

Full Length Article:

Contents available at ISC and SID

Journal homepage: www.rangeland.ir

Study on the Environmental Factors Contributing to Distribution of *Thymus kotschyanus* in Taleghan Basin, Iran

Leila Darvishi^A, Mohammad Ali Zare Chahouki^B, Mohammad Jafari^C, Hussein Azarnivand^C and Majid Yousefi Valikchali^D

^AM.Sc. Department of Rangeland Management, University of Tehran, Iran

^BDepartment of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Iran (Corresponding Author), Email: mazare@ut.ac.ir

^CDepartment of Rehabilitation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Iran

^DFaculty of Forest Science, Gorgan University of Agricultural Sciences & Natural Resources, Iran

Received on: 28/10/2013 Accepted on: 24/12/2013

Abstract. Growth and productivity of plants are mainly affected by various environmental factors in different ecosystems and natural habitat in the world. This research aims to study the existing relationships between the phytosociology characteristics of Thymus kotschyanus and environmental factors in order to find the most important factors governing development of the species in middle Taleghan rangelands, Iran. Subsequent to indicating the study region, the required flora and environmental data were collected by field survey. Plot size and sample size were determined by minimum area and vegetation procedure methods, using 40 plots along four 100 m transects. The characteristics including floristic list, percentage of canopy cover, number of plants as well as height, the largest and smallest diameter, and freshness of T. kotschyanus were recorded. Likewise, bare soil percentage, litter percentage, and stone and gravel percentage of topsoil were recorded in each plot. Moreover, in order to study the soil features, eight soil profiles were taken in each site up to 30 cm depth at the beginning and end of each transect. Classification of vegetation cover was performed by TWINSPAN analysis while factors influencing the change in vegetation characteristics of T. kotschvanus were determined by PCA analysis. Results demonstrated that factors involving slope, altitude, organic matter, lime content, nitrogen content and soil texture show the highest impact on vegetation characteristics. Overall, variables including elevation ranging between 2300-2500 m, slope in the range of 20% - 40%, and fertile sandy loam textured soils in presence of nitrogen and high organic matter content as well as low lime content provide the most suitable condition to develop a high production *T. kotschyanus*.

Key words: Taleghan rangelands, Thymus kotschyanus, TWINSPAN, PCA

Introduction

Iran has a potential habitat for many plant species due to variation of soil types and climate diversity. Getting knowledge on effective factors on development and adaptation of the species can lead to time and cost effective planning for rangeland restoration (Escudero *et al.*, 2000).

The evolution of ecosystem and the dynamic of vegetation diversities in ecological habitats of the rangelands are not formed in a randomized manner but rather are formed as matrices of most important environmental factors over time (Kent and Coker, 1992). Cognition of vegetation communities and evaluating their interaction with environment is known as an important subject to achieve sustainable rangelands management in order to introduce the appropriate species for reclamation of degraded area. Furthermore. information on environmental factors can be used to predict success and fail of establishment of species. Thymus sp. is a valuable medicinal plant widely used since many years ago. The species studied in this research is Thymus kotschyanus, which is widely distributed in different parts of Iran, especially in southern Alborz Mountains at Taleghan rangelands in the west of Alborz province where it is considered as one of three dominant species of the region. It is a fragrant species most prominent and renowned in essence quality and quantity (Zargari, 1990). In this research, we deal with quantitative attributes of T. kotschyanus under environmental factors to achieve through maximum vield choosing appropriate environmental factors.

T. kotschyanus plays important role in the economy of local people at Taleghan region where its cultivation helps regional economy. Therefore, it is necessary to protect the species through identifying and permanent conservation of the habitats, and restoration of the renewable resources.

