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Abstract 

The emergency demand response program (EDRP) is a type of program that can be utilized as a tool 

for controlling the price of electricity when there is a lack of reliability in the distribution system. In 

this study, a formulation is proposed for determining the optimum amount of demands in the EDRP 

according to the viewpoints of the regional market manager (RMM) aimed at reducing the EDRP 

costs and smoothening the load curve based on the logarithmic model and the matrix of demand 

elasticity. The probability that the aggregators should present their available reserves to the RMM in 

response to the received incentives has also been included in the proposed formulations. The market 

manager then prioritizes the available reserves using the reserve-margin factor (RMF). Three 

algorithms including co-evolutionary particle swarm optimization (C-PSO), co-evolutionary teaching 

learning-based optimization (C-TLBO) and co-evolutionary improved teaching learning-based 

optimization (C-ITLBO) are used for reducing the EDRP costs. The results show that the proposed 

formulations are effective in improving the economic performance of the regional market and the load 

curve. Furthermore, the results indicate the superiority of the C-ITLBO algorithm in terms of the total 

cost, incentive rate and peak shaving in comparison with C-PSO and C-TLBO algorithms. 

 

Keywords: Emergency demand response program, Electricity market, logarithmic model, Reserve 

margin factor, Co-evolutionary improved teaching learning-based optimization. 

  

1. INTRODUCTION 
 

For many years, electricity customers have  

 

 

 
been involved in controlling and managing 

their energy consumption due to some 

technical and economic benefits. For this 

purpose, the concept of demand-side 
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management (DSM) was introduced. The 

DSM, by definition, refers to the activities 

that reduce or shift electricity consumption in 

order to decrease the loading of the 

distribution system, especially during peak-

load hours. One of the most prominent DSM 

types in recent years is demand response 

(DR) programs. In these programs, customer 

electricity consumption changes in response 

to the changes in the electricity prices over 

time or in response to the monetary incentive 

payments. DR programs are used for 

reducing consumption when the cost of 

electricity is high or when the reliability of 

the distribution system decreases to 

insufficient levels [1].    

 One type of DR is called the EDRP that 

can be used as a tool for maintaining the 

confidence ability in emergencies when a 

regional market is facing a shortage of supply 

resources and hence a lack of power reserve 

which resulting in high electricity prices. The 

peak-load hour is another common example 

of emergency situation. In these situations, 

the manager of the regional market recalls 

customers or their representatives who are 

prepared to participate in the EDRP to reduce 

their consumption. In this study, each 

representative is considered as an aggregator 

(AGG). In exchange for reducing their 

consumptions, the participants in the EDRP 

receive funds as incentives from the RMM. 

Participation in the EDRP is optional and the 

RMM does not consider penalties for the 

customers or their the AGGs who did not 

answer the phone at the time of calling [2-4].  

 Various activities have been mentioned in 

the literature relating to the application of the 

DR and the EDRP in power systems. For 

example, the EDRP was applied in [5], in 

which a market-based incentive model has 

been proposed to encourage subscribers to 

reduce energy consumption. In [6], in order 

to improve the voltage stability margin 

(VSM), a whale optimization algorithm-

based (WOA) strategy was stated for the 

EDRP in a range acceptable in emergencies. 

In [7], the effects of the EDRP on improving 

the reliability of power generating units were 

investigated. In [8], the effects of DR 

programs on power system reliability in a 

restructured environment were evaluated. In 

[9], an optimal nonlinear model for the 

pricing of a DR program in a smart grid was 

presented and solved using the particle 

swarm optimization (PSO) algorithm. Here, 

DR pricing means the electricity price 

schedule that caused peak-load time shift and 

hence improved the distribution system 

performance [9]. In [10], an optimal pricing 

model for DR was proposed which was based 

on the demand-price elasticity. The model is 

applied to maximize the profits, reduce the 

price fluctuations and improve the system 

reliability. 

 Most of the articles about DR paid 

attention to the improvement of DR model, 

selection of DR program, reduction of DR-

program cost and pricing electricity from the 

perspective of the RMM. However, few 

articles focused on such items as providing a 

new method for optimizing the incentives of 

the EDRP in peak hours as well as the 

prioritization of the power reserve of the 

AGGs from the perspective of the RMM. 

These items are of great importance in this 

study. As one of the studies that have dealt 

with incentives, we can refer to [11]. In that 

study, a two-level optimization is proposed 

by the independent system operator for 
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determining the optimal schedule of 

production units in which the upper-level 

attempts to solve the problems regarding the 

minimization of fuel consumption cost, air 

pollution and payable incentives, whereas the 

lower level minimizes the wind power output 

strength. In this regard, the upper-level 

problem is solved by the dominated sorting 

approach and the lower-level problem is 

solved by using linear programming. It 

should also be noted that the responsibilities 

of the RMM are different from those of the 

power-system operator. The RMM is mainly 

involved in the implementation of the DR 

programs and cash flows. These activities can 

be considered as assisting tools for the system 

operator for maintaining the network 

reliability. 

 References 12 to 20 can be considered as 

further examples in this regard. In [12], a 

dynamic economic model of DR is used 

based upon the concept of the flexible 

elasticity of demand and the customer benefit 

function. Moreover, from the viewpoints of 

the RMM, the main objective is to prioritize 

the multipurpose DRP utilizing Technique 

for Order Preference by Similarity to Ideal 

Solution (TOPSIS) and the entropy methods. 

