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Abstract 

The data-driven empirical mode decomposition (EMD) method is designed to analyze the non-

stationary signals like biomedical signals originating from nonlinear biological systems.  EMD 

analysis produces a local complete separation of the input signal in fast and slow oscillations along 

with the time-frequency localization. EMD extracts the amplitude and frequency modulated (AM–

FM) functions, i.e. the intrinsic mode functions (IMFs), that have been widely used for biomedical 

signal de-noising, de-trending, feature extraction, compression, and identification. To overcome the 

problems of EMD, like mode mixing, new generations of EMD have been proposed and applied for 

biomedical signal analysis. Besides, the bidimensional EMD (BEMD) was introduced and improved 

for image processing. BEMD and its modified versions have been widely used for medical image de-

noising, de-speckling, segmentation, registration, fusion, compression, and classification. In this 

paper, a review of notable studies in the biomedical signal and image processing based on EMD or 

BEMD method and their modified versions were considered. The studies on using EMD and its 

modified versions for mono-dimensional and bidimensional(image) signal processing showed the 

capabilities of the improved EMD and BEMD methods on biomedical signal and image processing. 
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1. INTRODUCTION 
 

Fourier and wavelet transform are the most 

recognized decomposition techniques that 

 

 
break the signal into several levels of 

resolution or frequency. They, however, 

either is not suitable for non-stationary and 

non-linear signals or depend on a priori basis 

function. The Empirical Mode 
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Decomposition (EMD) is a relatively new 

approach introduced by Huang et. al. [1] for 

adaptive multiresolution decomposition. 

Besides, EMD does not need a priori bases 

function. The Fourier and wavelet 

approaches project data onto the predefined 

basis functions while the bases for EMD are 

derived from the data [2]. EMD breaks the 

input signal into a number of frequency 

modes known as intrinsic mode functions 

(IMF) each, containing information about the 

signal behavior at a particular time scale. In  

other words, applying EMD, the input signal 

can be expressed as a sum of amplitude and 

frequency modulated (AM–FM) functions or 

IMFs, and a final monotonic trend [3]. 

 The first IMFs reflects the high 

frequency/fast variations of the signal while 

the last IMFs contain the low frequency/slow 

trend of the input signal [4]. EMD, as an 

iterative and multiresolution process, has 

some significant properties that provide a 

better analysis of the input signal and its 

components. Using the locality property, 

EMD operates at the scale of one oscillation 

with no assumption on the nature of 

oscillations. Besides, the dynamics of IMFs’ 

in the frequency domain is unchanged. In 

addition to the completeness property that 

enables the full reconstruction of the input 

signal based on its IMFs, EMD is fully data-

driven and adaptive [5]. As the basic analysis 

tool, EMD provides the statistical analysis, 

extrapolation, de-noising, allocation, and 

removal of trend (de-trending). The 

representation of EMD in the time-frequency 

domain is a high resolution on both 

coordinates that offers to discover hidden 

amplitude and frequency modulations in 

signals and finding out the domains of energy 

concentration [5], [4]. 

 

1.1. Theoretical Background 
 

The EMD method, also called Huang 

transform, has actually no complete and 

generally accepted theoretical framework [1]. 

EMD consider the input signals as “fast 

oscillations superimposed on slow 

oscillations” [4]. Hilbert–Huang transform 

that is the combination of EMD method with 

Hilbert transform applied in many different 

fields [6]such as system identification 

problems [7][8] and biomedical applications 

[9]. Consequently, EMD research has mainly 

been in two categories, modifying the sifting 

procedure or empirically defined 

configurations drastically [10]. One of the 

requirements of EMD method is the pure 

oscillation of the extracted component with 

mean zero. Based on this requirement, Ge et. 

al. suggested a theoretical principle involving 

the oscillation signal decomposition [10]. 

The validity and robustness of EMD were 

mathematically demonstrated by Ge et. al. in 

[10] and a theoretical framework for the 

analysis of EMD was also provided.  

 In this paper, the EMD and BEMD 

methods as well astheir inherent problems 

and their modified versions are considered 

along with their applications for medical 

signal and image processing. In section 2, the 

analytic background of EMD analysis and its 

generations are considered. The studies on 

biomedical signal processing by EMD are 

reviewed in section 3. Section 4 is dedicated 

to the application of BEMD and its modified 

versions on medical image processing. 

