

مجله دنیای میکروبها ۱٤٠٢ سال شانزدهم شماره سوم (پیاپی ٥٦) پاییز ۲۳۲ – ۲٤۲ مفحات ۲٤

آنالیز درون رایانهای پروتین pMGA1.2 در سویههای واکسن و بیماریزای

مايكوپلاسما گالىسپتيكوم

فرزانه پورکریمی فتیده'، مجید اسمعیلیزاد'*، محمد کارگر^۳، مجید تبیانیان^ئ، فرشید کفیلزاده[°]

^ادانشجوی دکتری، گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران. ^۲دانشیار، بخش تحقیق و توسعه، موسسه تحقیقات واکسن و سرم سازی رازی کرج، ایران. ^۳استاد، گروه میکروبیولوژی، موسسه آموزش عالی زند شیراز، شیراز، ایران. ^٤دانشیار، بخش ایمونولوژی، موسسه تحقیقات و اکسن و سرم سازی رازی کرج، ایران. [°]استاد، گروه میکروبیولوژی، واحد جهرم، دانشگاه آزاد اسلامی، جهرم، ایران.

چکیدہ

س*ابقه و هدف: مایکوپلاسما گالی سپتیکوم*، عامل بیماری مزمن تنفسی در جوجههای ماکیان، از نظر اقتصادی مهمترین گونه مایکوپلاسما است که خسارات اقتصادی فراوان در سراسر جهان ایجاد میکند. فراوان ترین پروتینهای غشایی در م*ایک وپلاسما گالی سپتیکوم* pMGA، لیپوپروتین هایی با حدود ۲۷ کیلو دالتون می باشد. ژنهای خانواده pMGA پتانسیل فوق العاده ای برای ایجاد تنوع در ساختار آنتی ژنی سطح سلول های مایکوپلاسما گالی سپتیکوم دارند. هدف از این مطالعه مقایسه الگوهای پروتین و pMGA بین سویه ها و میزبان های مختلف مایکوپلاسما گالی سپتیکوم بود.

مواد و روش ها: ژنومهای کامل *مایکوپلاسما گالیسپتیکو*م در GenBank تا ژانویه ۲۰۲۰ بررسی و توالیهای pMGA1.2 شناسایی، گروهبندی و کدگذاری شدند. پروتین pMGA1.2 با طول **۱۰۰** اسید آمینه بین دو میزبان مختلف (مرغ و فنچ خانگی) توسط نرمافزار بیوانفورماتیک در ژنومهای کامل *مایکوپلاسما گالی سپتیکو*م مورد بررسی قرار گرفت.

یافته ها: ژن pMGA1.2 در سویه های مختلف *مایکو پلاسما گالی سپتیکو*م پنج گروه اصلی با بیش از ۱۰ درصد واگرایی نشان داد. بر اساس تراز چند توالی، یک الگوی خاص در جدایه فنچ خانگی شناسایی شد. جالب توجه است که دو موتیف خاص DNQNVSNQ487 ٤۸ و NVSSPSY647 639 در ژن pMGA1.2 از سویه TS-11 یافت شد که می تواند به عنوان نشانگر برای شناسایی و تمایز این سویه واکسن از *مایکو پلاسما گالی سپتیکو*م بیماری زا استفاده شود.

نتیجه گیری: در این مطالعه نشان داده شد که پروتین pMGA1.2 دارای نواحی آنتیژنی اپیتوپ سلول– B است که در تمام جدایهها حفظ شده است و میتواند در طراحی تست سرولوژیکی برای تشخیص آنتیبادی علیه *مایکوپلاسماگالی سپتیکو*م قابل استفاده باشد. *واژگان کلیدی:* In silico، *مایکوپلاسما گالی سپتیکو*م، pMGA1.2.

دریافت مقاله: ۲/۲/۸ ۱٤۰

ويرايش مقاله: ١٤٠٢/٤/٢٠

پذیرش مقاله: ۱٤۰۲/۷/۱۰

*) آدرس برای مکاتبه: بخش تحقیق و توسعه، تحقیقات واکسن و سرم سازی رازی، کرچ، ایران.
m.esmaelizad@rvsri.ac.ir
پست الکترونیک: ۹۱۲۷۳۸۳۰۸۲

حقوق نویسندگان محفوظ است. این مقاله با دسترسی آزاد و تحت مجوز مالکیت خلاقانه (/http://creativecommons.org/licenses/bync/4.0) در فصلنامه دنیای میکروبها منتشر شده است. هرگونه استفاده غیرتجاری فقط با استناد و ارجاع به اثر اصلی مجاز است.

Journal of Microbial World Volume 16, No. 3, December 2023

In silico analysis of pMGA1.2 protein of *Mycoplasma gallisepticum* in vaccine and pathogenic strains

Farzaneh pourkarimi Fatideh¹, <u>Majid Esmaelizad²</u>, Mohammad Kargar³, Majid Tebianian⁴, Farshid Kafilzadeh⁵

¹PhD Student, Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran. ²Assistant professor, Department of Research and Development, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. ³Professor, Department of Microbiology, Zand Institute of Higher Education Shiraz, Shiraz, Iran. ⁴Assistant Professor, Department of Immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education on Granization (AREEO), Karaj, Iran. ⁵Professor,

Department of Microbiology, Jahrom Branch, Islamic Azad University, Jahrom, Iran.

Abstract

Background & Objectives: Mycoplasma gallisepticum, the pathogen responsible for chronic respiratory disease in chickens, is the most economically important species of *Mycoplasma that* causing tremendous economic losses worldwide. The most abundant membrane proteins in *M. gallisepticum* are pMGA, lipoproteins of about 67 kDa. The pMGA family genes have an extraordinary potential for diversifying antigenic structure on the surface of *Mycoplasma gallisepticum* cells. The aim of this study was to compare the pMGA protein patterns between different strains and hosts of *Mycoplasma gallisepticum*.

Material & Methods: All *Mycoplasma gallisepticum* full genomes available in GenBank till January 2020 were considered and pMGA_{1.2} sequences were identified, grouped and coded. pMGA_{1.2} protein with a chain of 650 amino acids between two different hosts (poultry and house finch) was studied by bioinformatics software in all *Mycoplasma gallisepticum* full genomes.

Results: pMGA_{1.2} gene among different strains of *Mycoplasma gallisepticum* showed five major groups with more than 10 percent divergence. Based on multiple sequence alignment, a specific pattern was identified in house finch isolates. Interestingly, two specific motifs₄₈₀DNQNVSNQ₄₈₇ and ₆₃₉SSNVSSPSY₆₄₇ were found in the pMGA_{1.2} of TS-11 strain, which can probably be used as markers to identify and differentiate this vaccine strain from pathogenic *Mycoplasma gallisepticum*.

Conclusion: This study showed that pMGA_{1.2} protein have some B-cell epitope antigenic regions that are conserved among all isolates and might be applicable to design serological test for detection antibody against *Mycoplasma gallisepticum*.

Keywords: pMGA1.2, Mycoplasma gallisepticum, In silico.

