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Abstract 

The length between the current point in the degradation process and the time of reaching the 

failure threshold, or the remaining usable life (RUL) prediction of systems, is of the greatest 

priority in the industry. More accurate estimation is useful for maintenance decisions as it helps 

to avoid catastrophic breakdowns and may also assist in reducing additional costs. Deep learning 

approaches have made impressive advancements in this field in recent years by becoming widely 

attractive and employed. However, most deep learning approaches don’t fully consider the 

information implications of sensors adaptively. To overcome this problem, a novel adaptive 

hybrid model that combines a convolutional neural network (CNN) and gated recurrent unit 

(GRU) is introduced in this work. The RUL estimation is based on the best practical option of 

sequence data through CNN-GRU. In the first step, optimal sensor selection is applied to the 

dataset to collect the most useful sensors. Then, the input data is transformed into a predefined 

range of values using standard and min-max scalars; in the next step, the normalized data is fed 

into the CNN-GRU model with an adaptive activation function for deep feature extraction, 

training, and RUL prediction. Utilizing CNN to extract features from the multivariate input data 

automatically, the features are then fed into the GRU layer to train the model for RUL prediction. 

To test the effectiveness of this framework, the suggested methodology is applied to the NASA 

Commercial Modular    Aero-Propulsion System Simulation (C-MAPSS) dataset. The findings 

demonstrate that CNN-GRU is capable of accurate RUL prediction. In addition, CNN-GRU 

outperforms CNN-LSTM and CNN-RNN in terms of computation efficiency and accuracy. 
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1. INTRODUCTION 
 

Condition-based maintenance is an 

intelligent prognostic technique that has a 

great deal of promise to boost performance 

and dependability in various industries. 

Condition monitoring is a key component of 

prognostics and health management (PHM) 

systems, and this type of maintenance 

enables more accurate prediction. Model-

based, data-based, and hybrid techniques are 

the three main prognostic strategies; recent 

articles have focused more on the integration 

of these methodologies. RUL prediction can 

benefit from data-driven techniques due to 

their ability. One of the main challenges for 

data-driven techniques is developing a 

practical method for figuring out the optimal 

relationship between a system's or 

component's monitoring data and its RUL. 

On the other hand, more significant historical 

data is more helpful, and understanding how 

to interpret sensor information is useful for 

estimation. 

 In recent years, data-driven 

methodologies have increasingly included 

artificial intelligence, particularly deep 

learning techniques, to automate feature 

design and perform nonlinear 

transformations in its layers. Regression is 

performed in [1] using the multi-layer 

perceptron (MLP) and radial basis function 

(RBF), and a fusion approach based on the 

Kalman filter is developed to predict the RUL 

of turbofan engines. On the other hand, [2] 

uses a semi-supervised approach in which 

data with two labels and zero labels is 

supplied into the regression training dataset 

in order to learn features and predict the 

RUL. To estimate the turbofan RUL, authors 

in [3] used a feed-forward neural network 

model based on Bayesian regularization 

methods. This solution eliminates the 

requirement to normalize the entire dataset, 

which has an impact on model performance. 

The degradation in turbofan performance is a 

time series with a constant trend. Recurrent 

neural networks (RNNs) are better suited for 

prognostics of turbofan engines due to their 

structure and have produced outstanding 

results due to their capability for handling 

time series data and RUL estimation. In [4], 

RNN was used to build bearing health 

indicators for RUL prediction, and the results 

are acceptable. The authors of [5] proposed a 

method that uses PCA for dimension 

reduction after combining several filters. 

Methods like MLP and random forest are 

used to learn the fundamental model. Even 

though RNN achieves great performance, the 

fundamental drawback of this strategy is its 

inability to link two sets of similar, though 

separated, data and the vanishing gradient 

through learning. Hence, to learn models, a 

large training dataset is also required. Long 

short-term memory (LSTM) has internal 

loops that keep important information to 

address the vanishing gradients issue with 

RNN models [6].  

