  

3.1. A generic convex optimization formulation 

According to the considered network model the 

optimization problem can be formulated as problem 

of minimizing a objective function which is 

considered as the worst-case queuing length due to 

the external traffic inputs in network nodes.  

so by selecting the regulated output as 𝐳𝑖(𝑡) =
𝐶𝑖𝐱𝑖(𝑡)(where 𝐶𝑖 can selected as unit matrix), 

mentioned objective function can be formulated as 

the problem of minimizing the infinity norm of 𝑇𝐳𝐰, 

i.e., the transfer function matrix from the input 

vector 𝐰(𝑡) = 𝑣𝑒𝑐{𝐰𝑖(𝑡)} to the output vector 

𝐳(𝑡) = 𝑣𝑒𝑐{𝐳𝑖(𝑡)}. so with the presented transfer 

function, we can formulate minimizing worst-case 

queuing length due to the external inputs, as:  

 

minsup
𝐰

∥𝐳(𝑡)∥2

∥𝐰(𝑡)∥2
= min ∥ 𝑇𝐳𝐰 ∥∞.                         (13) 

3.2. Uncertain representation of cross layer 

optimization problem 

In case of wireless data network, one of the 

common assumptions for constraint (8) is:  

𝐺𝑖𝐮𝑖(𝑡) = 𝛼𝑖𝑐𝑖(ℏ𝑖), 0 ≤ 𝛼𝑖 ≤ 1, 𝑖 = 1, . . . , 𝑛.    (14) 

Note that,𝛼𝑖 can be either fixed or per-specified 

design parameters which affect the amount of 

capacity usage of data links. It is optimal to select 

𝛼𝑖 = 1. In fact, some can say that it is optimal to 

consume the whole capacity of the data links. It is 

worth noting that we can consider 𝛼𝑖 as designing 

parameter, in which this parameter can be 

determined due to the information about the 

congestion in downstream nodes of 𝑖.  
without loss of generality in the following, for (14) 

we can write:  

𝐮𝑖(𝑡) = (𝐺𝑖
𝑇𝐺𝑖)

−1𝐺𝑖
𝑇 × 𝛼𝑖𝑐𝑖(ℏ𝑖).                       (15) 

Since in (15), ℏ𝑖 and 𝐮𝑖 are related in a non 

linear form, without changing the general form or 

dynamic equations, we can consider 𝐮𝑖 as a 

summation of 𝐺𝑖 × 𝛼𝑖𝐮̅𝑖 and nonlinear term, 𝛥𝐺𝑖 ×
𝛼𝑖𝐮̅𝑖, so that 𝐮̅𝑖 = ℏ𝑖. In this case the only 

requirement for 𝛥𝐺𝑖 is to be bounded. So  

𝐮𝑖(𝑡) = (𝐺𝑖
𝑇𝐺𝑖)

−1𝐺𝑖
𝑇𝛼𝑖𝑐𝑖(ℏ𝑖) = (𝐺̅𝑖 +

𝛥𝐺̅𝑖(𝐮̅𝑖 , 𝑡))𝛼𝑖𝐮̅𝑖(𝑡),                                     (16) 

where  

𝐮̅𝑖(𝑡) = ℏ𝑘𝑖
(𝑖) ∈ ℜ𝑙𝑖×1, 𝑘𝑖 = 1, . . . , 𝑙𝑖                  (17) 

Attention that 𝛥𝐺̅𝑖 × 𝐮̅𝑖(𝑡), can be assumed as 

a continuous matrix function that represents the link 

capacity estimation error. In secttion 5 with 

presenting the chang of variable and according to 

this note that we don’t use the estimation in our 

formulation, we will show that we can assume 

𝛥𝐺̅𝑖 = 𝛥𝐺̅𝑗 = 0. 

Based on this representation,resource variables 

ℏ𝑘𝑖
, which are allocated by the nodes, can be 

considered as a control variable. 

Consider a wireless data network described by 

the network model (3) and the generic formulation 

(14)-(17). So at each node of a wireless data 

network, one can introduce a linear queue length 

dynamic regarding to the link capacity and total 

time delay as follows: 

  

𝐱̇𝑖(𝑡) = 𝐵𝑖𝐺̅𝑖𝛼𝑖𝐮̅𝑖(𝑡) 

+ ∑
𝑗∈𝔘𝑖

𝐵𝑑𝑖𝑗𝐺̅𝑗𝛼𝑗𝐮̅𝑗(𝑡 − 𝜏𝑖𝑗) + 𝐵𝜔𝑖𝐰𝑖(𝑡) 

= 𝐵̅𝑖𝛼𝑖𝐮̅𝑖(𝑡) + ∑𝑗∈𝔘𝑖
𝐵̅𝑑𝑖𝑗𝛼𝑗𝐮̅𝑗(𝑡 − 𝜏𝑖𝑗) + 𝐵𝜔𝑖𝐰𝑖(𝑡), 

(18) 

  

where 𝐮̅𝑖(𝑡) = 𝑣𝑒𝑐{ℏ𝑘𝑖
(𝑖)} is the resource variable 

that should be determined by the control strategy.  

Now according to the considered model for the 

operation of wireless mesh network (18) and (6)-

(11), we can introduce the new generic formulation 

of the Cross layer Optimization problem:  

 

Problem𝒪1: 
 min

ℏ𝑖,∀𝑖=1,...,𝑛
∥ 𝑇𝐳𝐰 ∥∞, 

 𝑠. 𝑡. 

𝐱̇𝑖(𝑡) = 𝐵̅𝑖𝛼𝑖𝐮̅𝑖(𝑡) + 𝐵𝜔𝑖𝐰𝑖(𝑡) + ∑
𝑗∈𝔘𝑖

𝐵̅𝑑𝑖𝑗𝛼𝑗𝐮̅𝑗(𝑡 − 𝜏𝑖𝑗), 

 𝑥𝑖(𝑡) ≥ 0, 
 𝑄𝑑𝑖𝑗𝑥𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥𝑑𝑖𝑗

, 

 𝐹𝑖ℏ𝑖(𝑡) ≤ 𝑔𝑖 , 
 ℏ𝑖(𝑡) ≥ 0, 

 

For 𝑖 = 1, . . . , 𝑛. where 𝐮̅𝑖(𝑡) = ℏ𝑖(𝑡). in fact 

the objective of the routing problem here is, to 

design a linear local control law, ℏ𝑖(𝑡) = 𝑘𝑖𝐱𝑖(𝑡), 

such that it simultaneously, guarantees stability of 

the overall network traffic model (18) in presence 
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of time-varying delays and minimizes the presented 

global objective function in addition to the 

presented physical network and communication 

constraints. In continuance with using a fuzzy 

representation of channel coefficient 𝛼𝑖, we will 

propose a fuzzy control strategy for proposed 

network queuing model to improve the 

performance of network and optimal usage of links 

capacity in the network. 