Received: 28 A	April 2023	I	Revised: 1	1 July 2023		Acc	cepted:	2 Octob	er 2023
Introduction				causing si	gnifi	cant ecor	nomic d	lamages	to the
Mycoplasma	gallisepticum	the	main	poultry	ind	ustry	(1).	Мусс	plasma
respiratory patl	hogen of chickens	s and	turkeys	galliseptic	cum	causes	respi	ratory	rales,

Correspondence to: Majid Esmaelizad Tel: +98 9127383082 E-mail: m.esmaelizad@rvsri.ac.ir Journal of Microbial World 2023, 16 (3): 232 - 244 DOI:10.30495/jmw.2023.1982503.2058 causing significant economic damages to the poultry industry (1). *Mycoplasma gallisepticum* causes respiratory rales, coughing, ocular and nasal discharge, conjunctivitis, reduction in feed intake, lower and uneven growth, decline in egg production, and increase in mortality. In addition, the

Copyright © 2019, This article is published in Journal of Microbial World as an open-access article distributed under the terms of the Creative Commons Attribution License. Non-commercial, unrestricted use, distribution, and reproduction of this article is permitted in any medium, provided the original work is properly cited.

infection may be exacerbated by complications with *E. coli* and viral pathogens, such as infectious bronchitis virus, rather than a single infection (2).

Mycoplasma gallisepticum first jumped from poultry to house finches in the early 1990s (3). This bacterial pathogen was identified as the reason of conjunctivitis in free-ranging house finches and other songbird species in the eastern United States and Canada in 1994 (4,5). By Multi Locus Sequencing Typing (MLST), identical sequence types were identified in backyard poultry and commercial poultry suggesting the potential spread of Mycoplasma gallisepticum between backyard and commercial poultry (6).

The serum agglutination reaction (SAR) test, hemagglutination inhibition (HI), and ELISA are serology tools recommended for diagnosis of Mycoplasma gallisepticum infection (7). Phylogenetic analyses reveal that mycoplasmas have undergone a degenerative evolution from related, low G+C content, the cell-wall-less eubacteria (8). It is well documented that Mycoplasma gallisepticum contains cell surface proteins with hemagglutinating (pMGA/VlhA), or adhesive properties like Mgc2, α -enolase or the uncharacterized proteins P30, P48, P50, P80 (9, 10).

Mycoplasma gallisepticum lacks a cell wall and has only a plasma membrane, which contains about 200 proteins as the major membrane protein antigens and immunogens (11). pMGA, a surface antigen, has been explained as a lipoprotein from analysis of the gene sequence (12). Lipoproteins are targeted by the immune system (13).

Various *Mycoplasma gallisepticum* strains include 30 to 70 pMGA genes, therefore a large amount of their genome has been specified to encoding several haemagglutinins. A large part of the pMGA molecule can be bound by monoclonal antibodies on intact cells, then seems to be placed on the surface of *Mycoplasma gallisepticum* (14,15).

Past report characterized the appearance of size variants proteins appropriated of by monoclonal antibodies in Mycoplasma gallisepticum vaccinal F-strain (16). It has been showed that LP64 and pMGA (being probably the same protein) are involved in the attachment of Mycoplasma gallisepticum to the poultry respiratory epithelium (17). Three live Mycoplasma gallisepticum vaccines were commercially accepted including 6/85 strain, ts-11 and F-strain which have effectively reduced damages related to Mycoplasma gallisepticum infection in the field (18).

Attenuated vaccines stimulate immune responses by cellular and humoral immunities. TS-11 and 6/85 were commercially produced using serial passage or chemical mutagenesis F-strain while the vaccine is а naturally-attenuated field isolate. In general, F-strain derived live vaccines induce higher levels of antibodies against M. gallisepticum than ts-11 derived vaccines, whereas 6/85 derived live vaccines often induce low or no detectable serological response during the first months post vaccination (19).

Nine members of the pMGA gene family have been sequenced (pMGA1.1 to pMGA1.9) in *M.gallisepticum* S6 strain. High level of identity (>95%) was observed in pMGA_{1.2} and pMGA1.1 genes of *Mycoplasma gallisepticum*. But other pMGA genes exhibit much lower degrees of sequence identity; however, there are districts of amino acid sequence conserved in various pMGA proteins (20).

The aim of this study was in silico analysis of $pMGA_{1,2}$ protein in order to investigate the potential of this protein in diagnosis or

Differentiate vaccinal and pathogenic strains.

Materials and methods

1. Sequence collection: Nucleotide sequence alignment was carried out using BioEdit software and MegAlign. All (18) Mycoplasma gallisepticum full genomes available in GenBank till January 2020 were collected at NCBI website. pMGA1.2 sequences of vaccine strains and field isolates of the bacteria were collected from GenBank databases (https://www.ncbi. nlm.nih.gov) under accession CP028147 numbers (Avipro), CP028146 (F99), CP001873 (Str.F), CP044224 (6/85), CP044225 (ts-11), CP044226 (mx-4), CP006916 (S6), LS991952 (NCTC10115), AE015450 (R_{low}) and CP001872 (R_{high}), CP003513, CP003512, CP003511, CP003510, CP003508, CP003507 CP003509, and CP003506 which were released to the public database up to Jan 1, 2020.

2. Multiple Alignments, sequences analysis and Phylogenetic Analysis: Multiple sequence alignments using ClustalW method of MegAlign software were performed in order to identify pMGA_{1,2} sequences. The FASTA and BLAST programs (BLASTN and BLASTP) were used to search the DNA and protein databases. Nucleotide identity of the pMGA1.2 sequences of Mycoplasma gallisepticum full genomes was determined using the nucleotide BLAST algorithm with GenBank database (http://www.ncbi.nlm.nih.gov). Nucleotide and protein sequences of pMGA_{1.2} were compared and the percentage of divergence was calculated by MegAlign software. Deletion, insertion, amino acid substitutions in different strains and host groups were evaluated. The nucleotide alignment of sequences of pMGA_{1.2} genes were detected based on

the phylogenetic tree.

3. Epitopes Prediction: Antigenic regions and Linear B-cells epitopes were predicted in different strains of pMGA_{1.2} protein by online IEDB (Immune Epitope Database and Analysis Resource) software http://www.iedb.org/.

Results

1. Multiple Alignment of pMGA_{1.2} Protein in different strains: Sequences of pMGA_{1.2} protein were analyzed by MegAlign softwares. The phylogenetic tree of the pMGA_{1.2} gene among different strains of *Mycoplasma* gallisepticum showed five major groups with more than 10 percent divergence: group A: include house finch isolates, B: include F strains (vaccine strains), C: 6.85 strain, D: S6 and R strains, and E: TS-11 strains (Vaccine strains) (Fig.1, Table1).

Ten insertion/deletion in amino acid level, 39 single amino acid variation (SAV) and 50 single amino acid polymorphism (SAP) were observed based on multiple alignment of pMGA_{1.2} protein among different strains.%100 similarity among house finch isolates was observed. The minimum similarity is related to strain S6 and TS-11 strain. The divergence between these two strains is more than 10%.

