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Abstract 

Load frequency control (LFC) is used as part of automatic generation control (AGC) in power 

systems. LFC with the automatic voltage regulator (AVR) plays an important role in maintaining 

the frequency and constant voltage. In this paper, a method for load frequency control in 

reconstructed electrical systems using high voltage direct current (HVDC) line is presented. An 

accurate and complete model based on the control circuit and equations with HVDC control ler 

design is considered and its parameters are optimized using the harmony search algorithm (HAS). 

To test the method, the power system is simulated with three-area. The simulation results show 

the proper performance of the power system against sudden load changes and disturbances caused 

by other areas. 
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1. INTRODUCTION 
 

With the development of power systems and 

especially the development of energy 

consumption, an important issue in the 

electricity industry is the power supply under 

constant voltage and frequency [1-4]. 

 

 

 

 
 Load-frequency control (LFC) is one of 

the important subjects of electric power 

systems [5,6]. The objectives of load 

frequency control are to maintain power 

balance between interconnected areas and to 

control the power flow in the tie-lines [7]. So 

far, various studies have been conducted on 
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the application of LFC in the power system 

[8].  

 A review of different controllers utilized 

in traditional as well as a renewable energy-

based power system for load frequency 

management (LFM) such as; classical 

controllers, sliding mode controller (SMC), 

fractional order-controllers, cascaded 

controllers, H-infinity controller, tilt-

integral-derivative controllers and other 

recently developed controllers is presented in 

[9]. 

 An overview of the different types of 

unregulated power system structures, market 

models, contract agreements, and different 

control methods/techniques to reduce the 

various LFC issues in an unregulated power 

system is provided in [10], which the detailed 

analysis of various control methodologies ba-

sed on classical control, robust and self-

tuning control and various soft computing 

control techniques are discussed. 

 A model to control the frequency of the 

wind farm connected to conventional units is 

presented in [11], which is conducted to 

improve the efficiency of the model, the 

defined frequency control parameters are 

optimized based on a multi-objective 

function using PSO algorithm. 

 An optimal method to tune the PID 

controller for a hydraulic turbine coupled 

with the corresponding TDC is presented in 

[12], which the problem consists of adjusting 

both the parameters of the controller and 

compensator such as the time response and 

remains close to the specified one. 

 Energy transmission by HVDC is known 

as the effective solution to control load-

frequency that can optimize the system 

damping and controlling the frequency 

oscillation in the power system [13,14]. In the 

AC-DC transmission system, a dc system can 

be used to optimize the transient stability in 

an emergency and to optimize the frequency 

stability at a steady state.  The ability of the 

dc system to control is very quick [15,16]. 

 Recent advances in power electronics 

have led to the expansion of HVDC links and 

renewable-based generation in power 

systems. So far, various studies have been 

conducted in the field of frequency control in 

the HVDC interconnected systems [17,18]. 

 A complete state-space mathematical 

model of multi area ac/dc interconnected 

LFC system with phase-locked loop and time 

delay is presented in [19], which a Pade 

approximation method used for adding the 

effects of communication delays on AGC 

operation and the state-space models. 

 A survey on LFC mechanism is presented 

in [20], which reveals the investigation of 

soft computing based optimization technique 

and application of ESS and HVDC-link in 

LFC. Also, the different control techniques of 

LFC are mentioned, which include all the 

recent application of FACTS devices. 

 The accurate modeling of HVDC links 

for the dynamic studies of automatic 

generation control/LFC of the multi-area 

interconnected power system is presented in 

[21], in which the comparative analysis has 

been performed to demonstrate error being 

accrued due to the use of the conventional 

model of HVDC links.  

 To enhance load frequency control and 

automatic generation control, a HVDC tie-

line based on a simple first-order transfer 

function is modeled, and proposed for the 

multi-area interconnected power system in 

[22].  
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 An improved ant colony optimization 

algorithm optimized fuzzy PID controller for 

load frequency control of multi area systems 

is proposed in [23], and a modified objective 

function using to improve the performance of 

the controller. 