Discussion and conclusion sections are the 

next parts of this presented paper. 
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2. EMD ANALYSIS 
 

The analytical formulation of EMD has not 

been admitted for a long time, so the 

theoretical analysis and performance 

evaluation of EMD were difficult [10]. The 

theoretical principle of oscillation signal 

decomposition was recently (2018) described 

by Ge et. al in [10] based on interpolation and 

frequency resolving ability. The best spline 

implementation and the optimum positions of 

the interpolation points are the two main 

concerns in EMD. The spline interpolation, 

that are used in the existing EMD algorithm, 

is not essentially the best implementation. 

Consequently, the produced upper (maxima) 

envelope or the lower (minima) envelope 

between the nearest two minima or maxima 

varies with time uniformly and bulges away 

from the signal smoothly [10].  

 Ge et. al demonstrated that, for EMD 

analysis of different signals with different 

characteristics, different spline 

implementations should be selected; 

provided that the uniform and smooth 

variation condition between two consecutive 

local minima and maxima are satisfied, the 

results will be the same [10]. Theoretically,  a 

specified way to detect the optimum 

positions of the interpolation points has not 

been established [10]. The upper(maxima) 

envelope or the lower(minima) envelope are 

determined based on at least three 

corresponding local extrema points that cover 

a periodic time of the oscillation [10]. The 

difference between two oscillation 

components is the periodical difference more 

than two times or less than half of a time, or 

the frequency ratio up to 2 or less than 0.5 can 

be distinguishable by EMD. However, some 

previous studies showed that the actual 

separable range occurs between two 

oscillation components with frequency ratio 

larger than 1/0.6 and less than 0.6 [11], [6], 

[12]. 

 The concept of filter bank based on EMD 

was proposed by Flandrin et. al. [13]. They  

demonstrated that IMFs are combined to 

achieve the high-pass, low-pass and band-

pass filters [13]. The similar characteristics 

between EMD and wavelet approaches were 

confirmed by Wu and Huang [14].  

 

2.1. EMD Generations 
 

Although EMD is one of the best signal 

processing techniques, it still has unsolved 

problems due to the nature of the EMD: 

‘mode mixing’ and ‘spurious modes’. 

Oscillations with very disparate scales in one 

mode, or oscillations with similar scales in 

different modes i.e. “mode mixing” can be 

produced by EMD due to the inherent locality 

of this method [15].  EMD generations are 

shown in Table 1.   

 To reduce the mode mixing problem of 

EMD, the ensemble empirical mode 

decomposition (EEMD) was proposed by Wu 

et. al. [17].  An ensemble of noisy copies of 

the input signal, by adding white Gaussian 

noise is produced and then decomposed by 

EMD. The resultant modes are obtained by 

averaging [3]. Considering the dyadic filter 

bank behavior of EMD adding white 

Gaussian noise reduces the mode mixing by 

occupying the whole space of time-frequency 

[3]. Consequently, EEMD produces more 

regular modes with similar scales for the 

whole-time span. Although the benefits of 

using the EEMD method have 
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Table 1. EMD generations. 

Method Description Author/Year 

EMD Empirical Mode Decomposition Huang, 1998 [1] 

Complex-

EMD 
Complex Empirical Mode Decomposition Tanaka, 2007 [16] 

EEMD Ensemble Empirical Mode Decomposition Wu, 2009 [17] 

CEEMD 
Complementary Ensemble Empirical Mode 

Decomposition 
Yeh, 2010 [18] 

CEEMDAN 
Complete Ensemble Empirical Mode 

Decomposition with Adaptive Noise 
Torres, 2011 [19] 

ICEEMDAN Improved Complete Ensemble EMD Colominas, 2014[3] 

 
been demonstrated in a wide range of 

applications [20], it encountered some new 

problems. The residual noise in the 

reconstructed signal is the most important 

problem of EEMD. Besides, a different 

number of modes may be obtained based on 

the different realizations of signal plus noise 

that makes the final averaging difficult [3]. 

By adding and subtracting pairs of noise, in 

the Complementary EEMD [18], the 

reconstruction problem was drastically 

reduced [18]. The completeness property of 

Complementary EEMD has not been proven. 