A repeated ${}_{29}$ PTPNPTPN ${}_{36}$ sequence was observed in position 28 to 36 of the PMGA ${}_{1.2}$ protein. The sequences are divided into two major groups based on this repeated motif. The sequences of house finch and F and S6 strains were repeated twice and the rest showed one repetition. In the TS-11 strain, one repeat of a " ${}_{29}$ PTPNPTPN ${}_{36}$ " sequence, a T ${}_{28}$ amino acid deletion and an N ${}_{42}$ insertion were observed. Two specific amino acids I ${}_{76}$ and N ${}_{95}$ were observed in two strains MX-4 and S6.

Two specific motifs 480DNQNVSNQ487 and

₆₃₉SSNVSSPSY₆₄₇ were found only in the sequence of TS-11 strain, which can probably

be used as markers to identify this strain. In addition, two other specific amino acid markers, $_{499}SS_{500}$ and S_{507} were observed in this strain.

A specific pattern was also observed in F strain. Specific amino acids T_{374} , N_{555} , A_{560} , S_{568} , E_{572} , A_{593} , Q_{596} , $_{600}VAN_{602}$ and D_{648} were identified in F strains which can be used as markers to identify F strains. Other specific pattern with eleven amino acids S_{184} , K_{453} , N_{478} , K_{510} , M_{513} , I_{531} , R_{551} , H_{562} , L_{610} , S_{630} , and S_{641} identified in house finch isolates.

Comparison of $pMGA_{1.2}$ protein sequence of strain S6 with other sequences showed seven specific amino acids K₃, S₂₉₅, V₃₅₈, K₃₇₁, D₃₈₀, R₅₃₈, E₅₃₉ and G₅₅₃ for S6. Three specific amino acids K₄₆, G₇₈ and I₃₉₉ were found in MX-4 strain.

2. Antigenic region and Epitope prediction: Based on IEDB immunoinformatics, databases 21 to 24 epitopes were identified on $pMGA_{1,2}$ protein (Threshold 1.007, Kolaskar & Tongaonkar method) (table2). Two specific linear B-cell epitopes for MX-4 and S6 strains and four specific epitopes for Fstrains were observed. The results showed that despite the amino acid differences between the strains, there are the same antigenic parts between the all strains, and this evidence has a good potential in using the structure of pMGA protein in serological tests to identify antibodies against Mycoplasma.

Bioinformatics studies show that this protein is stable (instability index 27) and has resistance to temperature as well as good solubility (hydropathicity -0.408).

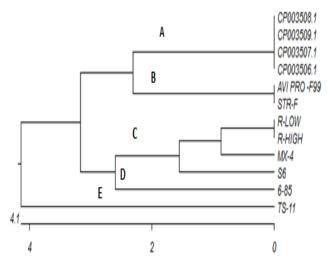
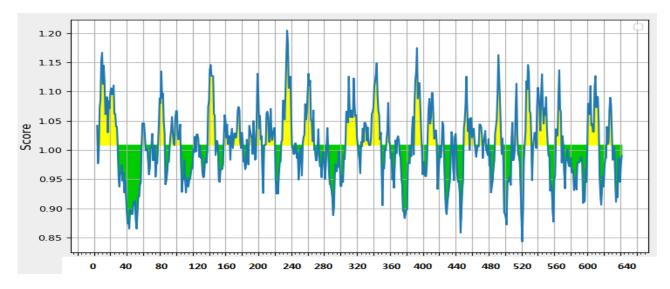


Fig 1: A phylogenetic tree based on the alignment of the protein sequences of the pMGA_{1.2} gene in strains of *Mycoplasma gallisepticum*.

Table	1:	Perce	ent o	of	identity	and	divergence	in	pMGA
protein	n be	etween	n dif	fe	rent strai	ns.			

						P	ercent	Identi	ty –						
		1	2	3	4	5	6	7	8	9	10	11	12		
	1		96.7	94.6	97.2	97.2	92.4	92.4	88.5	92.9	92.9	92.9	92.9	1	S6
	2	3.3		95.0	98.3	98.3	93.3	93.3	88.7	93.5	93.5	93.5	93.5	2	MX-4
	3	5.7	5.1		95.8	95.8	93.6	93.6	91.5	93.5	93.5	93.5	93.5	3	6-85
	4	2.8	1.7	4.3		100.0	93.6	93.6	90.1	93.8	93.8	93.8	<mark>93.8</mark>	4	R-LOW
5	5	2.8	1.7	4.3	0.0		93.6	93.6	90.1	93.8	93.8	93.8	93.8	5	R-HIGH
	6	6.5	5.5	6.3	5.1	5.1		100.0	92.0	95.2	95.2	95.2	95.2	6	AVI PRO -F99
	7	6.5	5.5	6.3	5.1	5.1	0.0		92.0	95.2	95.2	95.2	95.2	7	STR-F
5	8	9.5	10.0	7.5	8.4	8.4	7.9	7.9		91.3	91.3	91.3	91.3	8	TS-11
	9	7.1	6.3	6.5	6.0	6.0	4.6	4.6	8.4		100.0	100.0	100.0	9	CP003506.1
	10	7.1	6.3	6.5	6.0	6.0	4.6	4.6	8.4	0.0		100.0	100.0	10	CP003507.1
	11	7.1	6.3	6.5	6.0	6.0	4.6	4.6	8.4	0.0	0.0		100.0	11	CP003508.1
	12	7.1	6.3	6.5	6.0	6.0	4.6	4.6	8.4	0.0	0.0	0.0		12	CP003509.1
		1	2	3	4	5	6	7	8	9	10	11	12		

A higher similarity in the pMGA protein structure is observed between F vaccine and pathogenic strains s6, MX-4 compared to ts-11 vaccine strain (table 1).


V K R K N I L K F V S L L G I G S F V M L A A A S C T T P T P N P T P N P T P N P N P P S - G G M N G G D T N P G D G Q G M M 10 20 30 40 50 66 1
1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
M
AASQELAAARMGLTTVFDSKAKNLGLYVDYKKTQQTLTKAYDAAKTVLDNSSSTTQNLNI
<u>A A S Q E L A A A R M G L T T V F D S K A K N L G L Y V D Y K K T Q Q T L T K A Y D A A K T V L D N S S S T T Q N L N</u>
70 80 90 100 110 12
0
6
6
6
6
0
0
\mathcal{O}
· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·
Ο Ε

