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Abstract 

In this research, we first present some background on the sample size estimation for conducting 

clinical trials, discussing the necessity of a computational enrichment criterion. The Denoising 

Autoencoder Stacked Deep Learning (DASDL) design and development are directly motivated 

by the optimal enrichment design. Although there are many types of deep architectures in the 

literature, we focus our presentation using two of the most widely used models stacked 

denoising autoencoders and fully-supervised dropout. The ideas presented here are applied to 

any such architectures used for learning problems in the small-sample regime. In this work, 

we propose a novel, scalable, deep learning method that is applicable for learning problems in 

the small sample regime and obtains reliable performance. The results show via extensive 

analyses using imaging, cognitive, and other clinical data alongside a ROC curve analysis. 

When used as trial inclusion criteria, the new computational markers result in cost-efficient 

clinical Alzheimer’s disease trials with moderate sample sizes. 
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1. INTRODUCTION 
 

Alzheimer’s disease (AD) affects over 20 

million people worldwide [1], and in the last 

decade, efforts to identify AD biomarkers 

have intensified. There is now a broad 

consensus that the disease pathology  

 

 

 

manifests in the brain images years before the 

onset of AD. Various groups have adapted 

sophisticated machine learning methods to 

learn patterns of pathology by classifying 

healthy controls from AD subjects. The  
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Fig. 1. Neuroimages of the healthy versus the Alzheimer’s Disease (AD) brain. Neuroimaging with (a) 

structural MRI, (b) FDG-PET, (c) amyloid-PET with PiB, and (d) tau PET with 18F-AV1451 in both 

healthy and AD brains [8]. 

 

success of these methods [2] has led to 

attempts at more fine-grained classification 

tasks, such as separating controls from Mild 

Cognitively Impaired (MCI) subjects and 

even identifying which MCI subjects will go 

on to develop AD [3,4]. Current methods 

have reported over 75% accuracy even in this 

challenging setting. This work is in the 

context of designing methods for AD trials 

that are deployable in practice and cost-

effective. While accurate classifiers are 

undoubtedly desirable, one may ask if they 

address a real practical need. In [5,6] the 

authors show the utility of computational 

methods beyond diagnosis and prognosis; 

based on devious efficient clinical trials for 

AD. 

 

2. RESEARCH BACKGROUND 
 

Recent clinical trials designed to evaluate 

new treatments and interventions for AD at 

the mild to moderate dementia stage have 

largely been unsuccessful. There is growing 

consensus that trials should focus on the 

earlier stages of AD, including MCI or even 

the pre-symptomatic stage [7,8], if such 

stages can be accurately identified in 

individual subjects [9-11]. However, MCI is 

a clinical syndrome with heterogeneous 

underlying etymology that may not be readily 

apparent from a clinical work-up, posing a 

major challenge in identifying the most likely 

beneficiaries of a putative effective treatment 

[12]. For instance, MCIs may have clinical 

but not biomarker evidence of incipient AD, 

may have biomarker evidence in some 

modalities, or, despite biomarker presence, 

may not show symptomatic progression 

during the trial period. An efficient MCI trial 

would ideally include only those patients that 

are most likely to benefit from treatment; 

who possess AD pathology based on a 
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constellation of amyloid, tau, and neural 

injury biomarker assessments, and who are 

most likely to progress clinically to 

symptomatic AD. The typical annual 

conversion rate to dementia among MCI due 

to AD is 3–20% across several studies [13]. 

However, these markers are unimodal, while 

several studies have shown the efficacy of 

multimodal data [14]. Furthermore, CSF 

cannot be used in practice as a screening 

instrument because assays typically need to 

be performed in a single batch and are highly 

lab specific [15]. Several recent studies have 

used computational multimodal markers 

derived from support vector machines 

(SVMs) and other machine learning models 

[16]. The strategy here uses imaging data 

from two-time points (i.e., TBM or 

hippocampus volume change) and derives a 

machine learning-based biomarker. Based on 

this marker, say, the top (strongest decliners) 

one-third of quantile subjects may be selected 

to be included in the trial. The drug effect can 

be detected with higher statistical power in 

the enriched cohort, making the trial more 

cost-effective and far more accessible to 

setup/conduct. Most such approaches use 

longitudinal data; however, a practical 

enrichment criterion should only use baseline 

(trial start-point) data. We argue that existing 

approaches to enrichment, including state-of-

the-art computational techniques, cannot 

guarantee this optimal enrichment behavior – 

optimally correlate with dementia spectrum 

with high confidence having access only to 

the baseline data while simultaneously 

ensuring slight intra-stage variance. 