 On the other hand, CNN as the most 

common network in both supervised and 

unsupervised learning is used for the first 

time in [7] to predict RUL. Both the 

outcomes of feature learning and RUL 

predictions are improved by the use of 

supervised feedback. It has been reported that 

the temporal CNN, which is comprised of a 

unique 1-D convolution operation, has the 

potential to be effective for solving problems 

involving the prediction of time series [8]. 

Typically, CNN creates features by 
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combining input data with various filters, and 

the most significant features are subsequently 

retrieved by pooling layers [9]. The necessity 

to record sensor measurements over an 

extended period of time is a drawback of 

health-index-based techniques, and [10] 

employed data from sequential time sampling 

at any time interval to address this issue. 

Furthermore, to increase network capabilities 

for RUL prediction, kernels are automatically 

chosen based on a new kernel factor. 

 The main advantage of hybrid models is 

that they combine various architectures to 

increase efficiency while considering the 

advantages of each architecture. 

 Then, LSTM-RNN is suggested as the 

solution to the gradient explosion and 

gradient disappearance issues. [11] used 

LSTM-RNN to predict battery energy status 

and RUL. [12] proposes an LSTM-CNN 

model with a time window to predict RUL. 

However, it is important to note that the 

LSTM's complex architecture consists of 

three gates—the forget gate, the input gate, 

and the output. While providing modeling 

accuracy, the complex structure also 

increases computational complexity. To 

make the LSTM-CNN structure simpler 

while maintaining its modeling capabilities, 

the gated recurrent unit (GRU) has been 

proposed [13].  

 To establish the turbofan engine RUL 

prediction, this research introduces an 

adaptive CNN-GRU network. The features 

that are effective on the degradation trend are 

extracted from relevant sensors' historical 

data, and the model is learned using the 

CNN-GRU method. And using the model, 

the RUL for motors is determined. The C-

MAPSS dataset is used to perform the 

experiment. The results demonstrated that the 

CNN-GRU algorithm may be used for RUL 

prediction for turbofan engines with high 

accuracy and considerable robustness. Listed 

below are the scientific contributions made 

by this work: 

 First, using the high-dimensional data, 

sensors are selected for the network based on 

factors including their trendability, 

monotonicity, and prognosability; next, the 

technique of normalization is done to the 

chosen sensors in order to get them ready to 

be used in the network. 

1. An ensemble network including 1-D 

CNN and GRU is introduced to 

extract the features, training, and 

RUL prediction. 

2. Mish function is utilized as an 

activation function of the network to 

adaptive extraction and training for 

enhancing the accuracy of the model. 

3. The outcome from the proposed 

prognostics approach in RUL 

prediction related evaluation metrics 

can be considered acceptable. 

 The remainder of this paper will be 

structured as described in the following 

sections. The proposed methodology of 

CNN-GRU and the details of RUL prediction 

based on the network is described in Section 

2. Section 3, discusses the experimental 

results. The whole article is summarized in 

Section 4. 

 

2. THEORETICAL BACKGROUND OF 

STUDY 
 

2.1. Convolutional Neural Network (CNN) 
 

A feed-forward neural network with a 

particular architecture known as CNN can 
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extract useful information from input. 

Convolution operation and pooling layers are 

of the two main kinds of modules that 

comprise this network [14]. Using a kernel w, 

also known as the weight, CNN's convolution 

operation produces the output by moving it 

through the input data. Convolutional layers' 

ability to share similar weights to avoid the 

overfitting problem is their key benefit. In 

addition, pooling operations reduce 

computation costs and input dimensions by 

replacing an outline of nearby output for the 

network's output. 

 The 𝑖-th factor in this process will be the 

following with regard to 𝑥 being the input 

and 𝑤 being the kernel, both of which have 𝑛 

dimensions: 
 

𝑌(𝑖) = ∑ 𝑥(𝑖 − 𝑗)𝑤(𝑗)𝑖,𝑗      (1) 

 

For 𝑗 from 0 to 𝑘 − 1. Fig1. is a general 

illustration of the CNN path's convolution 

process. 