In [13], linear and nonlinear models were 

presented for the pricing of electricity. In [14] 

the demand-price elasticity that is a criterion 

for assessing demand variations with respect 

to price variations was presented. Moreover, 

the demand elasticity of a commodity to its 

price and the demand stretchiness of a 

commodity to the price of its substitutable 

commodity werealso mentioned in [14]. In 

[15], based on the findings presented in [13] 

and [14], a linear model was proposed for DR 

to time-variable tariffs. Similar 

considerations were reported in [16, 17 and 

18] in the forms of linear and nonlinear 

modeling of DR programs. In [19], the DB 

and the EDRP were implemented using ISO 

during time intervals when electricity prices 

were high. It can be said that high electricity 

prices are motives for the implementation of 

these programs in order to reduce electric 

consumption and price. During high price 

intervals in the method presented in [19], the 

ISO determined some supply curves 

proposed by the participants who took part in 

the DB and the EDRP as well as the demand 

curve based on the initial power demand and 

power producers’ offers, respectively. The 

intersection of these curves gives the quantity 

of power demand and its price for the next 

time interval.  In the current study, the energy 

demand and electricity price have not been 

optimally determined. In [20], the price-

based nonlinear models were presented 

considering their price elasticity. Different 

mathematical models were extracted for 

time-of-use (TOU) programs, and then they 

were investigated from different viewpoints 

in order to find out their performance. In [21], 

a DR model was developed for the combined 

programs of the EDRP and TOU based on the 

concepts of the customers' benefit function 

and the flexible demand elasticity. 

Furthermore, for determining the optimal 

demand from the viewpoints of “load 

characteristics” and “economy”, Multi 

Attribute Decision Making (MADM) was 

employed as an effective method. 

 Logarithmic models were applied in the 

previous studies for modeling incentive-

based DR programs. Another noticeable 

point is the increase of power reserve after the 

implementation of the EDRP. Obviously, the 
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greater level of participation in the EDRP 

leads to further reserves of the RMM during 

emergencies. Therefore, proposing an 

appropriate formulation for encouraging 

more participation in the EDRP is very 

useful, as it can enhance economic benefits 

for the participants as well as the technical 

benefits for the regional market.  

 An important technical benefit is the 

improvement of reliability due to the 

increased power reserve. Among pieces of 

literature mentioned above, the power 

reserve and reliability were studied in [22-

24]. The optimum reserve capacity required 

in the electricity market was studied in [22]. 

Purchasing spinning reserves and allocating 

cost with the application of social-welfare 

analysis were discussed in [23]. In [24], 

multi-objective stochastic programming was 

provided for simultaneous clearing energy 

and the reserve markets. Furthermore, the 

review of the related research showed that 

PSO algorithm indicated a satisfactory 

performance in optimizing DR pricing 

problem [9 and 25]. This algorithm performs 

based on the particles search (such as a group 

of birds) to achieve optimal responses (e.g., 

their food). Another algorithm that is useful 

to be noted here is teaching learning-based 

optimization (TLBO), which is used for 

solving power system problems [26]. Finally, 

Table 1 summarizes the above reviewed 

pieces of literature about DR and the 

electricity market. 

 

Table 1. Summary of the literature review about DR and electricity market. 

Ref. 

No. 
DR program Objective function 

Reward of the 

IBDR 

Prioritize customer 

power reserve 

[5] IDRP Min cost No 
Without prioritizing 

reserve 

[6] EBDR Min cost Fixed 
Without prioritizing 

reserve 

[7] IBDR Min cost No 
Without prioritizing 

reserve 

[8] IBDR Min cost Fixed 
Without prioritizing 

reserve 

[11] EDRP 
Min cost, air pollution & 

incentive 
Variable 

Without prioritizing 

reserve 

[15] 
TOU & Real time 

Pricing 
Non-Heuristic No 

Without prioritizing 

reserve 

[16] IBDR Non-Heuristic Fixed 
Without prioritizing 

reserve 

[17] TOU Non-Heuristic No 
Without prioritizing 

reserve 

[18] EDRP & TOU Non-Heuristic Fixed 
Without prioritizing 

reserve 

[20] TOU Min cost No 
Without prioritizing 

reserve 

[21] EDRP & TOU Min cost Fixed 
Without prioritizing 

reserve 

Curre

nt 

Paper 

EDRP 
Min cost & load curve 

smoothening 
Variable With prioritizing reserve 

* IBDR: Incentive-based demand response           *Non-Heuristic: The optimization algorithm is not used 
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 As discussed, the demand curve of the 

daily market is determined by the power 

consumption pattern at the initial price of the 

market. In peak hours, the RMM decides to 

invoke the EDRP when electricity price and 

the chance of insufficient reliability are high. 

For this purpose, in order to reduce power 

consumption during peak hours, the RMM 

should provide the responsive loads with 

incentives that are significantly higher than 

the electricity prices. Formulations are 

proposed for determining optimum incentive 

amounts, which are paid by the RMM to the 

participants in the EDRP based on the 

logarithmic model and the elasticity matrix. 

The optimization algorithm calculates these 

amounts by taking into consideration the 

EDRP objective function and DR factor in 

peak hours as well as the constraints for the 

maximum incentive rate and demand value. 

It is assumed that customers participate in the 

EDRP through their agents, which are the 

AGGs. These the AGGs communicate with 

the customers or the electricity end-users and 

they declare to the RMM the extent they will 

participate in the EDRP according to the 

received incentive amounts. 