In addition, the different number of modes 

are produced by the different noisy copies of 

the input signal that makes the final 

averaging difficult [3] 

 In order to achieve a negligible 

reconstruction error and solve the problem of 

different number of modes for different 

realizations of signal and additive noise, the 

complete ensemble empirical mode 

decomposition with adaptive noise 

(CEEMDAN) were introduced by Torres et. 

al. [19] that is considered as an important 

improvement on EEMD [3]. In spite of that 

CEEMDAN was applied in biomedical 

engineering studies, residual noise in the 

modes obtained based on CEEMDAN. 

Moreover, the signal information appears 

“later” than in EEMD with some “spurious” 

modes in the early stages of the 

decomposition [3]. An important amount of 

noise and similar scales of the signal are 

extracted by the first two or three modes 

[19],[21]. Colominas et al. proposed an 

improved CEEMDAN (ICEEMDAN) 

obtaining IMFs with less noise and more 

physical meaning [3]. The results of a 

synthesis signal decomposition using 

different generations of EMD are shown in 

Figure 1 that was demonstrated by 

Colominas et. al. [6]. 

 Considering Figure 1, mode mixing in 

EMD results (first column from the left) are 

clearly visible. For instance, in the d1 mode, 

two different frequencies are appeared in a 

mode, this is also the case for d2, d3 and d4. 

For the noise-assisted methods the pure tone 

and the fast component are well extracted 

without mode mixing. However, in EEMD 

and CEEMD there are some IMFS with very 
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small energy without representing 

information of the input signal. Those are no 

longer appeared in CEEMDAN, and 

ICEEMDAN. Although a “spurious” second 

mode appears for original CEEMDAN, the 

decomposition stops sooner once the IMF 

conditions are satisfied [3]. The number of 

extracted IMFs is also a notable issue, as it 

shows in Figure 1, for this simple input signal 

EMD, EEMD and CEEMD generated nine 

IMFs that are not informative, this dilemma 

is solved in CEEMDAN and its improved 

version (ICEEMDAN). 

 

2.2. IMF Selection 
 

Along with the improvements of EMD 

generations, a number of extracted IMF 

selection have been reported to improve the 

EMD results for different applications. Table 

2 summarizes these efforts. 

 An improved Hilbert–Huang transform 

using wavelet packet transform was 

introduced by Peng et. al. [22]. They 

suggested an IMF selection based on 

correlation coefficients [22]. A method for 

IMF selection based on energy entropy was 

later introduced by Yu et. al. [23].  The 

confidence index of IMFs’ was introduced by 

Yi et. al. [24] for automatic IMF 

 

 
Fig. 1. Decomposition of the synthesis signal by EMD, EEMD, CEEMD, CEEMDAN and 

ICEEMDAN [3]. 
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Table 2. Proposed methods for IMF selection. 

IMF selection Method Author/Year 

Correlation Coefficients Peng et. al. , 2005[22] 

Energy Entropy Yu et. al., 2006 [23] 

Confidence Index Yi et. al., 2015 [24] 

Statistical Significance of Information Content Wu et. al., 2004 [14] 

 

selection. An effective statistical test was 

proposed by Wu et. al. [14] to distinguish the 

noisy IMFs and informative ones, that 

assigns the statistical significance of 

information content for each IMF 

components [14]. Wu et. al [14] tested the 

uniformly distributed white noise as an input 

signal to EMD method and found out that the 

obtained IMFs as a dyadic filter are all 

normally distributed, and their Fourier 

spectra are all identical and cover the same 

area on the semi-logarithm period scale. Wu 

et. al. also demonstrated that the product of 

the energy density of the IMF and its 

corresponding mean period is a constant and 

that the energy density function is Chi-

squared distributed [14]. Wu et. al. establish 

a method to assign the statistical significance 

of information content for IMF components 

from any noisy data [14]. ICEEMDAN was 

used to decompose a noisy Fetal 

Electrocardiogram (FECG) by Nejad and 

Yousefi Rizi [25]. The noisy IMFs were then 

evaluated by the statistical test introduced by 

Wu et. al.  [14]. The extracted IMFs from the 

first independent component of a sample 

noisy fetal electrocardiography (FECG) 

signal by ICEEMDAN are shown in Figure 2 

and the statistical test results are shown in 

Figure 3. 