 

2.2. Gated Recurrent Unit (GRU) 
 

The Gated Recurrent Unit is the most recent 

technique in sequence modeling techniques, 

that also gives it a distinct advantage over  

RNN and LSTM [16]. 

 The fundamental RNN structure consists 

of a cell with a cyclic loop whose internal 

state changes over time depending on the 

sample input now being used 𝑥𝑡 and its 

previously hidden state ℎ𝑡−1 at each time step 

𝑡. The current hidden state ℎ𝑡 is then updated 

as follows: 
 

ℎ𝑡 = 𝐻(𝑥𝑡, ℎ𝑡−1)        (2) 
 

𝐻 is a nonlinear, differentiable transform. 

Backpropagation trains RNN parameters. 

The recurrent network becomes deep as 

sequence length increases, causing 

decreasing gradient. Long short-term 

memory (LSTM) is one of the most used 

RNN models for vanishing gradient. LSTM 

uses a well-designed memory cell with an 

input gate, forget gate, and output gate to 

preserve and update the cell state. 

 GRU is a simplified variation of LSTM 

with two gates: a reset gate c that adjusts new 

input with previous memory and an update 

gate u that retains previous memory. Fig. 2 

shows GRU cell architecture. GRU's fewer 

variables make it more efficient than LSTM. 

Here are GRU's hidden unit transition 

functions: 

 

 

 
 

Fig. 1. A generic representation of CNN[15]. 
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Fig. 2. The GRU architecture. 

 

𝑢𝑡 = 𝜎(𝐹𝑢𝑥𝑡 + 𝐺𝑢ℎ𝑡−1 + 𝑏𝑢)   (3) 
 

𝑐𝑡 = 𝜎(𝐹𝑐𝑥𝑡 + 𝐺𝑐ℎ𝑡−1 + 𝑏𝑐)    (4) 
 

𝑐𝑡 is combined with a 𝑡𝑎𝑛ℎ layer in order to 

get the new remember ℎ𝑡, 
 

ℎ̂𝑡 = tanh⁡(𝐹𝑐𝑥𝑡 + 𝐺𝑐(𝑟𝑡Θℎ𝑡−1))  (5) 
 

 The value of the hidden state is 

continually updated by 
 

ℎ𝑡 = (1 − 𝑢𝑡) − ℎ𝑡−1 + 𝑧𝑡 − ℎ̂𝑡   (6) 
 

wherein the model parameters, such as F, G, 

and b, are shared throughout all time steps, 

were learned during training, and indicate the 

element-wise product. 

 

2.3. CNN-GRU for RUL Prediction 
 

The normalization technique is used to scale 

the characteristic units of the data from the 

original historical sensor measurements. 

Additionally, it will be simple to understand 

the extracted features from the following 

phase. Second, the characteristics are 

obtained using CNN. Finally, the GRU is 

used to predict the model using the extracted 

features. To verify that there is enough 

information left in the recurrent network, the 

CNN-hidden GRU's layer is set to have a 

value of 4. It is beneficial to ensure that the 

suggested network is capable of high 

modeling and prediction accuracy. 

 

3. EXPERIMENTAL RESULTS 
 

3.1. Case Study 
 

In this section, the proposed methodology is 

applied to a simulated turbofan engine 

dataset which is provided by NASA 

Prognostics Data Repository, and it is known 

as C-MAPSS Dataset [17]. This popular 

dataset consists of four different datasets as 

given in Table1 that these datasets contain 

simulated run-to-failure paths of turbofan 

engine with various operational conditions 

and fault modes. Furthermore, there are one 

training dataset and one testing dataset in 

each sub-dataset. 21 sensors which are 

indicated in Table2 are utilized to monitor 

and record run-to-failure data. Each dataset 

comprises a matrix with m-by-26 dimension 

in which m correlates with the number of data 

points of each turbofan engine. Rows indicate 
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data collected during time cycles and 

columns illustrate engine number, 

operational cycle number, three different 

operational settings, and 21 sensor values 

respectively.  