 As discussed, the demand curve of the 

daily market is determined by the power 

consumption pattern at the initial price of the 

market. In peak hours, the RMM decides to 

invoke the EDRP when electricity price and 

the chance of insufficient reliability are high. 

For this purpose, in order to reduce power 

consumption during peak hours, the RMM 

should provide the responsive loads with 

incentives that are significantly higher than 

the electricity prices. Formulations are 

proposed for determining optimum incentive 

amounts, which are paid by the RMM to the 

participants in the EDRP based on the 

logarithmic model and the elasticity matrix. 

The optimization algorithm calculates these 

amounts by taking into consideration the 

EDRP objective function and DR factor in 

peak hours as well as the constraints for the 

maximum incentive rate and demand value. 

It is assumed that customers participate in the 

EDRP through their agents, which are the 

AGGs. These the AGGs communicate with 

the customers or the electricity end-users and 

they declare to the RMM the extent they will 

participate in the EDRP according to the 

received incentive amounts.  

 The main contributions of the current 

study can be summarized in the following 

way: 

1) Defining a new objecting function for 

calculating the RMM’s profit in the presence 

of the EDRP in a day-ahead market 

environment 

2) Presentation of a new formulation applied 

by the RMM to prioritize the reservation 

offered by the AGGs. 

3) A more realistic definition of the EDRP 

program, the EDRP is assumed to be 

implemented in accordance with the NYISO 

market structure. 

 In the current study, the AGGs indicate 

the degree of their participation in the EDRP 

based on the logarithmic model as well as the 

participation factors. The reason for choosing 

a logarithmic model is that the previous 

studies, i.e., [27] showed that this model 

provided more conservative responses than 

values that were in the middle of the values 

of other models. In this study, a C-ITLBO 

was used for determining the optimum 
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amount of incentives aimed at the EDRP cost 

reduction. In the proposed algorithm, the 

genetic algorithm operators including 

crossover and mutation as well as an 

improvement phase were added to the 

conventional C-TLBO for enhancing its 

performance in order to reach the global 

optimal value and not being caught in the 

optimal local value. Then, in order to increase 

the provided reserve by the AGGs because of 

their participation in the EDRP, the RMM 

took into consideration the concept of the 

margin reserve. To evaluate the effect of 

applying the proposed formulas on the 

system load curve, the peak-to-valley ratio 

and peak compensation ratio were used. In 

this study, Ref. [19] is applied as a 

benchmark for making a comparison with the 

obtained results. The related problem to the 

above points is solved for a 24-hour period. 

Determining the optimal incentive amounts 

for the EDRP program and evaluating the 

reserve provided by the AGGs can be 

considered as two contributions of this paper. 

 The rest of the study is organized as the 

following: Section 2 describes the 

deterministic model of the proposed problem, 

and in section 3, the proposed algorithm and 

its implementation in the problem solution 

are presented. Simulation results are 

presented in section 4 and the conclusion is 

presented in section 5, respectively. 

 

2. ORIGINAL DETERMINISTIC 

PROBLEM MODEL 
 

The deterministic model of the RMM based 

on the EDRP and taking the reserve into 

consideration is presented in this section. The 

objective function of this model includes cost 

of the EDRP implementation (related to the 

incentive payments) during the peak hours 

and the load curve smoothening (related to 

shape of the system load curve), and the 

problem constraints are incentive limits, 

demand limits, the EDRP model and reserve-

margin factors. 

 

A. Objective Function 
 

In the proposed model, the objective function 

minimizes the costs of the EDRP and the load 

curve smoothening, where its equation is 

considered to be as the following: 
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 In Equation (1), the first part is the 

incentive payment to the AGGs in the EDRP 

by the RMM in order to reduce the load curve 

peak [28-30]. The second part is the cost of 

the load curve smoothening. One of the 

criteria for measuring the curve smoothening 

by the RMM is calculating the difference 

between the maximum and minimum load 

characteristics of the AGGs. In the first part, 

( )iinc t  is determined using Equation (2) for 

the logarithmic model. EDRP  and LF are the 

weight factor in the first and the second part 

of the objective function, respectively. 

 The relation between these factors is 

assumed to be as EDRP + LF = 1 meaning 

that the RMM should trade-off between EDRP 

and LF. If reducing the cost of the EDRP is 

more important than increasing the DRF, the 

inequality of 
EDRP > 

LF is taken into 

consideration by the RMM.  In the reverse 

situation, the inequality would be as  EDRP < 


LF. In case of the same priority for both of 

the EDRP cost and DRF, the equality of  C 

= LF = 0.5 is taken into consideration by the 

RMM where k is the index of the AGG,

( )iinc t is the index of time, ( )iinc t is the peak 

hour rate per $ / MWh, ( )0 , id k t  and ( )id t

are the demand for the AGGs before and after 

the implementation of the EDRP program at 

ti hour per MWh, respectively. Moreover, 

( )0 it  and ( )it  are the electricity price 

before and after the implementation of the 

EDRP program at ti hour per $ / MWh, PF is 

the contribution ratio of the AGGs and ,
i i

t tE is 

the elasticity price at ti hour. 

 In the current study, it is assumed that an 

RMM intends to pay incentives during the 

peak-load hours to the AGGs who are willing 

to participate in the EDRP. Receiving the 

incentives, an AGG could encourage its 

customers to reduce their electricity 

consumption. The peak hours are the periods 

that the distribution system is encountered 

with a lack of reservation or a sharp increase 

in the price of electricity. The main issue here 

is determining ( )iinc t  and d (ti). If ( )iinc t  is 

selected inappropriately, it may impose 

additional costs on the regional market, and 

if d (ti) is selected inappropriately, there will 

be a probability of an increased load in the 

other hours. Equation (2) shows the incentive 

rate at the peak times using a logarithmic 

model, where ( )iinc t is dependent on d (ti) 

variable. 