4. 𝑯∞ Fuzzy Controller Designing 

In previous section, with the proposed 

uncertain queue length model of each node (18), 

general Cross layer Optimization problem is 

described. In fact, the flexibility of presented 

optimization problem 𝒪1 is achieved by eliminating 

of link capacity constraint (8) and presented 

coefficient 𝛼𝑖. With using a fuzzy representation of 

channel coefficient 𝛼𝑖, we can propose a fuzzy 

network model to decrease the congestion and 

optimal usage of links capacity in the network. so 

in continuance we will propose a fuzzy 

representation of channel coefficient 𝛼𝑖 in 

optimization problem 𝒪1 to improve the routing 

performance and optimal using of the capacity of 

data links. 

4.1. Fuzzy network model 

In order to decrease data congestion in the 

network and optimal use of links capacity, it is 

reasonable to route data packets through less 

congested nodes. so with using a fuzzy 

representation of channel coefficient 𝛼𝑖 in (18), we 

can propose a network fuzzy model and fuzzy 

control strategy to increase the routing performance 

in the network and optimal using of the capacity of 

data links. Based on the proposed method in [13], 

we can direct messages based on the following 

fuzzy control rule:  

𝑚𝑡ℎ control Rule for node i:  

IF 𝑥𝑖(𝑡) is 𝑀𝑚1 and ...and 𝑥𝑗(𝑡) is 𝑀𝑚𝑝 

Then 𝑢𝑖(𝑡) = 𝐹𝑚𝑥𝑖(𝑡) = 𝛼𝑗𝑚𝑘𝑖𝑥𝑖(𝑡), for 𝑖 =

1, . . . , 𝑁, 𝑚 = 1, . . . , 𝑟 and 𝑗 ∈ 𝔇𝑖.  

Where 𝑀𝑚𝑗 is the fuzzy set and 𝑟 is the number of 

rules and 𝑘𝑖 will be the local memory-less 𝐻∞ 

control law. 

Also𝛼𝑗𝑚 = 𝑣𝑒𝑐 {𝛼𝑗𝑚
1 , 𝛼𝑗𝑚

2 , . . . , 𝛼𝑗𝑚
𝑑 }, 𝑗 ∈ 𝔇𝑖 are design 

parameter which affect the matrices 𝐵𝑖 , due to 

congestion information in downstream nodes of i.  

It should be noted that at the 𝑖𝑡ℎ node, the outgoing 

flow rates to downstream nodes depends on the 

queue lengths in downstream node 𝑗 ∈ 𝔇𝑖. also the 

entering flow rates from upstream nodes depends 

on the present queue lengths in node i so 𝛼𝑖𝑚, affect 

the matrices 𝐵𝑑𝑖𝑗 , due to congestion information in 

upstream nodes of i. In fact, if for node i there is a 

congested downstream node, it is better to route 

messages through other downstream nodes and this 

strategy provides enough time for the congested 

nodes to evacuate their buffers to appropriate 

downstream nodes. Therefore with considering the 

presented fuzzy control rule, we can increase the 

routing performance and optimal using of the 

capacity of data links.so according to the 

considered uncertain model for the operation of 

wireless mesh network (18) and presented fuzzy 

control strategy, we will have following close loop 

fuzzy system model:  

𝐱̇𝑖(𝑡) = ∑

𝑗∈𝔇(𝑖)

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡)){𝛼𝑗𝑚𝐵̅𝑖𝑘𝑖𝐱𝑖(𝑡) 

+𝐵𝜔𝑖𝐰𝑖(𝑡)} + ∑
𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡)){𝛼𝑖𝑚𝐵̅𝑑𝑖𝑗𝐤𝑗𝐱𝑗(𝑡

− 𝜏𝑖𝑗)}. 

                                                     (21) 

Whereℎ𝑚(𝜃) = 𝑣𝑚(𝜃)/
(∑𝑟

𝑚=1 𝑣𝑚(𝜃)), 𝑣𝑚(𝜃) = ∏𝑗∈𝔇𝑖
𝑀𝑚𝑗(𝑥𝑗), 𝜃 =

𝑥𝑗(𝑡), 𝑗 ∈ 𝔇𝑖 Where 𝜃𝑗 , 𝑀𝑚𝑗 and 𝑣𝑚(𝜃) are 

respectively the premise variables, the fuzzy sets 

and membership function (dependent on 𝑥𝑗(𝑡), 𝑗 ∈

𝔇𝑖)of the 𝑖𝑡ℎ node with respect to plant rule m.  

Moreover, the fuzzy weighting functions 

ℎ𝑚(𝜃) satisfy ∑𝑟
𝑚=1 ℎ𝑚(𝜃) = 1. This strategy 

provides enough time for the congested nodes to 

evacuate their buffers to appropriate downstream 

nodes. also accordingly at the 𝑖𝑡ℎ node there is 

knowledge about the rate of the entering messages 

from the upstream nodes. 

4.2. Fuzzy Controller designing 

Presented close loop network fuzzy model (21) 

is a more general representation of (18) and the 

flexibility of this proposed model is achieved by the 

matrices 𝛼𝑗𝑚 and 𝛼𝑖𝑚. So according to the 

considered fuzzy model for the operation of 

wireless mesh network (21) and generic 

formulation 𝒪1, we can introduce the new fuzzy 

formulation of the Cross layer Optimization 

problem: 

Problem 𝒪2: 
 min

𝑘𝑖,𝑖=1,...,𝑛
∥ 𝑇𝐳𝐰 ∥∞, 

𝑠. 𝑡. 

𝐱̇𝑖(𝑡) = ∑

𝑗∈𝔇(𝑖)

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡)){𝛼𝑗𝑚𝐵̅𝑖𝑘𝑖𝐱𝑖(𝑡) + 𝐵𝜔𝑖𝐰𝑖(𝑡)} 

+ ∑
𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡)){𝛼𝑖𝑚𝐵̅𝑑𝑖𝑗𝐤𝑗𝐱𝑗(𝑡 − 𝜏𝑖𝑗)} 
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 𝑥𝑖(𝑡) ≥ 0, 
 𝑄𝑑𝑖𝑗𝑥𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥𝑑𝑖𝑗

, 

 𝐹𝑖ℏ𝑖(𝑡) ≤ 𝑔𝑖 , 
 ℏ𝑖(𝑡) ≥ 0, 

For 𝑖 = 1, . . . , 𝑛, where ℏ𝑖(𝑡) =
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))𝛼𝑗𝑚𝑘𝑖𝐱𝑖(𝑡), 𝑗 ∈ 𝔇𝑖 . 