 In spite of the fact that the first several 

IMFs are generally considered to be noisy, 

the significance of the test showed that they 

might contain useful information. For 

instance, in Figure 3, IMF1 and IMF2 of the 

noisy FECG signal, contaminated with noise, 

but do not locate within the 99% confidence 

line, so they may contain some signal 

components[25]. They were then candidate 

to be further de-noised (Figure 3).  IMF3-

IMF7 are located far from the confidence 

line, it represents that they are mainly useful 

information which needs to be reserved. 

IMF8 and IMF9 are close or within the 

confidence line, hence they are noise 

dominant IMFs and need to be de-noised by 

wavelet shrinkage (WS). Finally, IMF10-

IMF14 are mainly trends baseline wander 

that are discarded. FECG were reconstructed 

by summing up the de-noised and reserved 

IMFs[25].  

 

3. EMD FOR MEDICAL SIGNAL 

PROCESSING 
 

EMD has been proven to be a reliable mono-

dimensional method for medical signal 

processing.  EMD-based signal filtering for 

signal de-noising was realized by Boudraa 

and Cexus [26]. The efficiency of EMD  
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(a) 

 
(b) 

 

Continued  
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(c) 

Fig. 2. FECG signal decomposition (a) Sample abdominal and direct FECG signals, (b) The 

independent components of a sample FECG signal extracted by efficient fast independent component 

analysis (EFICA) [25] (c) IMFs of first independent component(IC1) of FECG signal decomposed by 

ICEEMDAN [25]. 



Signal Processing and Renewable Energy, December 2019                                                                                     97 

 
Fig. 3. Significance test of IMFs of No. r10. The stars are IMFs and the curves are 99% confidence 

intervals. This diagram is used to determine the informative and noisy IMFs[25]. 

 

approaches for de-noising applications has 

been considered in many studies, some of the 

recent and significant EMD-based 

approaches are gathered in Table 3.  

 Moreover, EMD and its family were 

widely used for biomedical signal processing 

like feature extraction for classification or 

compression. Some of the studies on the use 

of IMFs for feature extraction and 

compression along with other applications of 

EMD for medical signal processing are 

demonstrated in Table 4.  

Some of the significant studies are gathered 

in Table 4. 

 

4. EMD FOR MEDICAL IMAGE 

PROCESSING 
 

EMD technique has been extended to analyze 

bidimensional images, known as 

Bidimensional EMD (BEMD), image EMD 

(IEMD), 2D EMD, etc. [67]. The 

bidimensional empirical mode 

decomposition (BEMD) is introduced by 

Nunes et. al. [68] as the 2D extension of the 

EMD. BEMD was reported repeatedly to be 

used for image segmentation [69], [70] image 

fusion [71], edge detection [72], noise 

reduction [73], [74], [75], texture synthesis 

[76], image compression [77] and image 

watermarking [78], [79]. In spite of these 

wide applications, there are some problems 

using BEMD method. As a consequence,, 

several modifications and improvements of 

BEMD have been developed [80]. BEMD 

like EMD is time-consuming since each IMF 

is extracted by several iterations that each of 

which contains the extrema detection and 

interpolation. In the previous studies, the 

multilevel B-spline [69], different types of 

radial basis functions [68], [69], Delaunay 

triangulation [81], finite-element method 

[82], order statistics filters [83] were reported 

to be used for 2D scattered interpolation.  

Nunes et. al. [68] applied BEMD for texture 

extraction and image filtering. In their 

proposed method, regional maxima were 

detected by using morphological operators 

and the bidimensional sifting process 

completed by radial basis function for surface 
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interpolation [68]. A bidimensional 

decomposition of a brain MRI is shown in 

Figure 4. The generations of BEMD are 

gathered in Table 5.  

 Yeh et. al. [80] proposed a new method 

for computing complex bidimensional 

empirical mode decomposition (BEMD). 

 

Table 3. Some studies on biomedical signal de-noising using EMD based methods (in chronological 

order). 
 