 In this paper, a model based on the circuit 

and controlling equation of the HVDC line is 

presented. This model compensates for the 

shortcomings of previous models to check 

frequency control. This model investigates in 

a power system three-area. A harmonic 

search algorithm is used to optimize the 

controller parameters. Finally, the 

effectiveness of the proposed controller with 

the proposed method is evaluated by time-

domain simulations in MATLAB/Simulink 

environment. The rest of this paper is 

organized as follows. The mathematical 

model of the study system is described in 

Section 2. The detailed description of HSA is 

presented in Section 3. Simulation results are 

presented in Section 4 to verify the 

effectiveness of the proposed method. 

Conclusions are drawn in Section 5. 

 

2. MATHEMATICAL MODEL OF THE 

STUDY SYSTEM 
 

The power system is a typical nonlinear 

differential algebraic system [24,25]. The 

differential or state equations describe the  

system dynamic including generators, 

motors, governors, HVDC, FACTs and their 

controllers [26-28]. The equal circuit of the 

system for a DC line with line commutation 

is shown in Fig. 1.  

 Usually, dc converters have four 

controlling modes which are included of 

[29,30]: constant current, constant power, 

constant α or constant γ and constant dc 

voltage. 

 In most cases, rectifier converter operates 

in constant current mode and inverter 

converter operates in constant extinction 

angle mode [31, 32]. In other words, the 

rectifier maintains a constant current (CC) 

and the inverter maintains a sufficient 

discharge margin, which operates at a 

constant extinction angle (CEA) [33,34]. 

 Inverter specification can be moved up or 

down by changing the transformer tap conv-

erter. While the tap converter is moving, the 

CEA regulator provides the desired γ imme-

diately. 

 As a result, the direct current is changed 

that returns to the desired value by the aid of 

rectifier current regulator [35,36]. In practice, 

depending on the current regulator, constant 

current specification may not be vertical. In 

this case, as it will be shown further, this 

specification will become high negative slope 

because of limit gain of the current regulator. 

With a K regulator gain, we have (Fig. 2): 
 

 

 

Fig. 1. System equal circuit . 
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Fig. 2. Current regulator. 

 

 
Fig. 3. Rectifier controller. 

 

 

Fig. 4. Inverter controller. 
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CC specification becomes vertical 

completely with proportional regulator and 

by adding regulator as Fig. 3. Because this 

task is led to reduce the current error in 

steady-state mode and the current becomes 

constant. The same design helps us to control 

the rectifier in constant current mode. 

 Therefore: 
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 Usually, the converter deviated around 

operation point in constant current mode, 

thus the nonlinear equation can become 

linear: 
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 About constant extinction angle mode of 

inverter and according to Fig. 4, we will have 

the following relationship: 

 

0

o

d
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 

= −

+ −

  (6) 

 

 Therefore, the state equations for the 

converters are as follows:  
 

( )0

1d
[ k u t ]

dt T
 



  = − + +     (7) 

 

( )0

1d
[ k u t ]

dt T
 



  = − + −     (8) 

 

where  and  are same angle of fire and 

ignition advance of rectifier and inverter, u 

and u are controlling inputs for adjusting α 

and β. According to the Fig. 1, Vd and Pdc are 

as follows:  
 

( )0d d i C dV V cos R I= −       (9) 

 

dc dc dcP V I=             (10) 

 

where o and o are primary adjusting values 

of regulator and T, T, k and k are 

controlling parameters of dc line and Iref and 
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o are current source values and extinction 

angle.  

 According to this equations, the dc line 

modeling in Matlab/Simulink software are 

performed. Equations also have been 

simulated as the Figs. 5 and 6. 

 If the frequency error increases, 

frequency of area 1 increases or frequency of 

area 2 decreases, more power must be 

transmitted from area 1 to area 2. Therefore, 

the values of the rectifier current source and 

the inverter extinction angle must be 

increased to transfer more power that 

increases the frequency error. 

 Finally, rectifier current source value and 

inverter extinction angle shall be reduced to 

transmit the more power from area 2 to area 

1 and frequency error will be reduced.  

In addition, the power fluctuations must 

be the same, so in addition to the frequency 

error, the line power error must also be 

considered. 
 

 
Fig. 5. Placing equations (7) and (8) in Matlab/Simulink environment.  

 

 
Fig. 6. Placing the equations (9) and (10) in Matlab/Simulink environment. 
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Fi8. 7. The designed PI controllers for adjusting the current source points and extinction angle. 