Thus we can present simultaneous resource 

allocation and routing optimization problem over 

the presented node-based wireless data networks, as 

a stabilizing problem of system (21), where 

resource variables ℏ𝑖(𝑃𝑖𝑗) act as control variable. 

also H∞ control design strategy is suitable 

framework for uncertain delayed system such as 

(21) [9],[18].  

Therefore, according to the presented 

optimization problem 𝒪2, the objective of the 

routing problem here is, to design a fuzzy H∞ 

control law, 𝑘𝑖, such that it simultaneously, 

guarantees stability of the overall network traffic 

model (21) in presence of time-varying delays and 

minimizes a global objective function which is 

considered as the worst-case queuing length due to 

the external traffic inputs, according to the 

modelling uncertainties and constraints of problem 

𝒪2.  

In fact with eliminating of link capacity constraint 

(9) from primal network model and considering 

fuzzy coefficients 𝛼𝑖𝑚, we can improve the 

flexibility of primal network model and it can 

reduce the conservativeness of control strategy in 

previous works [1] ,[4],[12],[ 16]. 

In the following we derive a sufficient 

condition for system represented by (21) to be 

stabilizable via controller matrix 𝑘𝑖, based on 

Lyapunov’s functional method.  

In problem 𝒪2, according to the presented 

fuzzy dynamic close loop model, minimizing the 

infinity norm of 𝑇𝐳𝐰 is equivalent to the following 

optimization problem for represented closed-loop 

fuzzy system (21)[15]:  

min 𝛾,                                                                (22) 

𝑠. 𝑡. 
𝐽(𝐰) < 0, 

𝐽(𝐰) = ∫
∞

0

(𝐳𝑇(𝑡)𝐳(𝑡) − 𝛾2𝐰𝑇(𝑡)𝐰(𝑡))𝑑𝑡, 𝛾 > 0. 

 Above optimization minimizes the worst-case 

queuing length, so congestion and the packet loss 

probabilities simultaneously will be reduced. H∞ 

performance, indicated by (22) is satisfied, if the 

following Hamiltonian function is negative definite 

[15]:  

𝐽𝐻 =
𝑑𝑉

𝑑𝑡
+ 𝐳𝑇𝐳 − 𝛾𝐰𝑇𝐰,                                       (23) 

where 𝑉(. ) is a Lyapunov-Krasovskii 

functional such that 𝑉(0) = 0. 

Here, to solve the 𝐻∞ control of the routing 

problem, Lyapunov-Krasovskii functional is as 

follows 

  

𝑉 = ∑𝑛
𝑖=1 𝑉𝑖(𝐱𝑖 , 𝑡) = ∑𝑛

𝑖=1 [𝑉𝑖0(𝐱𝑖, 𝑡) + 𝑉𝑖1(𝐱𝑖, 𝑡) +
𝑉𝑖2(𝐱𝑖 , 𝑡)],                                                                  (24) 

 where  

𝑉𝑖0(𝐱𝑖 , 𝑡) = 𝐱𝑖
𝑇(𝑡)𝑃𝑖𝐱𝑖(𝑡), 

𝑉𝑖1(𝐱𝑖 , 𝑡) = 2 ∑

𝑗∈𝔘𝑖

∫
𝑡

𝑡−𝑑𝑖𝑗

(𝑑𝑖𝑗 − 𝑡 + 𝑠)𝐱̇𝑗
𝑇(𝑠)𝑅𝑗𝐱̇𝑗𝑑𝑠 

𝑉𝑖2(𝐱𝑖 , 𝑡) = ∑

𝑗∈𝔘𝑖

∫
𝑡

𝑡−𝜏𝑖𝑗

𝐱𝑗
𝑇(𝑠)𝑍𝑗𝐱𝑗𝑑𝑠. 

 and 𝑛 is the number of nodes in the network, 𝑅𝑗,𝑍𝑗 

and 𝑃𝑖  are symmetric positive definite matrices. 

with this lyapunov function we can present 

sufficient conditions for the closed-loop stability of 

(21) as following theorem. 

Theorem 1: Consider a wireless traffic network 

with variable destination nodes whose dynamics is 

governed by (21), the state feedback routing 

controller gain 𝑘𝑖 guarantee that the closed-loop 

system is internally stable and 𝐽(𝑤) < 0, if there 

exist matrices 𝑀𝑖, nonsingular matrices 𝑌𝑖, and 

symmetric positive definite matrices 𝑅𝑗, 𝑍𝑖, for 𝑖 =

1, . . . , 𝑛, 𝑗 ∈ 𝔘𝑖 such that the following LMI 

condition is satisfied: 
𝑊𝑖1 = 

[
 
 
 
 
 
 
 
 
 
 
Ω𝑖1 0 𝐵𝜔𝑖

𝑌𝑖
𝑇𝐶𝑖

𝑇 0 Ω𝑖5 Ω𝑖7 0 0

∗ Ω𝑖2 0 0 0 0 0 Ω𝑖9 Ω𝑖11

∗ ∗ −𝛾𝐼 0 Ω𝑖3 0 0 0 0
∗ ∗ ∗ −𝐼 0 0 0 0 0
∗ ∗ ∗ ∗ Ω𝑖4 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ω𝑖6 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω𝑖8 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω𝑖10 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω𝑖12

]
 
 
 
 
 
 
 
 
 
 

< 0,  (25) 

where  

Ω𝑖1 = 𝑀𝑖
𝑇𝛼𝑖𝑚

𝑇 𝐵̅𝑖
𝑇 + 𝐵̅𝑖𝛼𝑖𝑚𝑀𝑖 + 2𝑛𝑖𝐼 + 𝑛𝑖𝑍𝑖 , 

Ω𝑖2 = − 𝑑𝑖𝑎𝑔𝑗{(1 − 𝜇𝑖𝑗)𝑍𝑗}, 𝑗 ∈ 𝔘𝑖 , 

Ω𝑖3 = √2𝑛𝑖𝑑𝑖𝐵𝜔𝑖

𝑇 , 

Ω𝑖4 = −𝑅𝑖 

Ω𝑖5 = 0,Ω𝑖6 = −𝜀𝑖
−1𝐼, Ω𝑖7 = 0, 

Ω𝑖8 = −(√2𝑛𝑖𝑑𝑖𝜀𝑖)
−1𝐼, 

Ω𝑖9 = 𝑑𝑖𝑎𝑔𝑗{(𝐵𝑑𝑖𝑗𝛼𝑖𝑚𝑀𝑗)
𝑇}, 

Ω𝑖10 = − I, 

Ω𝑖11 =  0,Ω𝑖12 = − 𝑑𝑖𝑎𝑔𝑗{(√2𝑛𝑖𝑑𝑖𝜀𝑖 + 𝜌𝑖
−1)−1𝐼}, 𝑗

∈ 𝔘𝑖 . 

and 𝛼𝑖𝑚 , 𝑚 = 1, . . . , 𝑟 are pre specified designing 

parameters, and ∗ denotes the entries implied by the 

symmetry, also 𝑛𝑖 = number of downstream node 
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for 𝑖. Moreover The decentralized state feedback 

controller gain is given by 𝑘𝑖 = 𝑀𝑖𝑌𝑖
−1.  