 Here, the electricity price is assumed to 

be the same value before and after the EDRP 

implementation for the first iteration of the 

solution process. The reason is that the 

electricity price is not known after the 

implementation of the EDRP in the first 

iteration. In addition to this assumption, no 

penalty is considered in the EDRP, and there 

are also no incentive payments during the off-

peak hours. 

 

B. Constraints 
 

The constraints mentioned in this section are 

applicable to all of the logarithmic models 

described in the next sections. 

A) Incentive limit: The Payable incentive for 

the EDRP is assumed to be in the following 

range: 
 

( ) ( ) ( )min max

1,..., 24

i i i

i

inc t inc t inc t

t

 

 
             (3) 
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 This range is applied to the incentive 

provided by the RMM to the AGGs. The 

upper and lower limits are considered as 

10 × ρ0(ti) and 1 × ρ0(ti), respectively [4].  

B) Demand limits: The incentive provided 

by the RMM should be in a way that it does 

not exceed the upper and lower limits of the 

daily load demand according to the Equation 

(4(: 
 

( ) ( ) ( )0 0

1 1

min , max ,

1,..,24

n n

i i i

k k

i

d k t d t d k t

t

= =

 

 

 
    (4) 

 

C) EDRP model: In this study, the optimal 

incentive rate and the optimal demand rate 

for the EDRP at the peak times are 

determined by using the logarithmic model 

and the RMM announces this incentive rate 

to the AGGs. Then, the AGGs declare the 

level of their participation in the EDRP to the 

RMM, which is declared by the use of the 

model mentioned in Equation (5) based on 

the incentive rate and the participation factors 

(PF1, PF2 etc.) of the AGGs. Since there is 

competition among the AGGs to receive the 

incentive payments, it is assumed that the 

AGGs are prioritized according to their 

provided reserve, which is performed by 

using a factor of reserve margin. This factor 

is related to the reserve provided due to 

participation of the AGGs in the EDRP. 

Therefore, based on the logarithmic model 

[29,31], the EDRP model for kAGG is written 

as the following: 
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D) Reserve margin factors: Applying the 

above-mentioned model, Equations (1)-(5), 

the amount of the provided reserve in a peak-

load hour by each of the AGGs that 

participates in the EDRP can be calculated 

and announced to the RMM. The provided 

reserve amounts are prioritized in this study 

using reserve-margin factors defined as the 

following: 
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( ) ( ) ( )
24
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t
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 In Equation (6), ( ), iRMF k t which is the 

value of the reserve-margin factors by kAGG

in ti hour is determined, and ( ), iR k t which is 

the reserve provided by kAGG in ti hour per 

MWh is calculated using Equation (7) and 

based on ( ), id k t demand by kAGG in ti hour. 

Moreover, Equation (8) indicates ( )RSP k

which is the reserve service period of kAGG

after the EDRP implementation and Equation 

(9) expresses ( )iRV t  which is the reserve 

value for each of the AGGs which could 

provide reserve in ti hour. Therefore, the 

relations of 𝑅𝑉(𝑡𝑖) and 𝑅(𝑘, 𝑡𝑖) are 

expressed based on references [21] and [24], 

respectively. According to this equation, the 

highest demand indicates the highest reserve 

value, which is equal to 1. By reducing 

demand from the highest to the lowest 

amount, the reserve value decreases from one 

to zero. Furthermore, the extent of the 

provided reserve by kAGG  in ti hour is 

calculated using ( ), iPR k t . If this the AGG 

offers the reserve in ti hour and this period 

belongs to the peak hours, ( ), iPR k t will be 

equal to 1, otherwise it will be equal to zero. 

In this regard, ( )iMAR t which is the 

maximum achievable reserve for the RMM in 

ti hour is determined using Equation (10). 

 It is noted that based on Equation (9), an 

AGG with a greater RMF is given higher 

priority for providing the reserve in ti hour. If 

MAR from Equation (10) is greater than the 

reserve capability of the considered AGG, 

another  AGG with the next priority will be 

called for the reserve provision. This 

procedure continues in the same way till the 

MAR is achieved.  

 

3. PROPOSED METHOD AND 

IMPLEMENTATION PROCESS 
 

3.1. Overview of C-ITLBO 
 

In this study, the C-ITLBO algorithm is used 

together with the GA operators, i.e. crossover 

and mutation. Furthermore, for enhancing the 

performance of C-ITLBO algorithm, an 

improvement phase is added to it in order to 

not be trapped in the local optimums. The C-

ITLBO algorithm can be explained as the 



70                                                                                Hosseini, Najafi, Akhavein.  Improvement of Regional-Market … 

following; Teacher T is in fact the best 

student among students, nP other students 

each shown by oldS during the teaching 

processes. In this process, the teacher’s 

knowledge oldS  is used to generate a new 

member or student for the group, newS

represents a new student Group The number 

of students in a class who are trying to learn 

a lesson nP Individuals who organize the 

initial population, so-called student group, 

where a specific vector is used to indicate 

each one of the students.   