 

 
Fig. 8. Model of a three area network with DC interface line. 

 

 As a result, in order to control the system, 

current reference points and extinction angle 

is adjusted according to frequency error (f1-

f2) with two PI controller as the following 

Fig. 7.  

 As it is seen, values of extinction angle 

and current source are obtained by passing 

frequency error and power error from PI 

controller. These values are used in 

controlling loops which have been explained 

previously.  

To improve system performance, DC line 

control parameters, as well as PI controller 

coefficients, must be optimally selected. For 

this purpose, the coordination search 

optimization algorithm is introduced and 

applied. 

 

3. HARMONY SEARCH ALGORITHM 
 

HSA was invented first for optimizing the 

music quality [37,38]. It features several 

advantages including simple structure, the 

requirement of few parameters, rapid 

convergence and robustness [39,40]. This 

algorithm can be applied to different fields of 

research, owing to its ability to balance 

exploitation and exploration [41].  
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Fig. 9. Flow chart of harmony search algorithm for optimization. 

 

Optimization processes of the objective 

function are performed in the following 5 

stages: 

First stage: determination of primary 

values and algorithm parameters. Generally, 

an optimization problem is stated as the 

following:  
 

min{f (x) x X},

st : (x) 0, (x) 0



 =
      (11) 

 

where x is a set of variables which are placed 

in f function and X is a set of values of xi. 

HSA parameters are: harmony memory size 

(HMS), harmony memory considering rate 

(HMCR), pitch adjusting rate (PAR), number 

of decision variables is (N) and number of 

repeats is (NI) which is the term of the same 

algorithm finishing. They are determined in 

this stage too. 

Second stage: determination of primary 

values of harmony memory. In this stage, 

matrix harmony memory is filled by random 
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variables, it is necessary to say that 

dimensions of this matrix are HMS. 

Third stage: optimization of harmonies. 

The new compound is formed according to 

the following three rules: consideration of 

harmony memory, adjusting the pitch size 

and random selection. Making a new 

compound is named optimization of 

harmony. 

 Fourth stage: variation of harmony mem-

ory. If new compound make the objective 

function value optimize more than previous 

harmony memory replies, they are replaced 

by the present values in harmony memory. 

Fifth stage: investigation of algorithm 

finishing term. If the algorithm finishing term 

(most number of optimization) arrives, the 

calculations are stopped, and otherwise third 

and fourth stages are repeated. 

 The flow chart of HSA for optimization 

is shown in Fig. 8. 

 

4. SIMULATION RESULTS 
 

A model of load-frequency control has been 

represented in Fig. 9 for a three area network 

with the DC communication line and the 

system data have been shown in Table 1. 

 In this model, a small power system A 

(5100 MW) has been connected to a big po-

wer system B (25000) via DC interface line 

and a great power system C (30000) has been 

connected to areas A and B via two AC 

interface lines.  

 For the three area system, the objective 

function is considered according to the 

bellow equation: 
 

2 2

1 2
0

2 2

3

endT

DC

objective function

[( f ) ( f )

( f ) ( P ) ] t dt

 

 

= +

+ +

              (12) 

 

 Results from performing the harmony 

optimization algorithm are indicated in Table 

2. In this section, the five modes of load 

change are examined according to Table 3. 

Frequency variations of controlling areas 1, 2 

and 3 and variations of transmit power after 

applying disorder in the above all five modes 

are investigated and only variations of the 

first mode are presented in the following 

Figs. 10-15, respectively. 

 

TABLE 1. Parameters of Three Area System. 
 

Parameters symbols System area 1 
System area 

2 

System area 

3 

System capacity (MW) - 5100 25000 30000 

Generator inertia constant (MWs/Hz) H 217 1064 1277 

Load sensibility coefficient to frequency 

(MW/Hz) 
D 204 1000 1200 

Governor time constant τg 2 2 2 

Turbine time constant (sec) τ T 4 4 4 

Adjustment coefficient (MW/Hz) R 510 2500 3000 
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TABLE 2. Optimized Parameters of Three Area System. 
 