Proof: See Appendix I.  

5. Cross layer power allocation and routing 

optimization problem 

In this section we will show that the resulting 

decentralized routing control schemes formally 

achieve the desired specifications and requirements 

of Gaussian broadcast channels with FDMA and 

the joint power allocation and routing problem can 

be formulated as stabilizing problem. 

5.1. Formulation of the cross layer power 

allocation and routing problem 

Consider a wireless data network where each 

node uses the Gaussian broadcast channel with 

FDMA to transmit packets over its outgoing 

links.Here the communication variables are the 

powers 𝑃𝑖 , limited by separate or total power 

constraints. 

For Transmit power allocation we assume that 

the bandwidth allocation is fixed (unit bandwidth is 

assigned to each link). We are free to adjust the 

transmit powers 𝑃𝑖 = 𝑣𝑒𝑐𝑗{𝑃𝑖𝑗}, where 𝑃𝑖𝑗 , 

allocated to each link(𝑖, 𝑗), but we impose a total 

power constraint for the outgoing links of each 

node (12). Combining the network link capacity 

constraint (5), and the equation (15), we have:  

𝐮𝑖(𝑡) = (𝐺𝑖
𝑇𝐺𝑖)

−1𝐺𝑖
𝑇 × 𝛼𝑖𝑐𝑖 ,                              (26) 

where  

𝑐𝑖 =  𝑣𝑒𝑐{𝑐𝑖𝑗}𝑗 =  𝑣𝑒𝑐 {𝑊𝑖𝑗log2(1 +
𝛿𝑖𝑗𝑃𝑖𝑗

𝑁0
𝑗
𝑊𝑖𝑗

)}
𝑗

, (27) 

 for 𝑗 = 1,… , 𝑙𝑖 . 
Changing the variables  

𝐮̃𝑖𝑗 = log2(1 +
𝛿𝑖𝑗𝑃𝑖𝑗

𝑁0
𝑗
𝑊𝑖𝑗

), 𝑗 = 1, . . . , 𝑙𝑖 ,                   (28) 

 we then get  

𝑐𝑖 = [

𝑊𝑖1 0 … 0
0 𝑊𝑖2 … 0
0 0 ⋱ 0
0 0 … 𝑊𝑖𝑙𝑖

] [

𝐮̃𝑖1

𝐮̃𝑖2

⋮
𝐮̃𝑖𝑙𝑖

],                     (29) 

 and with the proposed change of variables for (26), 

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . 𝑙𝑖 we have:  

𝐮𝑖(𝑡) = 𝐺𝑖𝛼𝑖𝐮̃𝑖(𝑡),                                              (30) 

where  

𝐺̅𝑖 = (𝐺𝑖
𝑇𝐺𝑖)

−1𝐺𝑖
𝑇 × 𝑑𝑖𝑎𝑔𝑗(𝑊𝑖𝑗)                        (31) 

 𝐮̃𝑖(𝑡) =  𝑣𝑒𝑐𝑗{𝐮̃𝑖𝑗(𝑡)} ∈ ℜ𝑙𝑖×1.                          (32)  

As a result, with the presented capacity 

formula and the change of variables 𝐮̃𝑖(𝑡), the cross 

layer optimization problem 𝒪2 can be formulated as 

following optimization problem:  

 

min
𝑘𝑖,𝑖=1,...,𝑛

∥ 𝑇𝐳𝐰 ∥∞,                                               (33) 

 𝑠. 𝑡. 

𝐱̇𝑖(𝑡) = ∑

𝑗∈𝔇(𝑖)

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡)){𝛼𝑗𝑚𝐵̅𝑖  𝐮̃𝑖(𝑡) 

 +𝐵𝜔𝑖𝐰𝑖(𝑡)} 

+ ∑
𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡)){𝛼𝑖𝑚𝐵̅𝑑𝑖𝑗 𝐮̃𝑗(𝑡 − 𝜏𝑖𝑗)} 

𝐱𝑖 ≥ 0, 𝑄𝑑𝑖𝑗𝐱𝑖(𝑡) ≤ 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
, 

∑

𝑗∈𝐿𝑈(𝑖)

𝑃𝑖𝑗 ≤ 𝑃𝑖𝑚𝑎𝑥 , 

𝐮̃𝑖(𝑡) = ∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡))𝑘𝑖𝐱𝑖(𝑡) 

Where 

 𝐮̃𝑖𝑗 = log2(1 +
𝛿𝑖𝑗𝑃𝑖𝑗

𝑁0
𝑗
𝑊𝑖𝑗

), 

𝐵̅𝑖 = 𝐵𝑖𝐺̅𝑖 = 𝐵𝑖(𝐺𝑖
𝑇𝐺𝑖)

−1𝐺𝑖
𝑇 ×  𝑑𝑖𝑎𝑔 {𝑊𝑖𝑗}  

and 𝐵̅𝑑𝑖𝑗 = 𝐵𝑑𝑖𝑗𝐺̅𝑗. 

 

According to this note that we don’t use the 

estimation in our formulation,with the presented 

chenging of variable we can assume 𝛥𝐺̅𝑖 = 𝛥𝐺̅𝑗 =

0. 
Now,the objective is to design a fixed linear 

state feedback control law 𝐮̃𝑖(𝑡) =

∑𝑟
𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))𝑘𝑖𝐱𝑖(𝑡), and coefficient 𝛼𝑖. 

According to the control signal 𝐮̃𝑖(𝑡) and equation 

(28) the resource vector 𝐮̅𝑖(𝑡) =  𝑣𝑒𝑐𝑗{𝑃𝑖𝑗} will be 

determined by:  

 

𝐮̅𝑖𝑗(𝑡) = 𝑃𝑖𝑗 = (2𝐮̃𝑖𝑗 − 1)𝑁0
𝑗
𝑊𝑖𝑗/𝛿𝑖𝑗 ≥ 0,       (34) 

 

Therefore, 𝐮̅𝑖(𝑡) =  𝑣𝑒𝑐𝑗{𝑃𝑖𝑗} is the power 

fraction that is allocated to link (𝑖, 𝑗) by node 𝑖. 
Note that bandwidths 𝑊𝑖𝑗 are fix so 𝐵𝑖  and 𝐵𝑑𝑖𝑗  are 

known and fix matrices.  