 

2.1. Clinical Trials and Enrichment 
 

Consider a randomized clinical trial (RCT) 

designed to test the efficacy of some 

treatment for an underlying disease 

condition. The population under study is 

randomly assigned to either treatment (or 

intervention) or non-treatment (or placebo) 

groups. If the drug improves, the two groups 

should show this change when measured 

using some outcome measure summarizing 

the disease status. Such change would 

generally correspond to reducing the disease 

progression to a certain extent, referred to as 

the effect size [14], in the treatment group 

compared to the placebos. The outcome 

measure is, in general, a reliable disease 

marker. Given such an outcome, the trial 

efficacy is measured by estimating the Type-

II error between the two groups after 

inducing the drug or intervention. The Type-

II error and the effect size would be 

influenced by the choice of the outcome and 

the trial population's size (and 

demographics). Hence, in practice, one 

would want to “estimate” the trial’s efficacy 

ahead of time to ensure that the effect size is 

good enough, the population is reasonably 

large and diverse, the outcome is 

appropriately chosen, and ensuring that the 

trial makes sense. In such a hypothetical 

RCT, the drug is induced by fixing the effect 

size ahead of time and computing the 

resulting Type-II error for the given outcome 

and population. Let δ denote the difference in 

mean outcome (the standard change) between 

the trial start and end points (e.g., two years) 

in the placebos. Let σ be the standard 

deviation of the outcome, and the effect size 

be η. δ and σ are a priori known (reported in 

alternate studies on the disease). The 

treatment group is then expected to have the 

change in the outcome decreased to (1 − η) δ, 
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which will correspond to a hypothetical 

improvement of η induced by the 

drug/treatment. Within this setting, the 

number of samples s required per arm 

(treatment and placebo) is given by [31]: 

𝑠 =
2(𝑍𝛼 − 𝑍1−𝛽)

2
𝜎2

(1 − 𝜂)2𝛿2
                                 (1) 

where (1−β) denotes the desired statistical 

power at a significance level of α. This 

expression directly follows from applying a 

difference of means t-test, where the means 

are computed from the two distributions of 

interest – outcome change in treatment and 

placebo groups. The null hypothesis is that 

the mean change in the outcome is the same 

for the treatment and placebo groups. 

Suppose the population under study has a less 

standard change in the outcome δ. In that 

case, the required sample s for achieving a 

given power 1 − β will be very large. 

 

3. METHODS AND MATERIALS 
 

Denoising Autoencoders (DA) and Stacked 

DA (SDA) 

 An autoencoder is a single-layer network 

that learns robust distributed representations 

of the input data. Given inputs 𝑋𝑖 ,the 

autoencoder learns hidden/latent 

representations ℎ𝑖 = 𝜎(𝑊𝑥𝑖 + 𝑏), such that 

the reconstructions 𝑥̂𝑖 = 𝜎(𝑊𝑇ℎ𝑖 + 𝑐) are as 

close as possible to 𝑋𝑖. It minimizes the 

following input reconstruction error: 
 

𝒵𝑎({x𝑖}1
𝑛, 𝜃)

≔ arg 𝑚𝑖𝑛
W,𝑏,𝑐

 ∑  

𝑁

𝑖=1

ℓ(x𝑖 , 𝜎(W𝑇𝜎(Wxi + b)

+ 𝑐))                                                             (2) 
 

 The main novelty of designing the 

proposed method is to model a stochastic 

gradient scheme which can be used to  

 
Fig. 2. AD leads to hippocampal atrophy and ventricle enlargement. Healthy brain (left) versus AD 

brain (right). AD leads to decreased hippocampal volume, shrinkage of the cerebral cortex, and 

ventricle enlargement. MTA: medial temporal lobe atrophy; MTA = 0: no atrophy in medial temporal 

lobe; MTA = 4: severe volume loss of hippocampus. 
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perform this minimization where ℓ denotes a 

suitable loss function, e.g., squared loss. 