Akbarzadeh (2003) reported that in Mazandaran province, Iran, Т. kotschyanus grows in the sandy loam soils of the elevation ranging between 2200-2900 m above sea level at the habitat extends in the north-east Likewise. direction. the species dominates the community forming the clustered patterns along with Festuca and Astragalus gossypinus. ovina Jamshidi et al. (2006) revealed that T. kotschvanus shows a high frequency and high density in the habitat while the best essence yield is seen in 2400 m elevation. Furthermore, species the mostly appears as dominant type together with Bromus tomentellus and some Astragalus species. Habibi et al. (2006) demonstrated that density of Т. kotschyanus increases with increase in elevation at Taleghan rangelands. According to Mirdavoodi and Babakhanloo (2007) the habitats of T. kotschvanus is extended in the elevation ranging between 1850-2500 m above sea level at north and east regions of Markazi province, Iran. Larti and Ghasempour (2009)evaluated the suitable ecological conditions for Thymus species in western Azerbaijan province, Iran. They showed that different Thymus species are distributed in the elevations ranging between 1200-2500 m while preferring slopes between 15% - 45% placed at north and northeast directions. Generally, the Thymus species tend to develop in moderate to highly eroded, semi-deep calcareous soils of deep or high elevation mountains. Corticchiato et al. (1998) stated that the main factors affecting the distribution of Thymus species involve climate, altitude, soil type, soil texture, organic matter and calcium content of soil in east regions of Spain. Boira and Blanquer (1998) pointed out that some factors involving elevation, texture. and climate affect soil development of Thymus piperella in Spain. Stahl-biskup (1991) demonstrated that heavy soil texture and low soil calcium content are responsible for less *Thymus* sp. Essence yield. Given to all researches on effect of environmental factors on *Thymus* sp. communities, it is worth to note that all of them contributed in formation and distribution of its communities.

The main objective of this study is to detect the most important factors forming the community of *T. kotschyanus* in middle Taleghan region in southern Alborz Mountains, Iran in order to identify the best habitat for distribution of the species producing maximum and high quality yield.

Materials and Methods Site description

Study area involves a natural habitat of *T. kotschyanus* located at the southern of the middle Taleghan rangelands of Alborz province, Iran with an area of 4994 ha where altitude ranged between 1800 - 3000 m and slope is below 25% (Fig. 1). The soil involve a semi heavy (clay loam) to heavy texture (clay and silty-clay) type while recorded mean annual precipitation and temperature show 500 mm and 4.48°C, respectively.

Fig. 1. Study area in Middle Taleghan basin, Iran

Soil sampling and measurements

The data of vegetation cover and environmental factors were collected after primary visiting and indicating the study area. Plot size and sample size were determined by minimum area and vegetation procedure using 40 plots along four 100 m transects. In each plot, floristic list, canopy cover percentage,

number of plants, litter percentage, bare soil percentage, and stone and gravel percentage of topsoil were determined. Furthermore, characteristics of each individual T. kotschyanus in each plot were considered involving height, frequency, the largest and smallest diameter, and the status of freshness. In addition, in order to study the soil features, number of eight soil profiles were taken in each site up to 30 cm depth at the beginning and end of each transect. In each sample, the data consist of latitude and longitude, altitude, slope, and aspect of slope were recorded.

Arial plant biomass (roots and shoots) was harvested and weighted for further analyses. Soil samples were dried and then sieved to pass through a 2 mm mesh in order to determine soil characteristics involving soil texture, gravel percentage, lime percentage, organic matter percentage, pH, EC, nitrogen, phosphorus content, and potassium content.

Data analysis

Floristic analysis was performed by PC-ORD v.4.17 software package while plant ecological groups were determined based on the Two-Way Indicator Species Analysis (TWINSPAN) (Hill and Hill, 1979). At first. an unconstrained ordination under а Detrended Correspondence Analysis (DCA) was performed to find major gradients in species composition. However, due to reduction of the environmental gradient (0.237), Principal Component Analysis (PCA) was then applied to search for a general pattern environmental of variables. In this analysis, the distribution graph of plant communities in relation to soil properties are shown on the coordinate axes (Zare Chahouki, 2006).

Results

According to outcomes of TWINSPAN and eigen-values, the vegetation communities were categorized into five groups (Table 1). Group I: Sophora alopecuroides-Astragalus paralogues (So.al-As.pa) Group II: Bromus dantoniae (Br.da) Group III: Astragalus gossypinus-Thymus kotschyanus (As.go-Th.ko) Group IV: Agropyron intermedium (Ag.in)

Group V: Agropyron intermedium-Astragalus gossypinus (Ag.in-As.go)

Table 1. S	pecies co	mposition	of Thymus	kotschyanus

Vegetation Type	Cover (%)	Composition (%)
Agropyron intermedium	6.38	12.96
Agropyron intermedium-Astragalus gossypinus	2.00	7.38
Astragalus gossypinus-Thymus kotschyanus	4.54	19.32
Bromus dantoniae	3.75	10.36
Sophora alopecuroides-Astragalus paralogues	3.30	10.90

Ecological classes obtained by classification under TWINSPAN were confirmed to area vegetation types where showed the reduced eigen-values of each plant groups (Fig. 2).