								1	30								1	40									15	50							1	60								1	170								- 3	180	2
	•			•			•	•	•			•				•	•	•	•	•	•	•	•	•	•	•		•		•	• •		•		•	• •		•			•	•	А	D	•	•	-	• •			•	•			<i>S6</i>
	•			•			•	•	•	а.		•				•	•	•	•	•	•	•	•	•	•	•		•	•	•	• •		•	•	•	• •	• •	•			•		•	•	•	•	•	• •		•	•	•	•		MX-4
	•			•	•	•	•	•	•	а.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			ĸ	•	• •	• •	•	•	•	• •		•	•		•	•	А	D	•	•	•	• •	• •	•	•	•	•	•	6-85
	•			•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		. 2	•	•	• •	• •	•	•	•	• •		•	•	•	•	•	А	D	s	•	•	• •	• •	•	•	•	•	•	R-LOW
	•			•			•	•	•		•	•				•	•	•	•	•	•	•	•	•	•	•				•	• •			•	•			•			•		А	D	s	•	•	• •				•			R-HIGH
	•			•			•	•	•			•				•	•	•	•		•	•	•	•	•	•		•		•	• •	• •			•	• •		•					•		•	•	•	• •	• •			•	-		AVI PRO -
	•			•			•	•	•			•				•	•	•	•		•	•	•	•	•	•		•		•	• •				•	• •		•									-								STR-F
	•			•			•	•	•			•					•	•	•		•	•	•	•	•	•		E		•	• •				•			A					А	D			•								TS-11
									•										•			•	•																														-		CP003506.
																																																							CP003507.
																																																							CP003508.
																																																							CP003509.
	G J	5 3	r 1	, A	G	ĸ	A	I	T	т э	. 1	. 1	E	₽	v	E	G	D	P .	L	т.	A.	D	v	v	ма	м,		T	ĸ.	<i>I</i> 1	V E	A	I	ĸ	DI	εv	7 L	N	₽	Q	ĸ	E	N	A	T	K I		4 D	s	F	v	ĸ	2	Majority
-	G	5 3	Y 1) A	G	ĸ	A				1	. 1	E	P	v	E				L	τ.	A	D	v	v i	M I			T	ĸ.	11	V E	A	I	_		5 V	7 1	N	P	Q	ĸ	E				ĸ	L .	4 <i>D</i>	s	F	v		-	
	G	6 3	Y 1	A	G	ĸ	A		7 90		1	. 1	E	P	v	E		P		L	τ.	A .	D	v	v	м	21 21		T	ĸ.	11	VE	A	I	_	<u>p</u> 20	εv	7 1	N	P	0	ĸ	E		A 230		ĸ	L .	A D	s	F	v		0 240	
-								1	90								2	00									2	0							2	20								2	230								- 2	240	
-								1	90					:	:	:	2		:		:		s	A	:		2		:	:		: :	:	:	2	20			:	:	:	:	:	2	230	-	-		: :	:	:	:	:	240	s6 мх-4
-								1	90					:	:	:	2		:		:		s	A	:		2		:	:		: :	:	:	2	20			:	:	:	:	:	2	230	-	-		: :	:	:	:	:	240	s6
-								1	90					:	:	:	2		•			-	s s	A A			2		:	•			:	:	2	20			:	:	•	:	:	2	230	-	-		: :	:	:	:	:	240	s6 мх-4
-								1	90					:	:	:	2		•			-	s s	A A		-	21	0	:				:	:	2	20			:	:	•	:	:	2	230	-	-		: :	:	:	:	:	240	S6 MX-4 6-85
-								1	90					:	:	:	2		-	-	-	-	s	A A			2	0	•	-					2	20				:	· · ·	:		2	230	-	-		: :	:	:	:	:	240	S6 MX-4 6-85 R-LOW
-								1	90								2		-	-	-	-	s	A A		-	2	0	•	-					2	20					•			2	230	-					•	:	:	240	S6 MX-4 6-85 R-LOW R-HIGH
-								1	90								2		-	-	-	-	s	A	-	-	2	0		-					2	20		-			•			2	230	-					•	:	:	240	S6 MX-4 6-85 R-LOW R-HIGH AVI PRO -
-				-				1	90		-	-				-	2	-	-	-		-	s	A		-	2	0		-					2	20		-			-			2	230	-					•	:	:	240	S6 MX-4 6-85 R-LOW R-HIGH AVI PRO STR-F
-				-				1	90		-	-					2			-	-		S	A			21	0		-			• • • • • • •		2	20					· · · ·			2	230	-					•	:	:	240	56 MX-4 6-85 R-LOW R-HIGH AVI PRO 5TR-F TS-11
-					-			1	90		-	-					2			-	-	-	S	A			21	10	· · · ·	-			• • • • • • • • • • • •		2	20	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • •	•	· · · ·		• • • • • • • • •	2		-					•	:	:	240	56 MX-4 6-85 R-LOW R-HIGH AVI PRO STR-F TS-11 CP003506.