Without any other constraints, the above 

minimization could potentially learn identity 

mappings, i.e., ℎ𝑖s will be identical to the 

inputs, making the autoencoding setup 

useless. Several approaches have been 

suggested to avoid identity mappings and 

instead learn valuable representations. In this 

research, we consider the approach where the 

inputs 𝑋𝑖 are corrupted stochastically. It is 

referred to as the minimization of the error as 

follows: 
 

𝒵𝑑𝑎({x𝑖}1
𝑛, 𝜃)

≔ arg 𝑚𝑖𝑛
W,𝑏,𝑐

∑  

𝑛

𝑖=1

𝔼x̃∼𝛾( x̃∣∣x )ℓ(x𝑖, 𝜎(W𝑇𝜎(Wx̃𝑖

+ 𝑏) + 𝑐))                                                     (3) 
 

where γ is a stochastic corruption function, 

and 𝑋𝑖 represents the corrupted form of the 

𝑋𝑖. 𝛾(𝑥𝑖𝑗) = 𝑥𝑖𝑗 with some (given) 

probability ζ and 0 elsewhere. Denoising 

Autoencoder (DA) is a stochastic 

autoencoder whose learning procedure seeks 

to undo the input corruptions (hence it is 

called denoising). The corruption forces the 

transformations to correspond to some 

properties of input data since the 

reconstruction error decreases only if the 

transformations pick out the most 

informative data dimensions. Multiple Das 

can then be concatenated to construct a 

stacked DA (SDA), where the hidden 

representations of 𝑙th DA are the uncorrupted 

inputs to (𝑙 + 1)th. The objective of SDA is: 

𝒵𝑠𝑑𝑎({x𝑖}1
𝑛, 𝐿, 𝜃) ≔ ∑  

𝐿−1

𝑙=0

𝒵𝑑𝑎 ({h𝑖
𝑙}

1

𝑛
, 𝜃)

 
 

    (4) 

h𝑖
𝑙 = 𝜎(W𝑙h𝑖

𝑙−1 + 𝑝𝑙); h𝑖
0  

= x𝑖                                                                     (5) 

 

3.1. Small Samples and Multiple 

Modalities 
 

Although the pretraining idea in tandem with 

the dropout learning addresses the issue of 

non-convexity to a certain extent, the earlier 

works have shown extensive evidence that 

one of the main reasons for the success of 

deep learning is the availability of a large 

number of unsupervised and/or supervised 

training instances. Simply put, the non-

convexity, together with the stochasticity that 

comes from the corruption in DA or the 

dropout process, demands a large number of 

gradient search iterations and data instances 

to search through the solution space in 

computing generalizable solutions 

effectively. With increasing data 

dimensionality, the dataset size required to 

ensure that sufficient combinations of 

corrupted/dropped dimensions are passed to 

the objective also increases. The fundamental 

difference between vision type domains and 

medical imaging and bioinformatics is the 

lack of such large datasets. In the vision, one 

can access enormous datasets (on the orders 

of millions of images), including many 

unlabeled and supervised instances. On the 

other hand, a typical voxel-wise imaging 

study, for instance, will have n < 500 subjects 

while the number of voxels/features (d) will 

exceed a million – the classical small-sample 

regime. The problems in bioinformatics 

involve data from multiple acquisition 

types/domains (e.g., brain imaging data 

including Magnetic Resonance images 

(MRI), Positron Emission Tomographic 



62                                                                                       Safari.  A Denoising Autoencoder Stacked Deep Learning … 

(PET) images, several types of cognitive and 

neuropsychological scores, lists of vascular 

and blood perfusion data, and genetic single 

nucleotide polymorphisms). Most 

applications in these areas would require 

efficient statistical models for “fusing” such 

multimodal data, mainly because they 

provide specific information about the 

underlying disease. 