Evaluation of quantitative traits of *T. kotschyanus* within vegetation types

Analysis of variance was conducted to evaluate quantitative traits of *T*. *kotschyanus* among habitats including cover percentage, density, species height, stands mean distances, volume, and short and long diameter. (Table 2), shows results of analysis of variance and comparison of means between vegetation types. In addition, Duncan's test was performed to evaluate the significant differences among the groups.

Fig. 2. Classification chart of vegetation types under TWINSPAN

Vegetation	Cover	Density (m^2)	Diameter	Diameter Man (am)	Volume	Height	Distance between
Туре	(%)	$(/m^2)$	Min (cm)	Max (cm)	(cm^3)	(cm)	ind.(cm)
Ag.in	6.38 ^a	2.92 ^a	9.30 ^a	24.50 ^a	2453.20	11.40 ^a	22.50
Ag.in-As.go	2.00°	0.92 ^b	7.00 ^b	22.35 ^{ab}	1578.00	11.10 ^a	39.50
As.go- Th.ko	4.54^{ab}	2.23 ^{ab}	4.80^{b}	16.60 ^c	291.80	6.70 ^c	22.70
Br.da	3.75 ^{ab}	2.20^{ab}	5.50^{b}	18.90^{bc}	750.57	9.20^{b}	27.50
So.al -As.pa	3.30 ^{ab}	1.75 ^{ab}	5.10 ^b	20.90^{abc}	479.43	8.00^{b}	35.80
F value	2.49 [*]	2.87^{*}	6.48 ^{**}	2.94 [*]	3.23*	18.65 ^{**}	1.39 ^{n.s}

Table 2. Comparison of quantitative characteristics of T. kotschyanus in the study sites

* and ** = Different is significant at the 0.05 and 0.01 probability levels, respectively

Determining the factors affecting characteristic variations of *Thymus* As shown the outcomes of principle components analysis in (Table 3), the first and second components address 88.81% of all variations of vegetation. The former shows more importance undertaking 48.11% of total variations while the later reveals 27.9% of variations. Furthermore, eigen-vectors of soil variables in relation to axis are shown in (Table 4).

Given the coefficient modulus, the first component involves variables including slope, elevation, organic matter percentage, lime content, and silt content whereas the second one denotes the percentage of clay, sand, and nitrogen content. According to variations of the main environmental factors on the first and second axes, the plant habitat is categorized into four separate classes involving one or more vegetation types in each class.

Likewise, the first and second components graph in Fig. 3, reveals that vegetation types are distributed as a function of environmental factors and soil characteristics. The classified plant habitat groups are as follows:

Group I: Involves two vegetation types including A. gossypinus - T. kotschyanus and S. alopecuroides - Astragalus paralogues. In this group, vegetation cover, volume, and density of T. kotschyanus were estimated 3.97%, 478 cm³, and 2.1 per m² respectively.

Since *T. kotschyanus* forms the main part of vegetation structure, it makes vegetation type *As.go-Th.ko* in the third region. Although, altitude and slope contributed in improvement of the vegetation cover, soil texture, lime and organic matter contents are the main factors responsible for establishment and distribution of the vegetation types.

Group II: Involves a vegetation type known as two species *A. intermedium- A. gossypinus*. In this group, vegetation cover, volume, and density of *T*. *kotschyanus* were estimated 2%, 1578 cm^3 and 0.9 per m² respectively. The percentage of *T. kotschyanus* cover was reduced while there was considerable degradation in the stand population. Therefore, some factors involving in establishment of *T. kotschyanus* reduce the vegetation cover and density. Overall, the main factors contributing in creation of this type are increase in slope, elevation, organic matter content, as well as low lime content.

Group III: Involves a species A. intermedium. In this group, the vegetation cover, volume, and density of T. kotschyanus were estimated 6.83%, 2453 cm^3 and 2.9 per m² respectively. The main factors forming this vegetation type include altitude, slope, organic matter content, lime content, and soil texture. In this type, the vegetation cover and density of T. kotschyanus remarkably tend to increase than other types.

On the other hand, the higher the slope and elevation and the lower the lime content of soil, the greater the vegetation cover, density and diameter of *T. kotschyanus*.

Group IV: Involves a species *B*. dantoniae. In this group, the vegetation cover, volume, and density of *T*. kotschyanus were estimated 3.3%, 516.5 cm^3 and 1.75 per m² respectively. Meanwhile, the vegetation cover and density of *T*. kotschyanus are reduced than groups I and III. Soils with high sand and nitrogen contents and low clay content provide a suitable environment to form this type of vegetation.