 Teacher Stage: A student who has more 

or better information is considered as the 

teacher and attempts to increase the level of 

students' knowledge in the classroom by 

teaching other students. In other words, when 

a student with higher quality than the 

previous one is generated, it substitutes the 

previous one or even the teacher. Equation 14 

expresses the formulation of how a new 

student or teacher, newS is generated from the 

previous student (Sold) [26]. 
 

oldnew old FS S r T T S
− 

= +  −  
 

                 (11) 

 

where, r is a randomly selected real number 

in the range of zero and one, FT indicated the 

teaching coefficient and oldS
−

shows the 

average value calculated for the whole of the 

students before being taught. The 

relationship for TF is given as the following: 
 

( )[1 0,1 ]FT round rand= +                      (12) 

 

 Students Stage: Students are taught based 

on the quality of the instruction provided by 

the teacher as well as the status of students 

present in the knowledge classroom. In the 

other words, when two random and distinct 

students interact with each other, i.e. one with 

higher quality ( betterS ) and another with lower 

quality ( worseS ), a new student will be 

generated using equation (13) substituting the 

lower one [26].  
  

( )new worse better worseS S r S S= +  −                  (13) 

 

 There are accordingly 6 main steps in this 

algorithm, namely 1) initialization, 2) 

competition, 3) teacher, 4) student, 5) GA 

operator's application and 6) improvement 

phase. In the first step (initialization), two 

groups of students with equal size of nP  are 

generated and assessed. PA and PB are used 

for representing these groups. After that, the 

other three steps (steps 2-4) are repeated and 

once the termination criterion is met the 

algorithm stops. To find competitiveness, a 

competition is carried out among the students 

of both groups and in each group, the student 

with maximum competitiveness is chosen to 

be a teacher.  

 Hence, TA is the teacher of group or class 

A and TB is the teacher of class B. In step 5, 

byapplying the crossover and mutation 

operators of the GA, a new population of 

students is generated. In order to prevent the 

algorithm from being trapped in a local 

optimum and also to improve the 

convergence of the algorithm, the GA 

operators are applied. 

 In other words, GA operators lead the 

students to cooperate with each other during 

the knowledge acquiring, and sometimes the 

students compete with each other for 

selecting the teacher. 
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 In the improvement phase (step 6), based 

on the technique of self-adaptive mutation, 

the level of students’ knowledge increased. 

Considering that in the C-TLBO students 

usually move in the direction of the teacher, 

there is a chance that they will be trapped in 

local optimum points and hence the 

convergence rate is decreased. Accordingly, 

in the improved phase, each student moves 

randomly towards a teacher or the worst 

student. The parameter  called the 

probability of mutation is attributed to each 

student. Then, a probability number from 0 to 

1 is selected. If this number is less likely to 

be mutated, the student will perform the 

mutation and otherwise it does not perform. 

The mutation is described as the following: 
 

( ) 0

( ) 0

old old

new

old old

S T S if
S

S W S if

 

 

+ − 
= 

+ − 
 (14) 

 

where T is Teacher (best student) and W is 

the worst student. The parameter ω is applied 

as the following: 
 

21 1
exp ( )( ) cos( ( ))

2
c

h hh

 
 

 
= − 

 
 (15) 

 

where, ωC is the central frequency of the 

wavelet. If ω is positive, the student moves 

towards the teacher and if it is negative, the 

student moves towards the opposite side. 

Taken into consideration that 99% of the total 

energy of the central frequency of the wavelet 

is located between [-2.5, 2.5], the parameter 

φ is chosen randomly with a value between [-

2.5h, + 2.5h]. In this equation, h is the 

dilatation factor, which is varied in each 

iteration as the following: 

 

max

exp ln( ) (1 ) ln( )Lh
L

  = −  − +
  

 (16) 

 

where, L and maxL are the current iteration 

and total iterations, respectively. The upper 

bound and the shape of h are defined by two 

parameters of η and σ. In this study, the value 

of η is considered as 2 and the value of σ is 

obtained from the following equation: 
 

max min
min

max

( )k
k

 
 

−
= +  (17) 

 

where, σmin and σmax are 1 and 3, respectively. 

 

3.2. C-ITLBO Implementation  
 

Evaluation steps of the proposed 

formulations correspond to the flowchart 

shown in Fig. 1 and are as the following: 

Step 1: Enter the initial information, the 

related algorithm, the optimization functions 

and constraints and the required parameters 

of the formulations for the RMM; 

Step 2: If the ti hour is not greater than 24, go 

to the third step, otherwise display the 

outputs and terminate the process; 

Step 3: If the ti hour belongs to the peak 

hours, go to the step 4, otherwise consider 

next hour or ti + 1 and return to the step 2; 

Step 4: Assume for the first iteration that 

ρ(ti) − ρ0(ti) = 0;  

Step 5: Determine the electricity price after 

the EDRP, optimal incentive in ti for the 

RMM according to equations (1)-(2); 

Step 6: If the constraints equations (3,4) are 

satisfied, go to the next step, otherwise return 

to the step 5; 

Step 7: Select the best d(ti), inc(ti)  

and ρ(ti) after the EDRP from the 

perspective of the RMM; 



72                                                                                Hosseini, Najafi, Akhavein.  Improvement of Regional-Market … 

 
Fig. 1. The flowchart of the evaluation process 

of the proposed formulations. 

 

Step 8: Determine the demand of the AGGs 

in each hour by Equation (5); 

Step 9: Prioritize the AGG from the 

perspective of the power reserve in the peak-

load hours by Equations (6)-(10); 

Step 10: Determine the load-curve 

smoothening factors according to Equation 

(15) to Equation (16); 

 

4. RESULTS AND DISCUSSION 
 

The effectiveness and feasibility of the 

proposed method are illustrated in the form 

of eight different research scenarios. The 

assumptions are presented in Section 4.1 and 

the results of the proposed method are 

presented and evaluated in Section 4.2, 

respectively. 