5.2. Network and Resource Constraints 

 There are various constraints in a network which 

affect its performance and the corresponding 

control systems. Therefore, these constraints should 

be modeled and considered in the controller design. 

Some of these constraints are considered by [12]. In 

this paper, we employ the LMI constraints similar 

to that of in [1]. 

5.2.1. Buffer Size Limitation 

The queue length at each node must not exceed 

the size of the buffer, therefore the constraint on the 
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queue buffer size for each subsystem can be 

defined as follows  

𝑄𝑑𝑖𝑗𝐱𝑖 < 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
, 𝑖 = 1, . . . , 𝑛, 𝑑 = 1, . . . , 𝑑̅,      (35) 

where 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
 is the maximum buffer size, and 

𝑄𝑑𝑖𝑗  in each node should be defined such that 

𝑄𝑑𝑖𝑗𝑥𝑖  shows the queue length corresponding to the 

packets destined to the same node. We consider 

∑𝑖 = {𝐱𝑖(𝑡)|𝐱𝑖(𝑡)𝑌𝑖
−1𝐱𝑖(𝑡) ≤ 𝜆𝑖 , 𝑌𝑖

𝑇 = 𝑌𝑖 > 0} as 

the ellipsoid for a selected 𝜆𝑖 > 0.  

By applying invariant set method, and performing 

some straightforward mathematical manipulations 

the constraints in (35) can be expressed by the 

following LMI: 

  

𝑊𝑖2 = [
𝑌𝑖 ∗

𝑄𝑑𝑖𝑗 𝑥𝑚𝑎𝑥𝑑𝑖𝑗
2 /𝜆𝑖

] ≥ 0                          (36) 

5.2.2 The Non-negative Orthant Stability 

Using this definition, the non-negativity 

constraint (6)-(7) can drive from the non-negative 

Orthant stability condition given in [11] and 

according to the model uncertainty, the presented 

LMIs are uncertain, so with assuming:  

(𝐵𝑖 + Δ𝐵𝑖)𝑠𝑟 ≥ (𝜑𝑖)𝑠𝑟 , (𝐵𝑑𝑖𝑗 + Δ𝐵𝑑𝑖𝑗)𝑠𝑟 ≥ (𝜃𝑑𝑖𝑗)𝑠𝑟 ,(37) 

where (𝜑𝑖)𝑠𝑟 and (𝜃𝑑𝑖𝑗)𝑠𝑟 are specified 

parameters, non-negativity constraint can be 

expressed through the following LMIs: 

 𝑊𝑖3 = (𝜑𝑖𝑀𝑖)𝑠𝑟 ≥ 0, 𝑠 ≠ 𝑟,                              (38) 

 𝑊𝑖4 = (𝜃𝑑𝑖𝑗𝑀𝑗) ≥ 0, 𝑠, 𝑟 = 1, . . . , 𝑛,                  (39) 

which satisfies the non-negativity 

constraint𝐱𝑖 ≥ 0. 

Also by noting that 𝑌𝑖 is a diagonal positive definite 

matrix, 𝐮𝑖 ≥ 0 is satisfied if the following LMI 

holds:  
𝑊𝑖5 = (𝑀𝑖)𝑠𝑟 ≥ 0, 
𝑠 = 1, . . . , 𝑙(𝑛 − 1), 𝑟 = 1, . . . , 𝑛(𝑛 − 1).                  (40) 

5.2.3. Resource Constraints 

For power allocation problem, for presented 

resource limitation we have:  

 

∑𝑗∈𝐿𝑈(𝑖) 𝑢̅𝑖𝑗 = ∑𝑗∈𝐿𝑈(𝑖) 𝑃𝑖𝑗 ≤ 𝑃𝑖𝑚𝑎𝑥 ,                   (41) 

  

according to the above inequality and change of 

variable formula (28) we can write : 

  

𝐹𝑖𝑢̃𝑖 ≤ 𝑃̃𝑖𝑚𝑎𝑥 , 𝑢̃𝑖 = 𝑣𝑒𝑐{𝑢̃𝑖𝑗},                             (42) 

 where  

𝑃̃𝑖𝑚𝑎𝑥 = (𝑃𝑖𝑚𝑎𝑥/𝑆𝑖 + 𝑙𝑖) + ∑

𝑗∈𝐿𝑈(𝑖)

2𝐮̂𝑖𝑗(1 + ln2)𝐮̂𝑖𝑗 

 and 𝐹𝑖 = 𝑣𝑒𝑐𝑗{2
𝐮̂𝑖𝑗(1 + ln2)}, 𝑆𝑖 = min𝑗{

𝑁0
𝑗
𝑊𝑖𝑗

𝛿𝑖𝑗
} 

and 𝐮̂𝑖𝑗 = log2(1 +
𝛿𝑖𝑗𝑃𝑖𝑚𝑎𝑥/𝑙𝑖

𝑁0
𝑗
𝑊𝑖𝑗

).  

See Appendix II.  

Inequality (42) can be conservative for large 

resource limitation but ensure the resource 

limitation constraint in (12).  

According to the (42) and following the same 

line of argument as used for the capacity constraint 

in [1], for power allocation problem, we can present 

limitation constraints (42), as following LMIs:  

 

𝑊𝑖6 = [
𝑌𝑖 ∗

𝐹𝑖𝑀𝑖 𝑃̃𝑖𝑚𝑎𝑥
2 /𝜆𝑖

] ≥ 0, 𝑖 = 1, . . . , 𝑛,       (43) 

 where 𝐹𝑖 = 𝑣𝑒𝑐𝑗{2
𝐮̂𝑖𝑗(1 + ln2)}.  

As long as the upper bound limitation of the 

allocated power with the presented control strategy 

is within the estimation range, the LMI constraints 

and controller do not need to be recomputed. 

attention that we have presented controller 

designing algorithm, so our control strategy 

guarantees the overall network stability and the 

worst-case performance in theory for bounded 

estimation errors of network dynamic modeling and 

network constraints.  

The LMI presentation of network and 

communication resource constraints as well as the 

network model in the previous sections allow us to 

formulate joint routing and resource allocation 

optimization problem as a convex LMI 

optimization problem.  