 The main difference between the training 

dataset and the testing one is that the last data 

in the training dataset corresponds to the 

failure time of the engine but in the testing 

dataset records of sensors have stopped some 

time before failure and the estimation of the 

remaining useful life of the engine is 

provided with the testing dataset. On the 

other hand, actual values of RUL are 

provided to certify predicted RUL. 

 

3.2 Data Pre-processing and Image 

Creation 
 

According to the literature, the three main 

factors for selecting relevant sensors among 

multi-sensor measures are monotonicity, 

trend-ability, and prognosability. Using these 

three characteristics, useful sensors for the 

proposed network are chosen [18]. 

 On the other hand, due to the large 

difference between maximum and minimum 

quantity of the turbofan engines data, it is 

compulsory to normalize data before pre-

processing procedure. Moreover, the data 

cleaning process is necessary to eliminate 

noisy data and outliers in the dataset. Min-

max and Z-score normalization methods are 

two beneficial ways to normalize data. Due 

to difficulties in the analysis of data with zero 

rows, min-max normalization is utilized in 

this paper and its formula is provided as 

follows. 
 

𝑥′ = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1       (7) 

 

3.3 Evaluation Metrics 
 

Because performance evaluation is critical 

for analyzing predicted models, this section 

includes various performance indicators for 

evaluating prognostics algorithms. These 

measurements can be divided into three 

categories: accuracy, precision, and 

robustness. On the other hand, there are 

numerous metrics that have been used in 

prognostics. As a result, this study gives a 

universal metric that is particularly useful for 

assessing error as the difference between the 

actual output and the aim. In this study, the 

Root Mean Squared Error (RMSE) is 

utilized, as stated below. 

 RMSE reveals the absolute measure of 

model fitting, and it can be described as the 

standard deviation of the unidentified 

variables. The formula for calculating RMSE 

is: 
 

Table 1. Information on available datasets. 

Datasets # Fault Modes # Operational Conditions # Train Units # Test Units 

C
-M

A
P

S
S

 

#1 1 1 100 100 

#2 1 6 260 259 

#3 2 1 100 100 

#4 2 6 249 248 
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Table 2. Details of 21 sensors for turbofan engine. 

Sensor No. Symbol Description 

1 T2 Total temperature at fan inlet 

2 T24 Total temperature at LPC outlet 

3 T30 Total temperature at HPC outlet 

4 T50 Total temperature at LPT outlet 

5 P2 Pressure at fan inlet 

6 P15 Total pressure in bypass-duct 

7 P30 Total pressure at HPC outlet 

8 Nf Physical fan speed 

9 Nc Physical core speed 

10 epr Engine pressure ratio (P50/P2) 

11 Ps30 Static pressure at HPC outlet 

12 phi Ratio of fuel flow to Ps30 

13 NRf Corrected fan speed 

14 NRc Corrected core speed 

15 BPR Bypass ratio 

16 farB Burner fuel-air ratio 

17 htBleed Bleed enthalpy 

18 Nf_dmd Demanded fan speed 

19 PCNfR_dmd Demanded corrected fan speed 

20 w31 HPT coolant bleed 

21 w32 LPT coolant bleed 

 

𝑅𝑀𝑆𝐸 = √(
1

𝑁
)⁡∑ (𝐴𝑖 − 𝐹𝑖)2

𝑁
𝑖=1    (8) 

 

3.4. Implementation 
 

This research provides a new hybrid model 

that combines CNN and GRU. In this model, 

pre-processed data are fed into CNN-GRU 

for prediction. Figure 3 shows a schematic of 

the suggested framework to help you 

understand it better. For the data-driven 

prediction problem, it is important to think 

about how to put useful time information into 

the input of the prediction model. If the signal 

gathered during a sampling period is used as 

an input sample for the forecast model, the 
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time information in the time series signal is 

necessarily omitted, limiting the model's 

prediction performance. To address this 

issue, this paper employs the time window 

embedding strategy to process the 

normalized sensor signal, in which the sensor 

signal obtained at continuous sampling time 

steps is concatenated into a high dimensional 

vector using a fixed-size time window and 

then inputted into the CNN-GRU model. The 

shape of images is discussed in this study 

(30,30). The geometry of the training set, 

according to 8 selected sensors, is 

(15631,30,30,8), and the test is 

(8162,30,30,8). 