	V	1	1	v.	ĸ	Б	ĸ	1	T	G	<u>v</u>	Ε	Е	À	1	H.	N	ĸ	A	ç	2.1	P	A	N		r.	s	F	1	7 (G	Y	- 2	5	v	<u></u>	1	1	6	5 3	r ,	A	T	G	2	1			Ι.	P	N	7	D	Y	A	2	R	T	I	F	T	N	G	1	0.	Ε	P	R	2.5	Majority
										2	250	0										2	60	0											1	27	0										28	10									1	290	0										30	0
240																																									. :	T																					s							s6
236																																									. 1	v																												MX-4
236																	ĸ																									. 1	N																											6-85
236																															•										. 1	v																												R-LOW
236					•	•		•	•	•							•										•				•										. 1	v	•	•							•	•	•													•				R-HIGH
240																																									. :	T																												AVI PRO -
240									•	•							•										•														. :	T		•								•	•																	STR-F
236					•			v	•	•									V	•							•				•										. :	T	N	•								•	•	•																
240				•	•	•	•	•	•	•						• [ĸ	•									•				•				•							•	•	•	•							•	•	•												•				
240																•	ĸ																																																					CP003507.
240				-	-	-	-	-	-	-	-	-	-			- I.		-	_			-	-	_			-	-			-	-			-	-								-	-	-	_			-		-	-	-	-	-	-		-	-	-		_			-	-	_		CP003508.
240	•			•	•	•	•	•	•	•		•	•			۰Ŀ	ĸ	•	•			•	•				•				•	•			•	•				•		•	•	•	•					•	•	•	•	•	•	•	•	•								•	•			CP003509.
					-	-		-	~	~	_							~				~	-				~	-			~	-		_								-	-			~			~ .	-	~		-		-	-										~				Madandan
	V	5	: 1	N	T	₽	A	D	G	Q	Ţ	М	v	Q	2	P	L	s	N	V	1	5	7	1	•	r.	s	L	2	1	G	T	6	3	A	ĸ	Y	- 1	1		5 1	F	T	Y	Y	G	ļ	2	s	T (G	Y	L	Y	F	₽	Y	ĸ	L	v	N	7	s	1	D	Q	M	R	1	Majority
	v	s	: 1	N	T	₽	A	D	G	-	7 310		v	2	2	P	L	s	N	v		-	20	_		r.	s	L	2	1	G	T	0	3	-	<u></u> 33	_	2	. 1		5 1	F	T	Y	Y	_	34	_	S	T	G	Y	L	Y	F	₽	_	<u></u> 350	_	V	N	7	s	. 1	D	<u>Q</u>	M	R	36	
300	_									3	310	0										3	20	0											3	33	0										34	10										350	0										36	
	_									3	310		A									3	20	o												33	o										34	10						•				350	o								v		36	0
296	_				:	:	:	:	:	3		:	A	:		:	:	:	:	:		3	20	o :			:	:	:		:	:			:	33	o :		:	:		:	:	:	:	:	34	10			:	:	:	:	:	:	:	350	o :	:	:	:	:		:	:	v	:	36	50 56 MX-4
296 296	_				•	:	v	:	:			,	A A				•	:	:			3	-	o : :			:	:		,		:			•	33	0 - -						•	:	:		34	:0				•	:	:	:	s	:	350	。 :	:	:	:	:			•	v :	•	36	50 56 MX-4 6-85
296 296 296	_				•		v	:	:	- - -		,	A					:	:			3	-	o			:	:		7	-					33	0							:	:		34		-			•		:	•	s		350	。 : :	:	:		-			- - -	v		36	50 56 MX-4 6-85
296 296 296 296	_				•		v	:	:	- - -		,	A			-		•	•	-		3	-	•			•			,	-	•			•	33	0 - - -							-			34		-							s		350	0	•			-		-	- - -	v		36	50 56 MX-4 6-85
296 296 296 296 300	1111111				•	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	- - - - - -		> · ·	A . A A A				•	•				3	20	o · · · · ·	•		•	•		7		•				33	0 		•				· · · · · · · · · · · · · · · · · · ·	•	•		34	10			· · ·	•	•	· · ·	-	s	-	350	· · · · · · · · · · · · · · · · · · ·	•	• • • • • •					· · · · · · · · · · · · · · · · · · ·	v		36	S6 MX-4 6-85 R-LOW R-HIGH AVI PRO - STR-F
300 296 296 296 300 300 296	1111111				· · · · · · · · · · · · · · · · · · ·		· · · v · · · · · · v	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		> · · ·	A . A A A A					•				3	20	o · · · · · · · · · · · · · · · · · · ·				•		7						33	0 			-			· · ·	•	•		34	10	-			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· . s · .		350	0 · · · · · · · · · · · · · · · · · · ·	•						· · · · · · · · · · · · · · · · · · ·	v		36	56 56 MX-4 6-85 R-LOW R-HIGH AVI PRO - STR-F TS-11
296 296 296 296 300 300 296	1111111				· · · · · · · · · · · · · · · · · · ·		· · · v · · · · · · v	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · · · · · · · · · · · · · · ·		> · · ·	A . A A A A					•				3	20	o · · · · · · · · · · · · · · · · · · ·				•		7						33	0 			-			· · ·	•	•		34	10	-			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· . s · .		350	0 · · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	v		36	50 56 MX-4 6-85 R-LOW R-HIGH AVI PRO - 5TR-F TS-11 CP003506.
296 296 296 296 300 300	1111111				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		31(- - - -	· · · · · · · · · · · · · · · · · · ·	A . A A A A .					· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			3	20	0 			· · ·	• • • • • • • •		7						33	0 			-			· · · · · · · · · · · · · · · · · · ·				34	10	-		· · ·	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·		350	0 · · · · · · · · · · · · · · · · · · ·	•						•	v		36	50 56 MX-4 6-85 R-LOW R-HIGH AVI PRO - STR-F TS-11 CP003506. CP003507.
296 296 296 300 300 296 300	11.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		-	-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	A . A				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				3	20	o · · · · · · · · · · · · · · · · · · ·				• • • • • • • • • • •								33	0 			-		-	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			34				· · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		350	o · · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •						· · · · · · · · · · · · · · · · · · ·	v		36	50 56 MX-4 6-85 R-LOW R-HIGH AVI PRO - STR-F TS-11 CP003506. CP003507.

370	380	390	400	410	420
					· · · · · s6
					R-HIGH AVI PRO
					STR-F
					TS-11
			N		CP00350
			N		CP00350
					CP00350
		• • • • • • • • • • • •	· · · · · · N · ·		CP00350
PMIGNMYLSSSP	NNWNKIYDDIFGI	ISVTTENNRTII	SVDALNGYSI	LASDWSTYIA	EYSGA Majoria
430	440	450	460	470	480
		<i>K</i>			
					R-LOW
					R-HIGH
					AVI PRO
					STR-F
		<u>.</u>	• • • • • • • • • •		T TS-11
					N CP00350
					N CP00350
					N CP00350
	KYYLIGYVGGTG		OFFDIACNT	SNDNYUFYU	NAPKAC Maior
<u>490</u>	<u>500</u>	<u>510</u>	520	530	<u>540</u> 540
					R E . S6
					MX-4
• • • • • • • • • • • • •				*	R-HIG.
				7	AVIPR STR-F
DN . NVS . Q				T	
					CP003
					CP003
				<u>I</u>	CP003
• • • • • • • • • • • • •	• • • • • • • • • • • • •	<u>K</u> <u>M</u>	• • • • • • • • • •	I	CP003
YYIKGVEASGD	PRDLKFSTGDMS	SNN-VTIKQLSI	ENLTT-LRT	FDTSATTEP	T P V T T D Major
					I K V I I D Major
550	560	570	580	590	600
550	G S	V F .	G T	· · · · · · ·	
550	G S	V F .	G	· · · · · · · · · · S	600
550	G S	· · · · · · · · · · · · · · · · · · ·	G	· · · · · · · · · S	600
550	G S	· · · · · · · · · · · · · · · · · · ·	GT G G G	· · · · · · · · · · · S · · · · · · · ·	600
550	G S	· · · · · · · · · · · · · · · · · · ·	G	· · · · · · · · · · S · · · · · · · · ·	600
550 v v v v	G S	· · · · · · · · · · · · · · · · · · ·	G T G T G T G T D	· · · · · · · · · · · · · · · · · · ·	600
550 v v v v v	G S	V = V + F + V + F + F + F + F + F + F + F +	G T G T		600
550 0	G S	V	G T		600
550 0	G S	V	G T		600
550 550 550 550 550 550 550 550	G S	V	G T G T		600
550 550 550 550 550 550 550 550	G S	V	G T G T		600
550 550 550 550 550 550 550 550	G S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		600 56 MX-4 6-85 R-HIG Q. V AVIPR Q. V AVIPR Q. V STR-F D. V TS-11 CP003 CP003 CP003
550 550 550 550 550 550 550 550	G S	V . F . V . F . V . F . V . F . 	G T	S	600 56 MX-4 6-85 R-HIG Q. V AVIPR Q. V AVIPR Q. V STR-F D. V TS-11 CP003 CP003 CP003
550 550 550 550 550 550 550 550	G S		G T	S	600 56 MX-4 6-85 R-HIG Q. V AVIPR Q. V AVIPR Q. V STR-F D. V TS-11 CP003 CP003 CP003
550 550 550 550 550 550 550 550	G S		G T	S S S S S S S S S S S S S S S S S S S	600 56 56 56 56 57 57 57 57 57 57 57 57 57 57
550 550 550 550 550 50 50 50 50	G S	V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - V F - - F - - - - - - - - - - - - - - - - - - - - - - - - - - - 63	G T	S S S S S S S S S S S S S S S S S S S	600
550 550 550 550 550 550 550 550	G S	G S A P N F G Y L E F 630	G T	S S S S S S S S S S S S S S S S S S S	600
550 550 550 550 50 50 50 50 50	G S	G S A P N F G Y L E F 630	G T	S S S S S S S S S S S S S S S S S S S	600
550 0	G S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G T	<u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	600 56 56 56 56 56 57 57 57 50 57 57 57 57 57 57 57 57 57 57
550 0	G S		G T	S S S S S S S S S S S S S S	600
550 D	G S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	G T	<u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u> <u>S</u>	600
550 D	G S	G S A P N F G Y L E F 630 	G T	NVSNPS- 650 	600
550 D	G S	<u>GSAPNFGYLEF</u> <u>630</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u> <u>5</u>	G .	N V S N P S - 650	600