Author/year Signal EMD application 

Nimunkar, 2007 [27] ECG EMD-based 60-Hz noise filtering of the ECG 

Tang, 2007 [28] ECG Hilbert-Huang Transform for ECG De-Noising 

Blanco, 2008 [29] ECG ECG signal de-noising and baseline wander correction 

Chang, 2010 [30] ECG 
Ensemble empirical mode decomposition for high-frequency ECG noise 

reduction 

Wu, 2011 [31] EEG 
Frequency recognition in an SSVEP-based brain-computer interface using 

EMD and refined generalized zero-crossing 

Kabir 2012 [32] ECG De-noising of ECG signals 

Pal, 2012 [33] ECG Empirical mode decomposition-based ECG enhancement 

Agrwal, 2013 [34] ECG 
Fractal and EMD based removal of baseline wander and power line 

interference 

Jenitta, 2013 [35] ECG De-noising of ECG signal based on EMD and EEMD 

Navarro, 2015 [36] EEG De-noising EEG by signal decomposition and adaptive filtering 

Sucheta, 2017 [37] ECG EMD based filtering methods for 50 Hz noise cancellation in ECG signal 

Zhou, 2018 [38] ECG 
EMD Based Hierarchical Multiresolution Analysis via DCT with 

Applications to ECG De-noising and QRS Point Enhancement 

Kumar, 2018 [39] ECG De-noising of ECG by using EMD with non-local mean 

Rakshit, 2018 [40] ECG ECG de-noising EMD and adaptive switching mean filter 

Srivastava, 2018 [41] EMG AWGN Suppression Algorithm in EMG Signals Using EEMD 

Liu, 2018, [42] ECG 
De-noising of ECG Signal with Power Line and EMG Interference Based 

on EEMD 

Yang, 2018 [43] EMG Study On De-Noise of Electromyography (EMG) Signal 

Tiwari, 2018 [44] EMG 
Combination of EEMD and Morphological Filtering for Baseline Wander 

Correction in EMG Signals 

Saha, 2019 [45] EEG 
A Filtering Approach to Clean EEG Signal Based on EMD-DF to Improve 

Classification Accuracy during Hands Movement 

Mucarquer, 2019 [46] EMG 
Improving EEG Muscle Artifact Removal using EEMD and canonical 

correlation analysis 
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Table 4. Some studies on biomedical signal processing using EMD based methods (in chronological 

order). 
 

Author Signal EMD application 

Nimunkar, 2007 [9] ECG 
R-peak Detection and Signal Averaging for Simulated Stress ECG using 

EMD 

Rizi, 2014[47] [48] RF 
Vibration extraction from estimated motions of carotid artery wall based 

on ultrasound RF signals using EMD 

Wang, 2016[49] ECG ECG compression based on combining of EMD and wavelet transform 

Hassan, 2016[50] EEG 
Automatic identification of epileptic seizures from EEG signals using 

linear programming boosting based on EMD features 

Mishra, 2016 [51] EMG Discrimination between Myopathy and normal EMG signals using IMFs 

Mishra, 2016 [52] EMG Analysis of ALS and normal EMG signals based on EMD 

Mishra, 2017 [53] EMG An efficient method for analysis of EMG signals using improved EMD 

Izci, 2018 [54] ECG Arrhythmia Detection on ECG Signals by using EMD 

Zhang, 2018 [55] EEG 
EEG-based classification of emotions using EMD and autoregressive 

model 

Jacob, 2018 [56] EEG 
Automated Diagnosis of Encephalopathy Based on Empirical Mode 

EEG Decomposition 

Moctezuma, 2018  [57] EEG 
EEG-Based Subjects Identification Based on Biometrics of Imagined 

Speech Using EMD 

Pryia, 2018 [58] EEG 
Efficient method for classification of alcoholic and normal EEG signals 

using EMD 

Bueno, 2018 [59] EEG 
Analysis of Epileptic Activity Based on Brain Mapping of EEG Adaptive 

Time-Frequency Decomposition by EMD 

Mert, 2018 [60] EEG Emotion recognition from EEG signals by using multivariate EMD 

Islam, 2018 [61] EEG 
Optimal IMF Selection of EMD for Sleep Disorder Diagnosis using EEG 

Signals 

Kaleem, 2018 [62] EEG 
Patient-specific seizure detection in long-term EEG using signal-derived 

EMD based dictionary approach 

Huang, 2018 [63] ECG 
Energy-efficient ECG compression in wearable body sensor network by 

leveraging EMD 

Zeng, 2019 [64] EEG 

Classification of focal and non-focal EEG signals using empirical mode 

decomposition (EMD), phase space reconstruction (PSR) and neural 

network 

Babiker, 2019 [65] EEG 
EEG in classroom: EMD features to detect situational interest of students 

during learning 

Hansen, 2019, [66] EEG 
Un-mixing Oscillatory Brain Activity by EEG Source Localization and 

EMD 
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Fig. 4. Obtained modes of BEMD method applied to a brain MRI image [68]. 