 Fig. 4 Indicates the time sequence of the 

8 selected sensor measurements. 

 Configuration of CNN-GRU- CNN-GRU 

configuration- Input image data with initial 

dimension pass through the CNN path. A 1-

D convolutional layer is present in this path. 

After passing through the Maxpooling layer, 

the output was prepared to be fed into the 

GRU for learning the model using a Flatten 

layer. The Mish function has activated all of 

the neurons in the CNN path. 

 To extract the properties of the 

normalized sequence data, a 1D 

convolutional neural network was developed. 

Furthermore, gated recurrent unit (GRU) 

layers collected temporal information from 

the extracted features. After that, the output 

features were passed through a fully linked 

layer for final prediction. 

 Table 3 shows the network parameters 

that were chosen. These parameters are  

determined using several training and testing 

sets and the cross-validation technique. 

 RUL prediction and Comparison- The 

CMAPSS dataset is used in this case to 

further validate the availability and 

advantages of the CNN-GRU method in 

dealing with RUL prediction difficulties. 

 According to the literature, the early-

stage testing point is identified by a constant 

RUL value of 125 [19]. In this study, the 

convolution layer and pooling layer serve as 

feature extraction layers. Second, utilizing 

the Mish activation function [20] instead of 

ReLU improves self-adaptation while 

enhancing prediction accuracy. Fig5. shows 

the expected and actual RUL of engines. 

 

 
Fig. 3. The proposed procedure. 
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Fig. 4. Sensors’ measurements. 

 

 
Fig. 5. Predicted and actual RUL. 



10                                                                        Esfahani, Salahshoor, Mazinan.  Remaining Useful Life Estimation … 

 

Table 3. Parameters of the Network. 

Parameters Value 

Batch Size 200 

Learning Rate 0.001 

Epoch 20 

Time Window 30 

 

Table 4. Different models’ performance. 

Model RMSE 

LSTM-CNN [21] 13.01 

Concurrent Semi-supervised [22] 12.19 

Proposed CNN-GRU 8.76 

 

 Table 4 summarizes the model 

performance and compares it to other models. 

As it is shown, the proposed model has more 

accuracy compared to the literature. 

 

4. CONCLUTION 
 

In this study, a unique hybrid prognostics 

approach based on CNN-GRU is used for 

turbofan engine RUL prediction. Because of 

the sequential structure of our data, as well as 

in order to extract the features, the CNN 

model was employed to extract the features 

and increase the model's accuracy. In the 

second stage, the extracted features are 

entered into the GRU network to train the 

prediction model. 

 The proposed model has a single learning 

and prediction path that includes CNN and 

GRU. To reduce data to one dimension, a 

flattened layer is used. On the other hand, the 

CNN network is used to process the initial 

dimension of input data. The CNN output is 

utilized to go through the GRU and develop 

a model that can predict the RUL. 

 It should be emphasized that, compared 

to other prognostics methodologies, the 

suggested method provides more accurate 

and robust prediction results than traditional 

approaches. Furthermore, it was recognized 

that this will help to reduce maintenance 

costs and improve maintenance 

programming. 

 Because the dataset utilized in this work 

is based on simulation, we will try our model 

for the dataset introduced in [23] and based 

on real flight conditions in future research. 

Furthermore, digital twins (DT) are 

becoming increasingly popular among 

researchers as a powerful tool for prediction. 

As a result, future work will involve further 

discussion of additional techniques, 

including DT, and their benefits in improving 

the accuracy of our models while decreasing 

training time.  
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