Considering the presented physical and 

resource constraints as well as the results of 

Theorem 1, we can conclude that a decentralized 

H∞ fuzzy routing controller for the cross layer 

optimization problem 𝒪2 (or optimization problem 

(33)) can be designed by solving the following 

optimization problem :  

 

Main optimization Problem𝒪3: 
min

𝑀𝑖,𝑌𝑖,𝑍𝑖,𝑅𝑖

𝛾,                                          (44) 

 subject to the LMI constraints, 𝑊𝑙𝑖 , (𝑙 =
1, . . . ,6, 𝑖 = 1, . . . , 𝑛). 

 

where 𝑊𝑙1 satisfies the 𝐻∞ cost function of 𝒪2 and 

LMIs 𝑊𝑙𝑖 , (𝑙 = 2, . . . ,6, 𝑖 = 1, . . . , 𝑛) satisfy the 

constraints of problem 𝒪2. The proposed algorithm 

for joint resource allocation and routing is 

summarized as follows:  

 

Given: network 𝑉 = (𝑁, 𝐿) and node resource set 

ℏ𝑖,  
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Step 1: Formulate the wireless data network 

parameters and flow model as uncertain delayed 

system, as in (18) and (26)-(33), 

Step 2: determine the physical constraint and 

resource limitation as LMI, i.e. 𝑊𝑙𝑖 , (𝑙 = 2, . . . ,6), 

Step 3: determine LMI 𝑊𝑙1 (4.2) according to the 

known parameters of dynamic system (21), 

Step 4: solve the optimization problem (44) and 

obtain the corresponding feedback gain, 𝑘𝑖 for pre 

specified 𝛼𝑖𝑚.  

Step 5: with the computed feedback gain, 𝑘𝑖 , in 

step 4 for each node 𝑖 (𝑖 = 1, . . . , 𝑛), the fuzzy 

controller signal 𝐮̃𝑖(𝑡) obtains from 𝑢𝑖(𝑡) =
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))𝑘𝑖𝐱𝑖(𝑡), 𝑗 ∈ 𝔇𝑖. 

Step 6: Finally the resource variables 𝑢𝑖(𝑡), that 

should be allocate to the link (𝑖, 𝑗) by node 𝑖, will 

be determined according to the controller signal 

𝑢𝑖(𝑡) and equations (34).  

Note that by stabilizing the queue dynamic in 

(21), the queue length in nodes, will be minimized. 

Therefore, the presented control strategy will 

provide a distributed mechanism to minimize the 

queue lengths in the presented wireless network 

nodes, where 𝐮̃𝑖(𝑡) is the definite function of 

resources that allocates to link (𝑖, 𝑗) by node 𝑖. In 

fact in the presented control strategy, the resource 

parameters are control variables that should be 

determined. 

6. Simulation Results 

In this section, simulation results are presented 

to evaluate the performance of our proposed routing 

control strategy and we will only illustrate how the 

Gaussian channels with FDMA can fit into this 

framework. 

Consider the sample network selected as a 

basis, shown in Fig. 1, which has 10 nodes and 20 

directed links.  

 
Fig.1. Considered network topology in the simulations. 

 

The destination nodes are selected to be 5 and 8. 

Therefore, nodes 5 and 8 do not route any messages 

and are considered as a sink. Consequently, except 

nodes 5 and 8, each node has two states: the first 

state is the queueing length associated with the 

destination node 5, and the second state is the 

queueing length associated with the destination 

node 8. Assume that maximum buffer size of nodes 

is 1 Kbit and the delay function is taken as a fast 

varying time structured function 3 + 2sin(5𝑡) sec. 

Note that as far as the controller is concerned the 

delay information is considered to be unknown. 

The external input traffic load for each node is 

assumed as follows:  

𝐰𝑖 = {
ℬ + ℒ 𝐾𝑏𝑖𝑡/𝑠𝑒𝑐 1 < 𝑡 < 3 𝑠𝑒𝑐 ,

ℬ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ,
                  (45) 

where in this traffic load, parameter ℬ is 

considered as the Poisson distribution with the rate 

of 0.5 Kbit per second. Also assume that in addition 

the input packet rate ℬ, the input packets with a 

flow rate ℒ = 0.6 Kbit/sec,enters to the nodes from 

the outside of the network at 1 < 𝑡 < 3 sec.  

Example 1: first we implement the proposed 

algorithm to minimize the overall data queue length 

in a FDMA wireless network. For data 

communication over link (𝑖, 𝑗), the noise power 𝜎𝑙 

at each receiver is uniformly distributed on 

[0.01,0.1]. We also assume 𝑁0 = 0.1. We adjust 

the transmit powers 𝑃𝑙𝑖  allocated to each link, 

where 𝑃𝑖𝑚𝑎𝑥 = 40,𝑊𝑖 = 1, 𝑖 = 1,… ,8. Now we use 

our proposed decentralized routing algorithm based 

on minimization of the queue length at each node. 

where the membership functions are demonstrated 

in Fig.2, and 𝛼𝑖1
1 = 𝛼𝑖1

2 = 1, 𝛼𝑖2
1 = 𝛼𝑖2

2 = 0.7. 

Selecting these values for 𝛼𝑖𝑚, 𝑚 = 1,2 shows that 

when one of the downstream nodes is near 

congestion the router should send fewer messages 

to that node.  

 
Fig.2.  Membership functions of two rule controller 

The queueing length of a node in network can 

be considered as an important issue for evaluating 

the performance of a routing algorithm. Fig. 3- 4 

depicts the queueing lengths of mesh network 

nodes that are obtained by using our proposed 𝐻∞ 

routing control algorithm.  
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Fig.3.Queue lengths 𝑞1,𝑞2,𝑞3 and 𝑞4 for versus time. 

 

 
Fig.4. Queue lengths 𝑞6,𝑞7,𝑞9 and 𝑞10 for versus time. 

Queue dynamic shows that the represented 

approach gives needed flexibility to the network to 

find the efficient route in the network without 

increasing the congestion of the packets in the 

downstream nodes.For this examination according 

to the buffer limit assumption and queue length 

figures we only have packet loss in node 1,6 and 7. 

Also for instance, Fig. 5- 6 demonstrates the 

transmit powers that allocated to outgoing links of 

network nodes. 

 
Fig.5.Transmit powers that allocated, with the nodes 1,2,3 and 4 

to their outgoing links.  

 
Fig.6. Transmit powers that allocated, with the nodes 6, 7, 9 and 

10 to their outgoing links.  

7. Conclusion 

In this paper, we have developed an optimal 

distributed algorithm for joint resource allocation 

and routing for power and bandwidth allocation in 

FDMA wireless networks. The network routing 

problem and the resource allocation problem 

interact through the capacity constraints on the total 

traffics supported on individual communication 

links. Using the proposed control strategy a robust 

routing performance achieved in the presence of 

unknown network delays and with using fuzzy 

decision rules in the proposed 𝐻∞ controller 

strategy, we improve the network performance 

criteria and avoid packet loss in the network.  