Fig 2: Alignment of the amino acid sequences of the pMGA_{1.2} gene derived from corresponding nucleotide coding sequences (GenBank accession number L28424).

Journal of Microbial World, Volume 16, No. 3, December 2023. Insilico analysis for pMGA1.2 protein in Mycoplasma gallisepticum strains. Farzaneh pourkarimi Fatideh et al.

Fig 3: Antigenic regions of pMGA_{1.2} protein.

redict	ted pep	tides: mx-4	Predict	ed pep	tides:S6	Predic	ted pep	tides:Str F	Predic	ted pe	ptides:TS-11	Predic	ted pe	otides:HOUSE FINCH
Start	End	Peptide	Start	End	Peptide	Start	End	Peptide	Start	End	Peptide	Start	End	Papzide
7	28	LKFVSLLGIGSFVMLAAASCTT	٥	28	ILKFVSLLGIGSFVMLAAASCTT	7	20	LKFVSLLGIGSFVMLAAASCTTP	7	20	LKFVSLLGIGSFVMLAAASCTPT	7	28	LKFVSLLGIGSFVMLAAASCT
78	86	NLGLYVDYK	82	90	NLGLYVDYK	73	78	TTVFDS	69	74	TTVFDS	73	78	TTVFDS
99	105	AKTVLDN	98	109	KAYDAAKTVLDN	82	90	NLGLYVDYK	78	80	NLGLYVDYK	82	90	NLGLYVDYK
139	147	AELVKVYKE	143	151	AELVKVYKE	99	109	AYDAAKTVLDN	Q 3	105	TKAYDAAKTVLDN	99	109	AYDAAKTVLDN
158	105	TLAPYEEA	162	172	TLAPYADAQYA	143	151	AELVKVYKE	130	147	AELVKVYEE	143	151	AELVKVYKE
170	178	IKMHLSGLY	174	182	IKMHLSGLY	102	109	TLAPYEEA	158	108	ALAPYADAQYA	102	109	TLAPYEEA
198	204	TADVVMM	212	224	KIVEAIKDEVLNP	174	162	IKMHLSGLY	170	178	IKMHLSGLY	174	181	IKMHLSGL
208	220	KIVEAIKDEVLNP	232	244	LADSFVKQVLVKE	202	208	TADVVMM	208	220	KIVEAIKDEVLNP	202	208	TADVVMM
228	240	LADSFVKQVLVKE	258	270	PANYSFVGYSVDI	211	224	TKIVEAIKDEVLNP	228	245	LADSFVKQVLVKEKVTGV	212	224	KIVEAIKDEVLNP
254	207	PANYSEVGYSVDIT	314	325	LSNVSWIYSLAG	232	244	LADSFVKQVLVKE	254	200	PANYSFVGYSVDI	232	244	LADSFVKQVLVKE
300	320	MVQPLSNVSWIYSLA	331	354	TLEFTYYGPSTGYLYFPYKLVNTS	258	270	PANYSFVGYSVDI	310	321	LSNVSWIYSLAG	258	271	PANYSFVGYSVDIT
327	334	TLEFTYYG	350	364	QVKLGLEYK	314	325	LSNVSWIYSLAG	327	340	TLEFTYYGPSTGYLYFPYKLVNT	310	324	MVQPLSNVSWIYSLA
337	340	TGYLYFPYKLVNT	394	402	VAKVTLANL	329	353	KYTLEFTYYGPSTGYLYFPYKLVNT	390	398	VAKVTLANL	331	353	TLEFTYYGPSTGYLYFPYKLVN
390	398	VAKVILANL	410	421	EFSVPAEKVSPM	394	402	VAKVTLANL	400	417	EFSVPAEKVSPM	304	402	VAKVTLANL
406	417	EFSVPAEKVSPM	454	400	IISVDAL	410	421	EFSVPAEKVSPM	450	450	IISVDAL	410	421	EFSVPAEKVSPM
450	450	IISVDAL	462	407	GYSLAS	454	400	IISVDAL	458	403	GYSLAS	454	400	IISVDAL
458	403	GYSLAS	402	400	KYYLIGYV	402	407	GYSLAS	480	407	NQKYYLIGYVGG	402	407	GYSLAS
488	495	KYYLIGYV	528	535	NYVFYVNA	471	470	TYIAEY	520	532	TFYVNAP	402	400	KYYLIGYV
524	532	NYVFYVNAP	543	554	IKGVFASGVGSD	402	400	KYYLIGYV	534	545	AGAYYIKGVFAS	517	522	KFPLAS
539	552	IKGVFASGVHSDLK	500	572	NVTVKQL	529	530	YV FYVNAP	600	614	LTLVEGLNKIVVSGA	530	530	FYVNAP
502	508	NVTVKQL	605	618	LTLVEGLNKIVVSG	538	540	AGAYYIKGVFAS	624	630	FGYLEFI	538	540	AGAYYIKGVFAS
601	614	LTLVEGLNKIVVSG	628	634	FGYLEFI	502	598	PTQVTTV				603	617	LTL <mark>L</mark> EGLNKIVVSGA
624	630	FGYLEFI			1	605	019	LTLVEGLNKIVVSGA				626	633	SFGYLEFI
						628	635	NFGYLEFI						

Discussion

Mycoplasma gallisepticum is considered one of the most costly avian diseases to the poultry industry all over the world which is mostly due to egg generation losses (21).

Mycoplasma gallisepticum infections are classified as sporadic by the USDA Animal Plant and Health Inspection Service (2013). Vaccination is propounded the most practicable way of controlling diseases, where depopulation of animals is impracticable, particularly on wide commercial multi-age layer facilities (22).

A multi-gene family in mycoplasmas is that encoding the pMGA cell-surface-exposed lipoproteins. Contrary to the presence of many pMGA genes, all but one either is transcriptionally silent or is transcribed at very low levels within individual field isolates of the organism (23).