AXIS	Eigenvalues	Variance (%)	Cum.of Var (%)	Broken–Stick
PCA1	7.216	48.107	48.107	Eigenvalue 3.318
PCA1 PCA 2	4.185	27.899	76.006	2.318
PCA 3	1.921	12.808	88.814	1.818
PCA 4	1.678	11.186	100.00	1.485

Table 3. The variance of each axis

Variable	Eigenvector			
v al lable	PCA 1	PCA 2	PCA 3	PCA 4
Silt (%)	0.3532	0.0363	-0.1598	0.1642
Caco3 (%)	<u>0.3319</u>	0.2080	-0.1103	0.0150
Organic Matter (%)	-0.3208	0.1707	-0.1227	-0.2521
Slop (%)	-0.3374	-0.1139	-0.0317	0.2700
pH	<u>0.3602</u>	0.0180	-0.1096	0.1532
Elevation (m)	<u>-0.2976</u>	-0.2603	0.1203	0.1718
Sand (%)	-0.2466	<u>0.3310</u>	-0.0267	-0.2457
Clay (%)	-0.0378	<u>-0.4589</u>	0.1936	0.1470
Nitrogen (%)	-0.2956	<u>0.2961</u>	-0.0319	0.0215
Phosphorus (ppm)	-0.0551	0.2155	<u>0.5716</u>	0.3050
Depth (cm)	0.0706	0.0965	<u>0.6849</u>	-0.1196
Gravel (%)	-0.1933	-0.2840	-0.2247	<u>0.4198</u>
EC	-0.0787	0.2825	-0.1531	0.4307
Potassium (ppm)	-0.2153	0.2930	-0.0543	0.4233
Aspect	0.2872	0.1720	0.0890	0.3980

Table 4.	Eigenvector	values of	of the	variables	in each	ı axis	of the	PCA	technique	e

* The bold and underline coefficients have significant correlation with the relevant axes

Fig. 3. The scatter plot of grassy habitats in relation to environmental factors in the study area using PCA analysis

Discussion and Conclusions

According to the ecological groups obtained by TWINSPAN analysis, some groups are common in dominant species. The index species of groups IV and V was *Agropyron intermedium* while the index species of groups III and IV was *Astragalus gossypinus*. The similarity in index species of groups implies the similar habitats on which they grow. Moreover, the first group is characterized *Sophora alopecuroides* and *Astragalus paralogues*while the group II is haracterized with index species *Bromus dantoniae* that show the difference in habitat conditions. Due to similarity of some ecological groups, it was possible to get a less numbers of groups through extending the threshold distinguishing the ecological group. However, in order to get a higher accuracy, it was decided to conduct the analysis in the present level that generated five vegetation groups. Consequently, comparing the outcomes of TWINSPAN analysis with the map of vegetation types verified the classification of vegetation groups.

Identifying vegetation the communities successfully demonstrated the differences in environmental requirements of the five main vegetation types. The results show that besides observing T. kotschyanus as a common species within all habitats, the species is seen either dominant or second dominant species in the vegetation communities. Analysis of variance of quantitative characteristics of T. kotschyanus showed that except the distances of stands, there are significant differences between other quantitative traits in the study sites. Furthermore, the quantitative characteristics of T. kotschyanus including vegetation cover, density, volume, and the diameter show the highest amount in groups II and IV representing high adaptation of the species to the habitats. However. vegetation cover and density of T. kotschyanus represent the least value at group III representing less adaptation of the species to the habitats.

Results of this research reveal that distribution of *T. kotschyanus* is highly affected by soil characteristics as well as topographical factors. However, in elevations, topographical factors show higher influence on vegetation cover and density variations than the other variables.