 

3.2. Pattern Analysis 
 

With the presence of multimodal data, the 

concept is far more complex than the 

unimodal setting. Using the classical version 

of deep architectures, including SDAs or 

dropout networks, for these multimodal 

problems with d>n issues will result in 

unreliable outputs, with no guarantee of 

generating stable or generalizable solutions. 

This is a direct consequence of under-

sampling issues in statistical learning (like in 

VC-dimension or Nyquist sampling 

analyses), where the number of training 

instances cannot be below a certain pre-

specified number for efficient estimation of 

the underlying concepts.  

 On the other hand, one can avoid the 

feature screening entirely by working with 

slices of the input data (e.g., 2D slices or 

smaller resolution images from a 3D image). 

Although this is lossless, working with one 

slice at-a-time will restrict interactions of 

voxels and brain regions from anatomically 

far apart regions. Allowing for arbitrary far-

apart interactions in predicting the output 

label would be reasonable following the 

hypotheses that, in general, all brain regions 

have complex biological interactions in 

generating the final label (e.g., the disease 

status). An alternative to these extremes is to 

categorize (or tessellate) the entire set of 

voxels into multiple subsets (e.g., spatially 

contiguous blocks) and learn a network (e.g., 

SDA or dropout network) on each block 

separately while allowing for different blocks 

to interact with each other in some prescribed 

manner. Later, the individual block-wise 

networks, which interact with each other, can 

be combined in a meaningful manner 

yielding a better fit for the dependent 

variable. 

 

4. RESEARCH EXPERIMENTS 
 

Imaging data including [F-18] Florbetapir 

amyloid PET (AV45) singular uptake value 

ratios (SUVR), FDG PET SUVRs and gray 

matter tissue probability maps derived from 

T1-weighted MRI data, and several 

neuropsychological measures and CSF 

values from 516 individuals enrolled in 

Alzheimer’s Disease Neuroimaging 

Initiative-II (ADNI2) were used in our 

evaluations. Of these 516 persons (age 72.46 

± 6.8, female 38%), 101 were classified as 

AD (age 75.5 ± 5.1), 148 as healthy controls 

(age 70.75 ± 7), and 131 and 136 as early and 

late MCI (age 74.3 ± 7.1 and 75.9 ± 7.7), 

respectively, at baseline. There was a 

significant age difference across the four 

groups, with F >10 and p<0.001. Among the 

MCIs, 174 had a positive family history (FH) 

for dementia, and 141 had at least one 

Apolipoprotein E (APOE) e4 allele. CSF 

measures were only available at baseline, and 

three-time point data (baseline, 12 months, 

and 24 months) was used for the rest. The 

imaging protocols follow the standards put 

forth by ADNI. MRI images are MP-

RAGE/IR-SPGR from a 3T scanner. PET 

images are 3D scans consisting of four 5-min 
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frames2 from 50 to 70 min post-injection for 

[F-18] Florbetapir PET and six 5-min frames 

from 30 to 60 min post-injection for FDG 

PET. The segmented map was then 

normalized to Montreal Neurological 

Institute (MNI) space and smoothed using an 

8 mm Gaussian kernel. The resulting map 

was thresholded at 0.25 to compute the final 

gray matter image. All PET images were first 

co-registered to the corresponding T1 images 

and then normalized to the MNI space. 

Manually constructed pons, vermis, and 

cerebellum masks were then used to scale 

these PET maps by the average intensities in 

pons and vermis (FDG PET SUVR) and 

cerebellum (Florbetapir PET SUVR). All 

preprocessing was done in SPM8.  

 

4.1. Performance Analysis 
 

In this section, a ROC curve analysis was 

conducted to have a reliable estimate of the 

performance of the proposed model, and the 

results were statistically verified as follows 

[17-19]:  
 

Precision 

=
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
× 100%                                 (6) 

 

Recall =
𝑇𝑃

(𝑇𝑃 + 𝑇𝑁)
× 100%                  (7) 

F-Measure

=
2 "Precision 

∗
 Recall 

 Precision +  Recall 
                               (8) 

 

Accuracy 

=
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁)
                          (9) 

 

𝜇𝑖

=  
1

10
∑ 𝐴𝑈𝐶𝑗

10

𝑘=1

                                            (10) 

 

Where 𝜇𝑖 is the means of the accuracy of the 

ROC curve for the 10-fold cross-validation. 