Appendix I 

To achieve the 𝐻∞ objective function (22), one 

should show 𝐽𝐻 = 𝑉̇(𝑥𝑖 , 𝑡) + 𝑧𝑇𝑧 − 𝛾𝑤𝑤𝑇 < 0 

Taking the time-derivative of 𝑉 in (24) along the 

system trajectories in (21), and then substituting 

that in (23) we will have:   

𝐽𝐻 ≤ ∑

𝑛

𝑖=1

{∑

𝑗∈𝔇𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡))𝐱𝑖(𝑡)
𝑇(𝛼𝑗𝑚

𝑇 𝐤𝑖
𝑇𝐵̅𝑖

𝑇𝑃𝑖 

 +𝑃𝑖𝐵̅𝑖𝛼𝑗𝑚𝐤𝑖)𝐱𝑖(𝑡) 

+ ∑

𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡))[𝐱𝑖(𝑡)
𝑇𝑃𝑖𝐵̅𝑑𝑖𝑗𝛼𝑖𝑚𝑘𝑗𝐱𝑗(𝑡 − 𝜏𝑖𝑗(𝑡))

+ 𝐱𝑗
𝑇(𝑡 − 𝜏𝑖𝑗(𝑡))𝛼𝑖𝑚

𝑇 𝑘𝑗
𝑇𝐵̅𝑑𝑖𝑗

𝑇 𝑃𝑖𝐱𝑖(𝑡)] 

+ ∑

𝑗∈𝔇𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡))[𝐱𝑖
𝑇(𝑡)𝑃𝑖𝐵𝜔𝑖

𝐰𝑖(𝑡)

+ 𝐰𝑖
𝑇(𝑡)𝐵𝜔𝑖

𝑇 𝑃𝑖𝐱𝑖(𝑡)] 

+ ∑

𝑗∈𝔘𝑖

[2𝑑𝑖𝑗𝐱̇𝑗
𝑇(𝑡)𝑅𝑗𝐱̇𝑗(𝑡) − 2∫

𝑡

𝑡−𝜏𝑖𝑗

𝐱̇𝑗
𝑇(𝑠)𝑅𝑗𝐱̇𝑗(𝑠)𝑑𝑠 

+𝐱𝑗
𝑇(𝑡)𝑍𝑗𝐱𝑗(𝑡) − (1 − 𝜇𝑖𝑗)𝐱𝑗

𝑇(𝑡 − 𝜏𝑖𝑗)𝑍𝑗𝐱𝑗(𝑡 − 𝜏𝑖𝑗)] 

+𝐱𝑖
𝑇(𝑡)𝐶𝑖

𝑇𝐶𝑖𝐱𝑖(𝑡) − 𝛾𝐰𝑖(𝑡)
𝑇𝐰𝑖(𝑡)}. 
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Also using the fact that 

∑𝑛
𝑖=1 ∑𝑗∈𝔘𝑖

𝐱𝑗(𝑡)
𝑇𝑄𝑗𝐱(𝑡)𝑗 =

∑𝑛
𝑖=1 𝑛𝑖𝐱𝑖(𝑡)

𝑇𝑄𝑖𝐱𝑖(𝑡)[1], where 𝑛𝑖 is the number of 

downstream nodes corresponding to node 𝑖,and the 

fact that ∑𝑟
𝑙=1 ℎ𝑙(𝜃)Γ = Γ, and according to the 

matrix inequalities presented lemmas in [17]we 

have:  

  

𝐽 ≤ ∑

𝑛

𝑖=1

{∑

𝑗∈𝔇𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡))𝐱𝑖(𝑡)
𝑇[𝑘𝑖

𝑇𝛼𝑗𝑚
𝑇 𝐵̅𝑖

𝑇𝑃𝑖

+ 𝑃𝑖𝐵̅𝑖𝛼𝑗𝑚𝑘𝑖 

+2 ∑

𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡))[𝐱𝑗(𝑡

− 𝜏𝑖𝑗(𝑡))
𝑇{(𝐵̅𝑑𝑖𝑗𝛼𝑖𝑚𝑘𝑗)

𝑇(𝐵̅𝑑𝑖𝑗𝛼𝑖𝑚𝑘𝑗)} 

𝐱𝑗(𝑡 − 𝜏𝑖𝑗(𝑡)) + 𝐱𝑖
𝑇(𝑡)𝑃𝑖𝑃𝑖𝐱𝑖(𝑡) +

∑𝑗∈𝔇𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))[𝐱𝑖
𝑇(𝑡)𝑃𝑖𝐵𝜔𝑖

𝐰𝑖(𝑡) +

𝐰𝑖
𝑇(𝑡)𝐵𝜔𝑖

𝑇 𝑃𝑖𝐱𝑖(𝑡)]
 

+∑𝑗∈𝔇𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))[2𝑑𝑖𝑗𝑛𝑖𝐱̇𝑖
𝑇(𝑡)𝑅𝑖𝐱̇𝑖(𝑡)] 

 

+∑𝑗∈𝔇𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))[𝑛𝑖𝐱𝑖
𝑇(𝑡)𝑍𝑖𝐱𝑖(𝑡)] 

 

−2∑𝑗∈𝔘𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑖(𝑡)) ∫
𝑡

𝑡−𝜏𝑖𝑗
𝐱̇𝑗

𝑇(𝑠)𝑅𝑗𝐱̇𝑗(𝑠)𝑑𝑠 

− ∑

𝑗∈𝔘𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑖(𝑡))(1 − 𝜇𝑖𝑗)𝐱𝑗
𝑇(𝑡 − 𝜏𝑖𝑗)𝑍𝑗𝐱𝑗(𝑡 − 𝜏𝑖𝑗) 

 

+∑𝑗∈𝔇𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡))[𝐱𝑖
𝑇(𝑡)𝐶𝑖

𝑇𝐶𝑖𝐱𝑖(𝑡) +

𝛾𝐰𝑖(𝑡)
𝑇𝐰𝑖(𝑡)]} 

  

According to the fact that 𝐱𝑖
𝑇(𝑡)𝑃𝑖𝑃𝑖𝐱𝑖(𝑡) =

∑𝑗∈𝔇𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑗(𝑡)){𝑛𝑖
−1𝐱𝑖

𝑇(𝑡)𝑃𝑖𝑃𝑖𝐱𝑖(𝑡)}, in 

above inequality we have 

  
∑𝑛

𝑖=1 ∑𝑗∈𝔘𝑖
∑𝑟

𝑚=1 ℎ𝑚(𝑥𝑖(𝑡))𝐱𝑖
𝑇(𝑡)𝑃𝑖𝑃𝑖𝐱𝑖(𝑡)(15) 

= ∑

𝑛

𝑖=1

∑

𝑗∈𝔇𝑖

∑

𝑟

𝑚=1

ℎ𝑚(𝑥𝑗(𝑡))𝐱𝑖
𝑇(𝑡)𝑃𝑖𝑃𝑖𝐱𝑖(𝑡). 