Davies (2007) stated that structural attributes of *Artemisia tridentata* including height, volume and crown cover are less affected by environmental factors. Therefore, in low elevated areas, the quantitative parameters of species vary as a function of edaphic factors. Likewise, Mohtashamnia *et al.* (2007)

reported that in elevations, edaphic factors show less effect on the quantitative parameters of species than topographical factors. Topographical an important role in factors play association with precipitation towards increasing the crown cover, and density well as establishment of Т. as kotschyanus while other quantitative parameters such as species height, diameter and volume are not changed significantly. Under these circumstances, plant size (diameter, height and volume) is probably affected by some other ecological factors related to interspecies competition. According to findings of Hasani (2004) and Jamshidi et al. (2006), T. kotschyanus is highly tolerated to elevation due to its extensive distribution in different elevations and diverse soil types. Most of the conducted researches Thymus genus demonstrate on remarkable resistance of the species against abiotic and biotic environmental stress. In line with findings of Hasani (2004), this study did not find a significant impact of aspect of slope on development of T. kotschyanus communities. Hasani (2004)demonstrated that the best habitats of T. kotschyanus societies in terms of vegetation cover, density, diameter, height, and volume are developed in elevations ranging between 2300 - 2500 m and slopes ranging between 20% -40%.

According to the obtained results, T. kotschvanus grows rapidly in sandy loam, light textured, high nitrogen content, rich in organic matter content, and the noncalcareous soils. In addition, evaluation of habitat of T. kotschyanus reveals that although the species forms some communities in low elevated areas as the dominant one, its crown cover is much less than those developed in the elevations ranging between 2300 - 2500 m. T. kotschyanus is frequently seen Agropyron along with species intermedium, Astragalus gossypinus,

Bromus dantoniae, *Achillea millefolium* and *Astragalus paralogues* in the studied habitats.

Literature Cited

- Akbarzadeh, M., 2003. Medicinal plants of the family Labiatae in the Vaz Mazandaran region. *Iranian Jour. Medicinal and Aromatic Plants.*, 19(1): 37-45. (In Persian).
- Boira, H. and Blanquer, A., 1998. Environmentalfactors affecting chemical variability of essential oils in *Thymus piperella* L. *Biochemical Systematics and Ecology.*, 26(8): 811-822.
- Corticchiato, M., Tomi, F., Bernardini, A. F., Casanova, J., 1998. Composition attnd infraspecific variability of essential oil from *Thymus herba barona* Lois Biochem. Syst. Ecol., 26: 915-932.
- Davies, K. W., 2007. Environmental and vegetation relationships of the *Artemisia tridentata* spp. *wyomingensis* alliance. *Jour. Arid Environments.*, 70: 478-494.
- Escudero, A., Iriondo, J. M., Olano, J. M., Rubio A., Somolinos, R. C., 2000. Factor affecting establishment of a Gypsophyte, the case of *Lepidium subulatum* (Brassicaceae). *Am. Jour. Bot.*, 87: 861-871.
- Habibi, H., Mazaheri, D., Majnon Hossini, N., Chaiechi, M., Fakhretabatabaie, M., 2006. The height of the essential oils and medicinal compounds *Thymus kotschyanus* Boiss. (Case Study: Taleghan rangelands). *Jour. Research* and Development, 19(8): 2-10. (In Persian).
- Hasani, J., 2004. Identification and ecology of two species of aromatic plants *Ziziphora* sp. and *Thymus* sp. in Kurdistan. *Iranian Jour. Medicinal and Aromatic Plants*, 20(1): 1-17. (In Persian).
- Hill, M. and Hill, O., 1979. TWINSPAN A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes. Cornell University, Ithaca, New York.
- Jamshidi, A., Aminzadeh, M., Azarnivand, H., Abedi, M., 2006. High impact on the quantity and quality of plant oils *T. kotschyanus* (Case Study: Tar Lake). *Iranian Jour. Medicinal and Aromatic Plants*, 18(5): 17-22. (In Persian).
- Kent, M. and Coker, P., 1992. Vegetation description and analysis: a practical approach. John Wiley and Sons.
- Larti, M. and Ghasempour, S., 2009. Identifying and assessing ecological *Thymus* species to

domestication and cultivation in West Azerbaijan. Booklet published by Agriculture and Natural Resources Research Center of West Azerbaijan, Iran. 6 pp. (In Persian).

- Mirdavoodi, H. and Babakhanloo, P., 2007. Identification of medicinal plants of Markazi province. Iranian *Jour. Medicinal and Aromatic Plants*, 23(4): 544-559. (In Persian).
- Mohtashamnia, S., Zahedi Amiri, Gh., Arzani, H. 2007. Vegatation ordination of steppie Rangelands in relation to the edaphical and physiographical factors. *Agricultural Sciences and Natural Resources Jour.*, 14(6): 111-123. (In Persian).
- Stahl-biskup, E., 1991. The chemical composition of *Thymus* sp. oil. J. Essent. Oil. Res., 3: 61-82.
- Zare Chahouki, M. A., 2006. Modelling the spatial distribution of plant species in arid and semi-arid rangelands. Ph.D. Thesis in Range Management, Faculty of Natural Resources, University of Tehran, Iran.180 pp. (In Persian).
- Zargari, A., 1990. Medicinal Plants (Volume IV). Printing and Publishing Institute of University of Tehran., 923 pp. Tehran, Iran. (In Persian).