 

4.1. Assumptions 
 

The proposed formulations are evaluated in 

this section with the following assumptions: 

• Five the AGGs are considered with the 

initial demands according to Table 2 and the 

participation factors of 𝑃𝐹1 = 21%, 𝑃𝐹2 =

23%, 𝑃𝐹3 = 24%, 𝑃𝐹4 = 22%, and 𝑃𝐹5 =

24% , respectively. 

 

 
Fig. 2. The considered daily load curve [25]. 



Signal Processing and Renewable Energy, June 2021                                                                                                  73 
 

Table 2. Initial demand of the AGGs. 

12 11 10 9 8 7 6 5 4 3 2 1 Hour 

216 193 156 140 133 115 116 110 100 100 136 163 Demand of AGG1 (MWh) 

230 210 176 165 130 110 130 130 110 130 125 130 Demand of AGG2 (MWh) 

244 217 174 150 142 129 124 125 125 125 139 147 Demand of AGG3 (MWh) 

210 180 137 125 130 122 125 125 119 127 130 125 Demand of AGG4 (MWh) 

225 200 157 140 135 114 125 110 116 118 120 135 Demand of AGG5 (MWh) 

24 23 22 21 20 19 18 17 16 15 14 13 Hour 

123 161 246 275 274 226 166 200 256 216 275 233 Demand of AGG1 (MWh) 

150 160 214 220 210 240 200 220 230 210 220 245 Demand of AGG2 (MWh) 

160 184 204 260 230 240 214 240 264 254 250 242 Demand of AGG3 (MWh) 

140 150 258 210 215 108 112 125 197 245 260 224 Demand of AGG4 (MWh) 

127 145 232 215 241 106 108 115 203 240 245 226 Demand of AGG5 (MWh) 

 

• Daily load curve in the considered region 

and parameters of the elasticity matrix are in 

accordance with Fig. 2 and Table 3. 

• In the load curve, the low-load hours are 

from 24:00 to 9:00, the middle-load hours are 

10:00, 11:00, 17:00 to 19:00 plus 23 and the 

peak-load hours are from 12:00 to 16:00 and 

from 20:00 to 22:00.  

• Prices of electricity in terms of $/MWh 

are 13, 17 and 20 in low-, middle- and peak-

load hours, respectively. 

• The simulation time interval is 24 hours. 

• For the C-PSO, C-TLBO and C-ITLBO 

algorithms, the number of iterations is limited 

to 200, the size of the population is 100, and 

also 14 scenarios, as mentioned in Table 4, 

are considered. 

 

4.2. Results of the Proposed Method 
 

The results of the proposed formulations are 

presented in two parts. It should be noted that 

this evaluation is from the viewpoints of the 

RMM. In the first part, the amount of the 

optimum incentives was obtained based on 

the logarithmic model of the EDRP and two 

cases with different values of elasticity 

matrix by the use of C-PSO, C-TLBO and C-

ITLBO algorithms. These incentives are paid 

by the RMM to the AGGs participating in the 

EDRP. In the second part, the amount of the 

reserve, provided by the AGGs, was 

determined using the logarithmic model of 

their demand as well as the participation 

factors. Then, the priority was given to the 

reserve of the AGGs in the peak-load hours 

based on the reserve-margin factors. The 

evaluation results of the above-mentioned 

paragraphs are presented in Figs. 3 to 5 and 

Tables 5 to 8.  
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Fig. 3. The effect of EDRP on the daily load curve taking the elasticity matrix case1 into consideration. 

 

Table 3. The considered self and cross elasticity in different time periods. 

 Peak Load Middle Load Low Load Time Period 

Peak Load -0.2 0.032 0.024 12-16 & 20-22 

Middle Load 0.032 -0.2 0.02 10-11, 17-19 & 23 

Low Load 0.024 0.02 -0.2 24-9 

 

Table 4. The studied scenarios. 

EDRP model Algorithm Elasticity matrix Scenario 

Base Case 1 

Logarithmic C-PSO E 2 

Logarithmic C-TLBO E 3 

Logarithmic C-ITLBO E 4 

Logarithmic Non-Heuristic [18] 5 

Logarithmic C-PSO 2×E 6 

Logarithmic C-TLBO 2× E 7 

Logarithmic C-ITLBO 2×E 8 
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Table 5. Incentive payments to the AGGs in different scenarios. 

Incentive received ($) 
Scenario 

# 

AGG5 AGG4 AGG3 AGG2 AGG1  

0 0 0 0 0 1 

3138.7 8043.4 8965.8 3038.7 3360.2 2 

3123.3 8034.5 8955.5 3023.3 3337.8 3 

3107.8 8025.7 8945.1 3007.8 3315.4 4 

532.7 535.6 1021.6 470.8 926.8 5 

3379 9373 9476 3369 4470 6 

3349 9358 9465 3329 4460 7 

3319 9343 9454 3289 4450 8 

 

Table 6. The total cost, reserve used and reserve backup in different scenarios. 