Based on previous reports the intergenic regions 5' to the 9.2 and 9.3 ORF contain 15 and 20 copies of the GAA trinucleotide repeats which are characteristic of the intergenic areas of pMGA family members. Variation in the number of GAA repeats is a mechanism of transcriptional regulation for the pMGA genes and 12 GAA repeats are present in the intergenic regions of those pMGA genes that are expressed (24).

In the comparison of pMGA gene expression in different *Mycoplasma gallisepticum* strains received from infected chickens, Berlic et al. (2000) proposed that two kinds of pMGA_{1.1}/ pMGA_{1.2} genes could be distinguished in various strains relying the presence or absence of a repeat sequence in the N-terminal proline-rich area. Prolin rich regions of proteins can make elongated structures that may action in protein-protein interactions (25).

In our study, a difference of 18 nucleotides and 6 amino acids length was observed in the pMGA_{1.2} gene and protein respectively. The presence of repeated sequence ₂₉PTPNPTPN₃₆ in the F vaccine strain and the absence of the ²⁹PTPNPTPN₃₆ repeated sequence in the TS-11, R-High vaccine strains and pathogenic R-Low indicate the lack of correlation between this sequence and bacterial virulence. All the House-finch isolates had two repetitions of the ²⁹PTPNPTPN₃₆ sequence, which indicates that they are all from the same lineage.

In Mycoplasma gallisepticum, the pMGA

gene sequences have been reported only for strains S6 and PG31 (26). Moreover, the N-terminal amino acid sequencing of the pMGA has been done for the F and R strains and confirmed a synthesis of proteins similar to the pMGA_{1.2} .Three different strains of *Mycoplasma gallisepticum*, S6, R, and F, expressed single, unique variants of pMGA (27).

Yasmin et al in 2018 indicated the presence of pMGA and pvpA gene sequences and size variations among MG field strains from Malaysia. Their study was on the basis of pMGA and pvpA partial nucleotide sequence.

Patterns of pMGA expression and occurrence of antigenically distinct pMGA_{1.9} protein have been previously investigated only in a highly passaged S6 strain (28).

With the worldwide increase in live vaccine usage to control Mycoplasma gallisepticum, allow differentiation techniques that of wild-type (field strain) Mycoplasma gallisepticum from the vaccine strains are important. In addition, strain differentiation techniques maybe used as valuable tools for the control of Mycoplasma gallisepticum, facilitating rapid recognition of outbreaks and epidemiological traceability (29).

In our study, two motifs ₄₈₀DNQNVSNQ₄₈₇ and ₆₃₉SSNVSSPSY₆₄₇ were found specific for TS-11 vaccine strain. It seems that, the nucleotide sequences of these two markers (1461-1440) and (1941-1887) can be used to design a specific primer to differentiate the TS-11 vaccine strain from other based on PCR technique. In this case, a product of about 480 base pairs will represent the vaccine strain.

More study is needed to evaluate the performance of these two TS-11 specific motifs in DIVA test for differentiation of infected from vaccinated chicken with TS-11.

Live vaccines often showed pathogenicity and adverse side effects, while bacterins have high cost and often repeated doses are required to boost avian immune system. Hence, new novel recombinant vaccines are needed to be developed which are more efficacious and less expensive. More complex vaccines consist of one or more purified antigens, killed pathogens or bacterins with an adjuvant that stimulate the immune response. These vaccines are protective but their utilization is limited due to cost (30).

In silico analysis of vaccine candidate antigens is helpful for design of new generation vaccines. Bioinformatics tools for predicting antigenic properties and candidate vaccines analysis are now a standard approach. Several bioinformatics software and servers are available that can help in the process for planning of chimeric vaccine design (31,32).

Research on in silico approaches had not yet been reported for Mycoplasma gallisepticum while, some researchers used in silico approaches for the identification of virulence candidates for other mycoplasma species such as Mycoplasma pneumoniae type 2a strain 309 and Mycoplasma agalactiae (33,34). Very few studies are reported in the field of in silico vaccine for poultry and animals. The following studies validate the immunoinformatics method to design multi-epitopic vaccines against infectious diseases in poultry. The in silico validations like molecular docking and in silico cloning and immune simulation were used in indian study to make the constructed multi-epitope as functionally suitable as a vaccine candidate against M. gallisepticum infection(35). In other study, researchers have reported the primary, secondary, and tertiary structural characteristics and subcellular localization, presence of the transmembrane

helix and signal peptide, and functional characteristics of vlhA proteins from M. gallisepticum strain R low (36). Thus, future studies are recommended on in silico approaches for the development of effective vaccines. In our study, was shown that pMGA_{1,2} protein have some B-cell epitope antigenic regions that are conserved among all isolates and might be applicable to design a universal immunogenic antigen as а recombinant vaccine or applicable to designing serological test for detection antibody against Mycoplasma gallisepticum.

Conclusion

 $pMGA_{1.2}$ gene showed five groups with more than 10 percent divergence among different strains of *Mycoplasma gallisepticum*. In this study was shown that $pMGA_{1.2}$ protein have some B-cell epitope antigenic regions that are conserved among all isolates and might be applicable to design serological test for detection antibody against *Mycoplasma gallisepticum*.

Interestingly, on the other hand, two specific amino acid sequences ₄₈₀DNQNVSNQ₄₈₇ and ₆₃₉SSNVSSPSY₆₄₇ were found in the pMGA_{1.2} protein of TS-11 strain, which can might be used as markers to identify this vaccine strain and differentiate from other.

Acknowledgment

The authors would like to thank Razi Vaccine and Serum Research Institute of Iran (Karaj) for their support.

Conflict of interest

The authors declare no conflicts of interest.