 

       For simplicity we can Assume that 𝛼𝑖𝑚 =

𝛼𝑗𝑚, 𝑗 ∈ 𝔇𝑖.in fact we assume that similar coefficient 

𝛼𝑖𝑚 for all of the nodes. with following some 

manipulation to make the bilinear matrix 

inequalities, we will have 𝐽 < 0 if flowing 

inequality holds:  

 

𝑊̅𝑖 =

[
 
 
 
 
 
𝜃𝑖1 0 𝜃𝑖2 𝐶𝑖

𝑇 𝜃𝑖3

∗ 𝜃𝑖4 0 0 𝜃𝑖5

∗ ∗ −𝛾𝐼 0 𝜃𝑖7

∗ ∗ ∗ −𝐼 0
∗ ∗ ∗ ∗ 𝜃𝑖8

]
 
 
 
 
 

< 0,                    (47) 

 where  

𝜃𝑖1 = [𝑘𝑖
𝑇𝛼𝑖𝑚

𝑇 𝐵̅𝑖
𝑇𝑃𝑖 + 𝑃𝑖𝐵̅𝑖𝛼𝑖𝑚𝑘𝑖 + 2𝑛𝑖𝑃𝑖𝑃𝑖 + 𝑛𝑖𝑍𝑖 , 

𝜃𝑖2 = 𝑃𝑖𝐵𝜔𝑖
, 𝜃𝑖3 = √2𝑛𝑖𝑑𝑖𝑘𝑖

𝑇𝛼𝑖𝑚
𝑇 𝐵̅𝑖

𝑇 , 

𝜃𝑖4 = 𝑑𝑖𝑎𝑔𝑗{(𝐵̅𝑑𝑖𝑗𝛼𝑖𝑚𝑘𝑗)
𝑇(𝐵̅𝑑𝑖𝑗𝛼𝑖𝑚𝑘𝑗) 

−(1 − 𝜇𝑖𝑗)𝑍𝑗}, 𝑗 ∈ 𝔘𝑖 

𝜃𝑖5 = √2𝑛𝑖𝑑𝑖𝑣𝑒𝑐𝑗{(𝑘𝑗
𝑇𝛼𝑖𝑚

𝑇 𝐵̅𝑑𝑖𝑗
𝑇 )}, 

𝜃𝑖7 = √2𝑛𝑖𝑑𝑖𝐵𝜔𝑖

𝑇 , 𝜃𝑖8 = −𝑅𝑖 . 

 

      Therefore, according to 𝑊̅𝑖 we will have 𝐽 < 0 

if the above matrix inequality condition hold. 

Above inequality is not LMI, so by applying the 

Schur complement and defining 𝑌𝑖 = 𝑃𝑖
−1 and 𝑀𝑖 =

𝑘𝑖𝑌𝑖, 𝑅𝑖 = 𝑌𝑖𝑅𝑖𝑌𝑖
𝑇 , 𝑍𝑖 = 𝑌𝑖𝑍𝑖𝑌𝑖

𝑇 , LMI condition 

(4.2) will be obtained. The obtained LMI condition 

guarantees 𝑉̇ < 0, also guarantees that the 

Hamiltonian 𝐽 in (22), and consequently 𝐽 in (22) is 

negative definite.  

Appendix II 

In power allocation problem, according to the 

(28) and resource constraint (12) we have:  

∑

𝑗∈𝐿𝑈(𝑖)

𝑢̅𝑖𝑗 = ∑

𝑗∈𝐿𝑈(𝑖)

𝑃𝑖𝑗 = ∑

𝑗∈𝐿𝑈(𝑖)

(2𝐮̃𝑖𝑗 − 1)
𝑁0

𝑗
𝑊𝑖𝑗

𝛿𝑖𝑗

≤ 𝑃𝑖𝑚𝑎𝑥 , 
 

The objective is to find linear matrix inequality 

over control variable signal 𝐮̃𝑖𝑗 that satisfy above 

limitation constrain. According to the above 

nonlinear inequality we have:  

min
𝑗

{
𝑁0

𝑗
𝑊𝑖𝑗

𝛿𝑖𝑗
} ∑𝑗∈𝐿𝑈(𝑖)

(2𝐮̃𝑖𝑗 − 1) ≤ 𝑃𝑖𝑚𝑎𝑥 ,            (48) 

 so  

∑𝑗∈𝐿𝑈(𝑖)
2𝐮̃𝑖𝑗 ≤ 𝑃𝑖𝑚𝑎𝑥/𝑆𝑖 + 𝑙𝑖 , 𝑆𝑖 = min

𝑗
{
𝑁0

𝑗
𝑊𝑖𝑗

𝛿𝑖𝑗
} (49) 

So we are trying to use the linear estimation of 

2𝐮̃𝑖𝑗 around mean value of the resource (power) in 

each node( 𝑃̅𝑖 = 𝑃𝑖𝑚𝑎𝑥/𝑙𝑖), we will have:  

 

∑

𝑗∈𝐿𝑈(𝑖)

2𝐮̂𝑖𝑗(1 + ln2)(𝐮̃𝑖𝑗 − 𝐮̂𝑖𝑗) ≤ ∑

𝑗∈𝐿𝑈(𝑖)

2𝐮̃𝑖𝑗

≤ 𝑃𝑖𝑚𝑎𝑥/𝑆𝑖 + 𝑙𝑖 , 

          where 𝐮̂𝑖𝑗 = log2(1 +
𝛿𝑖𝑗𝑃𝑖𝑚𝑎𝑥/𝑙𝑖

𝑁0
𝑗
𝑊𝑖𝑗

). So we 

introduce the new linear constraint on control signal 

𝐮̃𝑖𝑗, as:  

𝐹𝑖𝐮̃𝑖 ≤ (𝑃𝑖𝑚𝑎𝑥/𝑆𝑖 + 𝑙𝑖) + ∑

𝑗∈𝐿𝑈(𝑖)

2𝐮̂𝑖𝑗(1 + ln2)𝐮̂𝑖𝑗 

𝐹𝑖 = 𝑣𝑒𝑐𝑗{2
𝐮̂𝑖𝑗(1 + ln2)} 
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