Scenario 

# 

Reserve backup during 

peak hours (MW) 

Reserve used 

during peak hours 

(MW) 

Total Cost RMM ($) 

1 0 0 396947.29 

2 2342.5 815.2 392176.31 

3 2380.4 816.5 391651.85 

4 2418.4 817.7 391281.73 

5 495.4658 181 396527.38 

6 2591.6 857.8 392144.90 

7 2636.3 859 391673.54 

8 2681.1 860.3 391202.17 

 
 According to Table 4, the elasticity 

matrix consists of two cases of E and 2×E, 

which here they are named elasticity matrix 

case1 and case2, respectively. 

 In terms of the amounts of the incentive 

payment at peak hours by the RMM, Table 5 

comparing elasticity matrix Case 2 with the 

elasticity matrix Case 1, shows that by 

increasing the elasticity matrix, the total 

incentive which should be afforded by the 

RMM increased as well, the highest and 

lowest payments are in the Scenarios 6 and 1, 

respectively. 

 In Table 6, the highest cost reduction is 

observed in Scenario 8, C-ITLBO whereas 

the lowest cost reduction is associated with 
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Scenario 1. Moreover, in this table, the 

highest reserve backup is in Scenario 8 while 

the lowest reserve backup is in Scenario 1. 

This result proves the superiority of the 

proposed algorithm in comparison with C-

PSO and C-TLBO algorithms. 

 By using different algorithms, the total 

costs of the RMM considering the elasticity 

matrix case1 and case2 are illustrated in Fig. 

3-4. The results showed that the total cost of 

the RMM was lower in elasticity matrix 

case2 than the state of elasticity matrix case1.  

 Furthermore, these figures indicate a 

better performance of C-ITLBO algorithm in 

total cost reduction in comparison with C-

PSO and C-TLBO algorithms. 

 

Table 7. The reserve proposed by the AGGs in different scenarios during peak hours. 

Reserve proposed by (MW) 
Scenario 

# 
AGG5 AGG4 AGG3 AGG2 AGG1  

0 0 0 0 0 
1 

638.63 605.61 695.84 592.26 625.33 
2 

646.55 613.12 704.49 599.61 633.10 
3 

654.48 620.64 713.13 606.96 640.86 
4 

212.03 135.10 121.39 91.02 116.89 
5 

697.62 661.55 760.12 646.97 683.11 
6 

706.92 670.37 770.26 655.60 692.21 
7 

716.23 679.20 780.40 664.23 701.32 
8 

 

Table 8. The rate of incentives during peak-load hours in different scenarios. 

Rate of incentive ($/MWh) Hour 

 

Scenario    22 21 20 16 15 14 13 12 

0 0 0 0 0 0 0 0 1 

35.4474 38.5282 37.6765 34.0380 36.8805 46.1028 37.6765 31.8974 2 

34.7705 38.0693 37.2289 33.5444 36.1801 45.6283 37.2289 31.4634 3 

34.0936 37.6104 36.7814 33.0509 35.4797 45.1538 36.7814 31.0294 4 

18 18 19 18 19 19 20 18 5 

39.2409 42.4164 41.1998 38.7495 40.5891 50.6386 41.1998 35.6699 6 

38.6522 41.7452 41.0606 38.1732 39.9657 50.2411 41.0606 35.1702 7 

38.0634 41.0740 40.9213 37.5969 39.3423 49.8436 40.9213 34.6704 8 



Signal Processing and Renewable Energy, June 2021                                                                                                  77 

 

 According to Table 7, from the 

perspective of joint consideration of the 

EDRP and power reserve, it was observed 

that Scenario 8 (C-ITLBO) was in a better 

situation whereas Scenario 1 showed the 

worst situation.  

 After the EDRP implementation, total 

demand in the peak hours decreased in all 

scenarios. Demand reduction in the peak 

hours, in turn, can increase the power reserve 

in these hours. The reason is that some of the 

power that has been previously consumed 

can be saved and then devoted to the reserve. 

It was also observed that determining the 

optimal incentives was useful in reducing the 

overall cost of the RMM due to the optimality 

of the related payments.  

 The rate of considering the incentive 

elasticity matrix using different algorithms is 

shown in Table 8. According to Table 8, 

Scenario 1 indicated a lower rate of incentive 

and the elasticity matrix case 2 showed more 

incentive rate in comparison with the state of 

the elasticity matrix case1. Furthermore, the 

results show the superiority of C-ITLBO in 

the lower rate of an incentive than the C-PSO 

and C-TLBO algorithms. 

 Peak compensation using C-ITLBO 

algorithms is shown in Fig. 5 taking the 

elasticity matrix case 1 and case 2 into 

consideration. According to Fig. 5, the peak 

shaving (%) indicated more value 

considering elasticity matrix case 2 than 

elasticity matrix case1.  

 It can be noted that among the scenarios 

that used the logarithmic model, Scenarios 8 

for C-ITLBO indicated the best results while 

Scenarios 2 showed the worst results. The 

studied scenarios indicated that determining 

the optimum incentives along with taking 

power reserve in the peak hours into 

consideration not only reduced the RMM 

cost but also improved the load curve. After 

evaluating such scenarios using the proposed 

formulations, it can be concluded that the 

RMM can make a more realistic decision for 

 
 

 
Fig. 4. The effect of EDRP on the daily load curve calculated considering the elasticity matrix case2. 
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Fig. 5. The effect of EDRP on the daily load curve calculated by the C-ITLBO taking the elasticity 

matrix case1 and case2 into consideration. 

 

the implementation of the EDRP. The effects 

of the EDRP on the daily load curve were 

calculated using C-PSO, C-TLBO and C-

ITLBO algorithms taking the elasticity 

matrix case1 and case 2 into consideration, as 

illustrated in Figs. 3 and 4. 