 

Table 5. Some bidimensional EMD versions. 
 

Method Description Author /Year 

BEMD Bidimensional EMD Nunes 2003[68] 

FABEMD 
Fast and adaptive bidimensional empirical mode 

decomposition 
Bhuiyan 2008 [83] 

MEEMD Multidimensional EEMD Wu, 2009 [84] 

Complex-

BEMD 

Complex bidimensional empirical mode 

decomposition 
Yeh, 2012 [80] 

MCEEMDAN 
Multi-Dimensional Complete Ensemble Empirical 

Mode Decomposition with Adaptive Noise 

Humeau-Heurtier, 

2015 [73] 
 

 

The obtained IMFs of complex-BEMD are 

2D complex-valued. By alleviating the mode 

mixing, complex-BEMD would be 

successful for color image processing and 

image fusion [80]. Chen et. al.  proposed a 

mean approach to accelerate BEMD [85]. A 

modified mean filter was used by Chen et. al.  

to approximate the interpolated envelope 

along with the convolution algorithm based 

on singular value decomposition (SVD) for 

further reduction of computation time [85]. 

Bhuiyan et. al. [83] introduced a fast and 

adaptive BEMD (FABEMD) method. It was 

demonstrated that FABEMD is faster, 

adaptive and more efficient than original 

BEMD considering the quality of the 

bidimensional IMFs [83]. Pan et. al. used the 

mean points in the sifting process of BEMD 

as centroid point of neighbor extrema points 

in Delaunay triangulation and proposed using 

mean approximation instead of the mean 

envelope [86]. Recent developments of 

BEMD enhanced the applicability of BEMD 

[87]. BEMD have been used for infrared and 

visible images and video [88], [89], [90], 

multispectral images [91], and remote 

sensing images [92]. Alshawi et. al. in [93] 

investigated the utilization of BEMD process 

in medical imaging to decompose CT and 

MRI images and fuse the output components 

by using various fusion rules. In [94], Ahmed 

et. al. used FABEDM to fuse images on 

common spatiotemporal scales and also to 

solve the problem of multi-focus images 

fusion [94]. For image de-noising, the BEMD 

algorithm was successful. The noise 

components are usually appearing as high-

frequency details in the bidimensional IMFs 

[95], [74]. In the image decomposition by 

BEMD, fine details and edges also appear in 
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the high frequency IMFs, the informative 

components should be distinguished by IMF 

selection methods (such as the methods were 

mentioned before in Table 2 for signal 

processing applications) that have not been 

well established yet for BEMD and its 

improved versions. A sample application of 

FABEMD for image registration is shown in 

Figure 5 from [96]. Some studies on using 

BEMD for medical image processing are 

gathered in Table 6.  

 

5. DISCUSSION 
 

EMD was introduced and improved by 

Huang et al. [1] and Du et al. [113] and many 

researchers for one-dimensional analysis of 

non-stationary and non-linear signals based 

on the instantaneous frequency. Signal 

decomposition using EMD and its different 

versions can be used 

to de-noise the medical signals, reduce the 

amount of artifact and feature extraction for 

classification and pattern recognition. Based 

on the literature, EMD cannot be used 3D 

data analysis [87]. The two-dimensional 

extension of the EMD approach mainly used 

for medical image processing, segmentation, 

image de-noising, pattern recognition, image 

enhancement, image registration and 

compression [87]. 

 As we discussed earlier in this paper, 

EMD has been widely used in different signal 

and image processing areas; more 

importantly, to process the medical signal 

and image with that are inherently non-linear 

and non-stationary. In this study, our attempt 

is to gather the significant and recent EMD 

applications on biomedical data processing 

including de-noising, classification, 

compression and feature extraction of 

medical signals. The 

 

 

 
Fig. 5. An example of the FABEMD of an MRI image. The input image (top left), the most 

representative mode (top right), intrinsic modes (bottom) [96]. 
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Table 6. Some studies on using BEMD for medical image processing (in chronological order). 
 