A 10-fold cross-validation techniques [20-

21] was applied, which randomly partitions 

the original sample into k equal sized 

subsamples.  

 A single subsample is retained as the 

validation data for testing the model from the 

ten sub-samples, and the remaining nine are 

used as training data. We train the deep 

networks based on imaging data from all 

three modalities, MRI, FDG PET, and AV45 

PET with diseased (AD, labeled 0) and 

healthy (CN, cognitively normal, labeled 1) 

subjects. We only use baseline imaging data 

for training, thereby making the models 

deployable in practice. When testing on MCI 

subjects, these trained models output a 

multimodal rDA and rDr, which represent the 

 

 

Table 1. Obtained results of the DASDL method. 

Type AUC% CI% Recall Precision F-1 

PET rDr 79.23 [77-81] 78.52% 79.67% 80.33% 

PER rDr 82.07 [80-85] 81.23% 82.41% 82.77% 

MRI rDA 90.92 [87-92] 91.79% 92.24% 90.33% 

MRI rDA 92.05 [88-93] 91.76% 92.27% 91.17% 
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Fig. 3. ROC Curve analysis of the proposed method for different rDA and rDr. 

 

Table 2. Left-tailed T-test of the DASDL, 

LSTM. 

Fold# DASDL LSTM 

1 0.90 0.72 

2 0.92 0.74 

3 0.92 0.61 

4 0.89 0.62 

5 0.93 0.72 

6 0.94 0.76 

7 0.94 0.79 

8 0.96 0.72 

9 0.96 0.82 

10 0.98 0.81 

Mean 0.96 0.82 

 

confidence of rDA and rDr that a given MCI 

subject is (or is not) likely to decline. At the 

same time, the predictions can be performed 

on MCIs at baseline and/or future time-

points. After checking that multimodal 

markers are superior to unimodal markers, 

we evaluate whether the multimodal rDA and 

rDr markers are good disease progression 

markers. We demonstrate this by computing 

the dependence of this multimodal baseline 

rDA and rDr with well-known outcome 

measures, including the following 

presentations. 

 

4.2. Null hypothesis and left-tailed t-test 
 

In this section, a two-sample t-test (left 

tailed) has been conducted. The null 

hypothesis was defined as H0= 𝜇𝑖  >  𝜇𝑗  and, 

H1: 𝜇𝑖 <  𝜇𝑗, where 𝜇𝑖 and 𝜇𝑗 are the means 

of the area under the ROC curve (AUC) of 

DASDL and LSTM for ten different 

iterations of 10-fold cross-validation 

assessment [22-26]. The obtained results of 

the t-test analysis are shown in Table 2, 

which demonstrates the advantage of the 

proposed DASDL method compared to the 

LSTM. The results in Table 2 show that the 

t-test failed to reject the null hypothesis. 

 

5. CONCLUSION 
 

The ability to design clinical trials with 

smaller sample sizes but sufficient statistical 
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power will enable the implementation of 

affordable, tractable, and hopefully 

conclusive trials. Efficiency is seriously 

compromised in trials where there is poor 

biomarker specificity of disease progression 

and when the outcomes contain relatively 

high amounts of error variance. Determining 

whether promising treatments are effective in 

the MCI phase of AD requires accurate 

identification and inclusion of only those 

MCI participants most likely to convert to 

AD and selecting outcomes that are disease-

related and possess optimal measurement 

properties. This research shows that the 

proposed inclusion strategy can substantially 

reduce the sample size required to detect a 

treatment effect. The central message of our 

empirical evaluations is that the multimodal 

markers based on our proposed stacked deep 

network learning models have good 

predictive power in identifying future disease 

progression, as shown in Table 1, Table 2, 

and Figure 3. An interesting extension would 

be to incorporate multimodal and multi-

domain (e.g., ordinal, continuous, and 

nominal) information directly into the rDA or 

rDr construction leading to multi-variate 

randomized deep network models. These 

technical issues are of independent interest 

and will be investigated in future works. 
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