 Scenario 1 indicated the base case 

regarding the actual load curve of Fig. 2, in 

which there was no the EDRP 

implementation and no incentive for the 

AGGs. In Scenario 2, it is assumed that the 

elasticity matrix is E and the model used is a 

logarithmic one. As observed in Fig. 3, the 

results of this scenario for C-PSO showed 

that the peak of the load curve decreased from 

1240 MW to 1132.1, which is equivalent to 

about 8.70% reduction. In spite of paying 

incentive to the AGGs for their participation 

in the EDRP, Scenario 2 indicated a lower 

total cost compared to the base case. The 

same is true for C-TLBO and C-ITLBO as 

well (Fig. 3). This is mainly due to the 

reduction of the electricity price after the 

implementation of Scenario 2. Moreover, this 

scenario modified the load curve by making 

it flatter. This modification caused the 

commitment to be weaker in generating more 

units during the peak hours.  

 In addition, compared to Scenario 1, 

more power reserve was provided for the 

RMM and hence the distribution network 

indicated a higher level of reliability. In 

Scenario 3 for C-TLBO, the logarithmic load 

model was applied which led to about 8.80% 

peak-load reduction, i.e. from 1240 MW to 

1130.8 MW, as illustrated in Fig. 3. Scenario 

3 indicated a lower total cost, lower incentive 

payments, a flattened load curve and more 

power reserve compared to Scenario 2. As 

shown in Fig. 3, the logarithmic model was 

applied in Scenario 4 for C-ITLBO, which 

brought about 9.67% peak-load reductions 

from 1240 MW to 1120.1 MW. This 

reduction was more than the corresponding 

amounts in the previous scenarios. 

Comparison with the previous scenarios can 



Signal Processing and Renewable Energy, June 2021                                                                                                  79 

also be considered for some other quantities 

including the total cost, the incentive 

payments, the flatness of the load curve and 

the provided power reserve. 

 The results of Fig. 3 and also the results 

in the above tables showed that the RMM was 

seeking for more peak-load reduction and 

higher power-reserve supply. In this regard, 

for more reduction in the total cost, Scenario 

8 showed preferable outcomes in terms of 

load curve flatness and power-reserve. Fig. 3 

and also the results in the above-mentioned 

tables show that the C-ITLBO algorithm also 

improved the load curve characteristic and 

the power reserve supply, which are 

comparable with the C-PSO and C-TLBO 

algorithms outcomes. By comparing 

Scenarios 1-8, it can be concluded that C-

ITLBO algorithm was more precise than the 

other algorithm. 

 The effects of EDRP on the daily load 

curve were calculated using the C-PSO, C-

TLBO and C-ITLBO algorithms taking the 

elasticity matrix case 2 into consideration, as 

presented in Fig 4. Doubling the matrix 

increases peak-load reductions in the 

mentioned scenarios. For instance, as shown 

in Fig. 4, the peak-load is lower in scenario 8. 

Moreover, the elasticity matrix case2 resulted 

in more demand reaction in the EDRP from 

the AGGs. Therefore, these scenarios 

indicated more peak-load reduction, more 

modification in the load curve and reserve 

provision. As indicated in the tables of 

numerical results, C-ITLBO algorithm can 

provide more precise results compared to the 

C-PSO and C-TLBO algorithms. 

 The effects of EDRP on the daily load 

curve were calculated using C-ITLBO taking 

the elasticity matrix case 1 and case 2 into 

consideration, as presented in Fig. 5. As 

shown in Fig. 5, the elasticity matrix case 2, 

the load peak is lower than that of the 

elasticity matrix case 1. 

 

5. CONCLUSIONS 
 

The current study presented some 

formulations based on a logarithmic model 

for the EDRP by considering the reserve. 

Determining the optimum incentives to be 

paid to the AGGs during peak-load hours, the 

formulations were applied in an optimization 

problem from the perspective of the RMM 

using C-ITLBO, C-TLBO and C-PSO 

algorithms. Knowing the incentives of the 

EDRP during the peak-load hours, the AGGs 

declared their extent of participation to the 

RMM using the logarithmic model and the 

participation factors. The participation 

determines the power reserve provided by the 

AGGs. The AGGs were then prioritized by 

the reserve-margin factors.  

 The optimization problem regarding the 

proposed formulations was solved using C-

ITLBO, C-TLBO and C-PSO algorithms 

with elasticity matrix case1 and case2 from 

the perspective of the RMM and for different 

scenarios in a 24-hour time interval. The 

results presented the amounts of the RMM 

cost, the optimum incentives payable to the 

AGGs, power saving due to the EDRP 

implementation through considering the 

reserve in the peak-load hours and the load-

curve characteristics. 

 In general, the results showed a better 

performance of C-ITLBO algorithm in total 

cost reduction, a lower rate of incentive and a 

lower peak compensation in comparison with 

C-PSO and C-TLBO algorithms. 

Furthermore, it was observed that the 
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scenario 8 for C-ITLBO showed the best 

results while the results of scenario 2 for C-

PSO indicated the worst results. It was also 

found that the joint consideration of the 

EDRP along with the power reserve brought 

about benefits in the form of cost reduction 

and load-curve improvement. As for future 

research, it is possible to extend the proposed 

formulations by adding more items in the 

mentioned constraints and objective 

functions, improve the reserve consideration 

procedure, apply some newer meta-heuristic 

algorithms and investigate the possibility of 

the RMM interaction with the whole-sale 

electricity market.  
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