References

- 1. Mugunthan S.P, Kannan G, Chandra HM, Paital B. Infection, Transmission, Pathogenesisand Vaccine Development against *Mycoplasma gallisepticum*. Vaccines. 2023; 11: 469.
- 2. Swayne DE, Boulianne M, Logue CM, McDougald LR, Nair V, Suarez DL. Diseases of Poultry. 14th ed. Hoboken, NJ, USA.Wiley Blackwell; 2020: Volume 2, 907–923.
- 3. Dhondt A. A, Tessaglia D. L , Slothower R. L. Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. Journal of Wildlife Diseases.1998; 34, 265–280.
- 4. Ley DH, Berkhoff JE, Levisohn S. Molecular epidemiologic investigations of *Mycoplasma* gallisepticum conjunctivitis in songbirds by random amplified polymorphic DNA analyses. *Emerg Infect Dis.*1997; 3:375–380.
- 5. Dhondt AA, Tessaglia DL, Slothower RL. Epidemic mycoplasmal conjunctivitis in house finches from eastern North America. Journal of Wildlife Diseases.1998; 34: 265–280.
- 6. Dhondt AA, DeCoste JC, Ley DH, Hochachk WM. Diverse wild bird host range of Mycoplasma gallisepticum in eastern North America. PLoS One. 2014; 9:e103553.
- 7. Ter Veen C, Dijkman R, De Wit JJ, Gyuranecz M, Feberwee A. Decrease of *Mycoplasma gallisepticum* seroprevalence and introduction of new genotypes in Dutch commercial poultry during the years 2001-2018. Avian Pathology. 2021; 50: 52-60.
- 8. Wanasawaeng Wisanu, Chaichote Supawadee, Chansiripornchai Niwat. Deveolpment of ELISA and serum plate agglutination for detecting antibodies of Mycoplasma gallisepticum using strain of Thai isolate. Thai J Vet Med. 2015;45(4):499-507.
- Hnatow LL, Keeler CL Jr, Tessmer LL, Czymmek K, Dohms JE. Characterization of MGC2 a *Mycoplasma gallisepticum* cytadhesin with homology to the *Mycoplasma pneumoniae* 30-kilodalton protein P30 and *Mycoplasma genitalium* P32. Infect Immun.1998; 66: 3436–3442.
- Chen H, Yu S, Shen X, Chen D, Qiu X, Song C, Ding C. The *Mycoplasma gallisepticum* alpha -enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microb Pathog .2011; 51:285–290.
- 11. Athamna A, Rosengarten R, Levisohn S, Kahane I, Yogev D. Adherence of *Mycoplasma* gallisepticum involves variable surface membrane proteins. Infect Immun .1997; 65: 2468–2471.
- 12. Markham PF, Glew MD, Whithear KG, Walker ID. Molecular cloning of a gene family that encodes pMGA, a hemagglutinin of *Mycoplasma gallisepticum*. Infect Immun.1993; 61: 903–909.
- 13. Chambaud I, Wróblewski H, Blanchard A. Interactions between mycoplasma lipoproteins and the host immune system. Trends Microbiol .1999; 7:493–499.

- Baseggio N, Glew MD, Markham PF, Whithear KG, Browning GF. Size and genomic location of the pMGA multigene family of *Mycoplasma gallisepticum*. Microbiology.1996; 142: 1429-1435.
- 15. .Czifra G, Tuboly T, Sundquist BG, Stipkovits L. Monoclonal antibodies to *Mycoplasma* gallisepticum membrane proteins. Avian Dis.1993; 37:689–696.
- 16. Garcı'a M, Elfaki MG, Kleven SH. Analysis of the variability in expression of *Mycoplasma gallisepticum* surface antigens. Vet Microbiol.1994; 42:147–158.
- Forsyth MH, Tourtelotte ME, Geary SJ. Localization of an immunodominant 64-kDa lipoprotein (LP64) in the membrane of *Mycoplasma gallisepticum* and its role in cytadherence. Mol Microbiol. 1992; 6: 2099–2106.
- Carpenter TE, Mallinson ET, Miller KF, Gentry RF, Schwartz LD. Vaccination with F-strain *Mycoplasma gallisepticum* to reduce production losses in layer chickens. Avian Dis. 1981; 25:404–409.
- 19. Noormohammadi AH, Whithear KG. Comparison of the short-term and long-term efficacies of the *Mycoplasma gallisepticum* vaccines ts-11 and 6/85. Avian Pathology. 2019; 48: 238-244.
- 20. .Noormohammadi AH, Markham PF, Duffy MF, Whithear KG, Browning GF. Multigene families encoding the major hemagglutinins in phylogenetically distinct *Mycoplasma*s. ASM J Infection and Immunity.1998; 66 (7):3470-3475.
- Febrwee A, Dewit S, Dijkman R. Clinical expression, epidemiology and monitoring of *Mycoplasma gallisepticum* and *Mycoplasma synoviae*: an update. Avian Pathology. 2021; 1-61.
- 22. Bermudez AJ, Kalbac M. Control of *Mycoplasma gallisepticum* infection in commercial layers: A field study. J Am Vet Med Assoc. 1988; 192:1783.
- 23. Glew, MD, Markham PF, Browning GF, Walker ID. Expression studies on four members of the pMGA multigene family in *Mycoplasma gallisepticum*. Microbiology.1995; 141: 3005–3014.
- 24. Baseggio N, Glew MD, Markham PF, Whithear KG, Browning GF. Size and genomic location of the pMGA multigene family of *Mycoplasma gallisepticum*. Microbiology.1996; 142: 1429–1435.
- 25. Kay BK, Williamson MP, Sudol M. The importance of being proline: the interaction of proline -rich motifs in signaling proteins with their cognate domains. FASEB J. 2000; 14:231-241.
- 26. Liu L, Payne DM, van Santen VL, Dybvig K, Panangala VS. A protein (M9) associated with monoclonal antibody mediated agglutination of *Mycoplasma gallisepticum* is a member of the pMGA family. Infect Immun. 1998; 66: 5570-5575.
- 27. Markham PF, Glew MD, Brandon MR, Walker ID, Whithear KG. Characterization of a major hemagglutinin protein from *Mycoplasma gallisepticum*. Infect Immun.1992; 60:3885–3891.

- 28. Yasmin F, Ideris A, Omar AR, Bejo MH, Islam R, Wei TS, Giap TC. Molecular characterization of field strains of *Mycoplasma gallisepticum* in Malaysia through pMGA and pVPA genes sequencing. Cogent Biology. 2018; 4:1456738
- 29. Glew MD, Baseggio N, Markham PF, Browning GF, Walker ID. Expression of the pMGA genes of *Mycoplasma gallisepticum* is controlled by variation in the GAA trinucleotide repeat lengths within the 5`noncoding regions. Infect Immun.1998; 66: 5833-5841.
- 30. Ley DH. *Mycoplasma gallisepticum* infection. In: Saif YM, Barnes HJ, Glisson JR, Fadly AM, Mc Dougald LR, Swayne DE. Diseases of poultry. 11 th ed. Lowa State Press, Ames, IA; 2003:722-744.
- 31. Javid H. Antigenic properties of Finegoldia magna protein L and Type IV pilin (pilA) for in-silico multi epitope peptide vaccine designing. JMW. 2020; 42(1):78-98[In Persion]
- 32. Souod N, Kargar M, Hoseini MH, Jafarinia M. Designing, cloning and expression of ctx-B-tcpA-c-cpe gene in E.coli as a cholera vaccine candidate. JMW. 2021;14(1):6-20[In Persion]
- 33. Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of *Mycoplasma pneumonia*. Comput Biol Chem. 2015; 59 Pt A: 67–80.
- 34. Gaurivaud P, Baranowski E, Pau-Roblot C, Sagné E, Citti C, Tardy F. Mycoplasma agalactiae Secretion of β-(1→6)-Glucan, a Rare Polysaccharide in Prokaryotes, Is Governed by High-Frequency Phase Variation. Appl Environ Microbiol. 2016; 82:370–3383.
- 35. Mugunthan SP, Chandra HM. A computational reverse vaccinology approach for the design and development of multi-epitopic vaccine against avian pathogen *Mycoplasma gallisepticum*. Front Vet Sci. 2021; 8:721061.
- **36.** Mugunthan SP and Chandra HM. In silico structural homology modeling and functional characterization of *Mycoplasma gallisepticum* variable lipoprotein hemagglutin proteins. Front Vet Sci. 2022; 9: 943831.