Author/year BEMD Application 

Nunes, 2003 [68] Image analysis by BEMD 

Shicun, 2006, [97] Medical image edge detection based on the EMD method 

Liu, 2007[98] Medical Image Retrieval Based on BEMD 

Qin, 2008 [99] Medical Image Enhancement Method Based on 2D EMD 

Wu, 2009 [84] The Multi-Dimensional EEMD Method 

Feng, 2009, [100] MRI Medical Image de-noising Based on BEMD and Wavelet Thresholding 

Lia, 2010 [101] 

 

Potential contrast improvement in ultrasound pulse inversion imaging using EMD 

and EEMD 

Yi, 2012, [74] DWI de-noising method based on BEMD and adaptive Wiener filter 

He, 2013 [102] EIT Image Processing Based on 2-D EMD 

Zemzami, 2013 [67] Decomposition of 3D medical image based on FABEMD 

Rojas, 2013 [103] 

 
Application of EMD on DaTSCAN SPECT images to explore Parkinson Disease 

Zhang, 2014,  [104] 
A medical image fusion method based on energy classification of BEMD 

components 

Guo, 2014, [105] Self-adaptive image de-noising based on BEMD 

Bashar, 2015, [106] EMD based GRAPPA reconstruction algorithm for parallel MRI 

Humeau, 2015, [73] 
Analysis of microvascular perfusion with multi-dimensional complete ensemble 

empirical mode decomposition with adaptive noise algorithm 

Gavriloaia, 2015 [107] Thermal image filtering by BEMD 

Humeau, 2015, [73] 
Multi-Dimensional Complete Ensemble Empirical Mode Decomposition with 

Adaptive Noise Applied to Laser Speckle Contrast Images 

Khaliluzzaman, 2016, 

[108] 

Analyzing MRI segmentation based on wavelet and BEMD using fuzzy c-means 

clustering 

Dilmaghani, 2017,  

[109] 
A new MRI and PET image fusion algorithm based on BEMD and HIS methods 

Guryanov, 2017 [96] Fast medical image registration using BEMD 

Mostafiz, 2018 [95] 
Speckle noise reduction for 3D ultrasound images by optimum threshold 

parameter estimation of BEMD using Fisher discriminant analysis 

Ding, 2018, [110] BEMD image fusion based on PCNN and compressed sensing 

Ma, 2018, [111] Fast BEMD based on variable neighborhood window method 

Gudigar, 2019 [112] 
Automated categorization of multi-class brain abnormalities using decomposition 

techniques with MRI images: A comparative study. 
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enhancement, classification, feature 

extraction, segmentation, de-speckling, 

compression, registration and fusion of 

medical images in CT, MRI, US, and infrared 

modalities were also reported as BEMD 

applications. The modified versions of one-

dimensional and bidimensional EMD helped 

to improve the performance and overcome 

the mode mixing problem and reduce the 

processing time. In addition to the number of 

informative IMFs and stopping, criteria were 

amended in the new versions.  

 

6. CONCLUSION 
 

Considering the studies about EMD method, 

it can be concluded that the adaptability, 

locality, completeness and multiresolution 

characteristics of the EMD method make 

EMD as one of the best techniques for 

medical signal and image processing. 

Besides the dynamics of IMF are unchanged 

in the frequency domain, consequently, the 

statistical analysis, extrapolation, extraction 

of the additive noise component with the 

successive noise removal, allocation, and 

removal of trend (de-trending) are possible 

by using EMD. This time-frequency domain 

decomposition has a high resolution on both 

coordinates, and its final spectrum is 

convenient to detect the hidden amplitude 

modulation and frequency modulation. Based 

on the studies on biomedical signal 

processing and medical image processing 

using EMD and its family methods, it can be 

concluded that this time-frequency analysis 

suits well the inherent non-stationary and 

nonlinear biological data and in many 

medical signal and image processing cases 

outperforms wavelet transform as a localized 

time-frequency analysis and other time-

domain or transform domain analysis. 

Modified versions of EMD coped with the 

mode mixing problem, besides the 

informative extracted modes should be 

selected by IMF selection methods like 

significance test in both medical signal and 

image processing application of EMD. 
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