K 0.6 T 0.022 K1 202.3 T1 0.002 

k 24 T 0.011 K2 201.1 T2 0.0034 

 

TABLE 3. Areas Load Variations. 
 

No. Load variations of area 1 Load variations of area 2 Load variations of  area 3 

First 100MW - - 

Second - 100MW - 

Third - - 100MW 

Fourth 100MW -100MW - 

Fifth 100MW 100MW 100MW 

 

 It is seen that steady-state frequency 

error with using the HVDC line is very lower 

than the mode without HVDC. For more 

investigation about the suggested system 

operation, the results of the simulation are 

summarized as in Table 4. 
 

 

 
Fig. 10. Deviations of area-1 frequency for the first mode. 
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Fig. 11. Deviations of area 2 frequency for the first mode.  

 

 
Fig. 12. Deviations of area 3 frequency for the first mode. 
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Fig. 13. DC line power between areas 1 and 2 for the first mode. 

 

 
Fig. 14. Ac line power between areas 2 and 3 for the first mode. 
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Fig. 15. AC line power between areas 1 and 3 for the first mode. 

 

Table 4. Comparison of Results. 
 

Type of 

network 
Mode Description Network with HVDC Network without HVDC 

Three area 

First mode 
Load increasing 100MW 

in area 1 

3

1

4

2

3

3

0.1 10

1.9 10

1.5 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

3

1

4

2

3

3

0.25 10

2.1 10

2 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

Second 

mode 

Load increasing 100MW 

in area 2 

4

1

4

2

4

3

1 10

1.5 10

1.8 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

4

1

4

2

4

3

2 10

2 10

2 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

Third 

mode 

Load increasing 100MW 

in area 3 

4

1

4

2

4

3

1 10

0.5 10

0.7 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

4

1

4

2

4

3

2 10

2 10

2 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

Fourth 

mode 

Load increasing 100MW 

in area 1 and load 

decreasing in area 2 

4

1

4

2

4

3

0.1 10

0.1 10

0.1 10

f

f

f

−

−

−

 = 

 = 

 = 

 

4

1

4

2

4

3

4 10

4 10

4 10

f

f

f

−

−

−

 = 

 = 

 = 

 

Fifth 

mode 

Load increasing 100MW 

in all three areas 

3

1

4

2

4

3

0.1 10

1.8 10

1.7 10

f

f

f

−

−

−

 = − 

 = − 

 = − 

 

3

1

4

2

4

3

1.2 10

2 10

2 10

f

f

f

−

−

−

 = − 

 = − 

 = − 
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5. CONCLUSION 
 

A power system control is required to mai-

ntain a continuous balance between power 

generation and load demand. A solution is 

introduced for controlling the load-frequency 

in reconstructed systems, using  HVDC lines 

is presented. 

 An analytical model of  HVDC 

transmission system in controlling load-

frequency are designed according to circuit 

and controlling equations by designing two 

PI controllers. The controlling parameters 

with HAS have been obtained in optimum 

value. The simulation results for power sys-

tem with three-area in two modes with 

HVDC and without HVDC confirms that the 

suggested system has proper operation to 

reduce frequency error and power and 

frequency oscillations damping. 

 

 

NOMENCLATURE 
 

Ldr  rectifier filter reactance 

Ldi   inverter filter reactance 

Ld   half of reactance line resistance 

Rd   half of dc line resistance 

Vdr   dc voltage of rectifier 

Vdi   dc voltage of inverter 

Idr   dc current of rectifier 

Idi   dc current of inverter 

Cdc   grounding line capacitance 

VC    grounding lined capacitance voltage 

γ    extinction angle 

f(x) objective function 

g(x)  non-equivalence bond 

h(x)  equality bond function 

Id   dc line current 

 

 

ABBREVIATIONS 
 

AGC  Automatic generation control 

AVR  Automatic voltage regulator 

CC   Constant current 

CEA  Constant extinction angle 

ESS  Energy storage system 

FACTS Flexible AC transmission systems 

HAS  Harmony search algorithm 

HVDC High voltage direct current 

LFC  Load-frequency control 

LFM  Load frequency management 

PID   Proportional–integral–

derivative 

PSO  Particle swarm optimization 

SMC  Sliding mode controller 

TDC  Transient droop compensator 
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