بررسی عوامل محیطی مؤثر بر پراکنش جوامع گیاهی گونهٔ Thymus kotschyanus (مطالعهٔ موردی: مراتع طالقان میانی، ایران)

لیلا درویشی^{الف}، محمدعلی زارع چاهوکی^ب، محمدجعفری^ع، حسین آذرنیوند^ع، مجید یوسفی ولیک چالی^د

^{الف}دانش آموخته کارشناسی ارشد مرتعداری دانشگاه تهران ^۷استاد گروه احیاء مناطق خشک و کوهستانی دانشکده منابع طبیعی دانشگاه تهران (نگارنده مسئول)، پست الکترونیک: mazare@ut.ac.ir ⁵دانشیارگروه احیاء مناطق خشک و کوهستانی دانشکده منابع طبیعی دانشگاه تهران ^ددانشجوی دکتری جنگلشناسی و اکولوژی جنگل دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیدہ. رشد و تولید گیاهان در اکوسیستمها و رویشگاههای طبیعی مختلف، تحت تأثیر عوامل محیطی قرار دارد. به منظور بررسی جامعهشناسے گونـهٔ آویشـن کـوهی (Thymus kotschyanus)، مراتـع طالقـان میانی که یکی از رویشگاههای طبیعی این گیاه است، انتخاب گردید. با توجه به هدف تحقیق بعد از بازیـد مقدماتی و انتخاب منطقهٔ مورد مطالعه در منطقهٔ معرف هر تیب نمونهبرداری به روش تصادفی– سیستماتیک از طریق پلاتگذاری (۴۰ پلات) در امتداد ۴ ترانسکت ۱۰۰ متـری انجـام شـد. در هر یلات فهرست گیاهان موجود، درصد تاج یوشش، سنگ و سنگریزه و خاک لخت تعیین شد. همچنین پایههای آویشنی که داخل پلات قرار گرفت در نظر گرفته شد و ارتفاع، بزرگترین و کوچکترین قطر تعیین شد. در مورد نمونهبرداری از خاک در هر واحد نمونهبرداری ۸ پروفیل خاک در ابت.دا و انتهای هـر ترانسکت حفر و تا عمق ریشهدوانی گیاهان نمونه خاک برداشت شد. همچنین برای هر واحد نمونهبرداری، اطلاعات طول و عـرض جغرافیایی، شـیب، جهـت و ارتفـاع از سـطح دریـا تعیـین شـد. در آزمایشگاه خصوصیات خاک شامل سنگریزه، بافت، درصد آهک، ماده آلی، اسیدیته، هدایت الکتریکی، نیتروژن، فسفر و یتاسیم اندازه گیری گردید. طبقهبندی یوشش گیاهی با کمک روش TWINSPAN انجام شد و در مجموع ۵ تیپ گیاهی در منطقه مورد مطالعه تشخیص داده شد. سپس به منظور تعیین عوامل مؤثر بر تغییرات ویژگیهای یوشش گیاهی T. kotschyanus از روش تجزیهٔ مؤلفههای اصلی (PCA) استفاده شد. نتایج بدست آمده نشان داد که از بین عوامل مورد بررسی شیب، ارتفاع از سطح دریا، درصد ماده آلی، آهک، بافت خاک، نیتروژن بیشترین سهم را در تغییرات ویژگیهای یوشش گیاهی داشتند. نتایج کلی حاصل از این تحقیق نشان میدهد که بهترین محل رویش این گیاه از لحاظ ویژگیهای کمی به منظور رسیدن به تولید بیشتر و با کیفیت بهتر، ارتفاع ۲۳۰۰ الی ۲۵۰۰ متر و شیب ۲۰ الی ۴۰ درصد و خاکهایی با حاصلخیزی بالا، بافت لومی ماسهای و سبک، دارای نیتروژن و ماده آلی بالا و مقدار کم آهک میباشد.

كلمات كليدى: مراتع طالقان ميانى، TWINSPAN ، Thymus kotschyanus، تجزية مؤلفههاى اصلى