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Abstract 

The theory of compressive sensing (CS) in contrast with well-known Nyquist sampling theorem was 

proposed. Sensing matrix and sparse matrix have key roles in perfect signal reconstruction by using 

either greedy algorithms like orthogonal matching pursuit (OMP) or -norm based methods. In this 

paper, different pairs as sensing and sparse matrices are evaluated in terms of randomness and 

coherence. Noiselet as a complex measurement matrix has low coherence with Haar wavelet, and so 

the recovered images by OMP in comparison with other measurement-sparse matrices are appropriate. 

But, because of complexity, it cannot be used for big size images. However, the pair structured random 

sensing matrix with values 0, 1 and Fourier sparse matrix which got the second rank in terms of 

coherence, approved to be a noise robust pair and showed a great potential to be used in CS. 
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1. INTRODUCTION 
 

In 1949, Shannon [1] presented that any 

band-limited time-varying signal with ‘f’ 

Hertz highest frequency component can be 

reconstructed perfectly by sampling the 

signal at regular intervals of at least 1/2f 

seconds. Accordingly, some applications, 

such as synthetic aperture radar (SAR) results 

in great number of samples. So, for big data, 

 

 

 
 compressing before storage or transmission 

is obligation. Compressive Sensing (CS) [2], 

is an alternative to Shannon/Nyquist 

sampling theorem for the acquisition of 

sparse or compressible signals. In fact, 

instead of using a periodic impulse for 

sampling, CS uses random matrices for 

sensing such that sampling and compressing 

are performed simultaneously. Although CS 

may disregard the Nyquist rate, it was proved *Corresponding Author”s Email:  

s_ghofrani@azad.ac.ir   

Signal Processing and Renewable Energy  

March 2020, (pp. 63-76) 

ISSN: 2588-7327 

eISSN: 2588-7335 



64                                                                                      Markarian, Ghofrani.  Randomness, Coherence and Noise … 

that by meeting some circumstances, the 

signal could be perfectly recovered. In 

essence, CS combines the sampling and 

compression into one step by measuring 

minimum samples that contain maximum 

information about a signal [1]: this eliminates 

the need to acquire and store large number of 

samples. CS signal recovery is usually based 

on 1 -norm [3], or greedy algorithms such as 

Matching Pursuit (MP) [4], Orthogonal 

Matching Pursuit (OMP) [5] and 

Compressive Sampling Matching Pursuit 

(CoSaMP) [6]. In CS framework, 

measurement and basis matrices play a key 

role in perfect signal recovery, so they should 

be designed carefully in order to satisfy some 

specific requirements. For perfect 

reconstruction in CS framework, two 

important factors should be satisfied; 1) 

sparsity of signal which is usually explored 

using some sparsity basis like Fourier 

transform [7], discrete Cosine transform [8], 

and wavelet transform [9], 2) coherence 

between the measurement and the sparse 

matrices. Coherence, which measures the 

largest correlation between vectors of 

measurement and sparsifying matrices [10] is 

an important factor in CS applications. 

Precisely, the less coherence between 

measurement and sparsifying matrices, the 

less measured samples are needed to recover 

the signal perfectly. Well known 

measurement matrices such as Random 

Gaussian and Bernoulli matrices [2], have 

been largely used in CS framework whereas 

Noiselets [11], [12] are not well known 

yet.  On the other hand, sensing matrices 

usually require huge memory for storage and 

high computational cost for signal 

reconstruction. Many structured sensing 

matrices have been proposed recently to 

simplify the sensing scheme and the 

hardware implementation in practice [13] 

such as the one used in [14], where the 

structured 0 and 1 sensing matrix is used in 

CS framework to simultaneously recover and 

denoise real SAR data. 

 In signal and image processing 

applications, those methods that are noise 

robust and also inherently remove noise are 

of interest by researchers. In this paper, we 

demonstrate under choosing appropriate 

measurement and sparse matrices, by 

considering coherence and randomness, the 

CS recovery algorithms do the two tasks 

simultaneously. That means, CS would not 

only be noise robust but also do noise 

reduction without any extra cost.  

 In this paper, we are going to evaluate the 

CS precisely in terms of coherence between 

the measurement and sparse matrices, 

randomness of the sensing matrix, different 

recovery algorithms, and the size of input 

signal. In addition, we recommend a 

measurement and sparse matrix pair in order 

to show the CS noise robustness as well as 

inherently noise removing. 

 The paper is organized as follows. In 

Section 2, CS theory, OMP Recovery 

algorithm, Randomness and Coherence are 

explained. Then in Section 3, Noiselets as a 

new sampling matrix which has a good 

incoherence with Haar wavelet basis, are 

presented. In Section 4, different scenarios 

have been explored to properly compare the 

Noiselets with other measurement matrices 

especially with structured 0 and 1 random 

matrix and finally we have conclusion in 

Section 5. 
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2. BACKGROUND 
 

In this Section, a brief review of CS theory 

and its recovery algorithms are presented.  

 

2.1. CS Theory 
 

Suppose 1Nx R  is a signal to be sensed 

(sampled). It can be expressed based on a 

linear non-adaptive measurement as: 
 

xy =                                                                        (1) 
 

where x  denotes the signal or data of interest 

with finite dimension N ,   is the sampling 

or measurement matrix with size NM   and 

y  with size 1M  is the observed data. As 

said before, in CS theory, there are two 

fundamental requirements that need to be 

fulfilled, the ‘sparsity’ and the ‘coherence’. A 

signal x  is k-sparse if it has k nonzero or big 

elements. As most of the signals are not 

sparse inherently so the sparsity is explored 

generally in   domain. In other words, the 

signal x  is −k sparse if it could be expressed 

as the combination of  just k  columns of   

matrix and it would be compressible if Nk 

. For example, a Dirac or a Spike is sparse in 

time domain, a sinusoid is sparse in 

frequency domain and a chirp is sparse in 

fractional Fourier transform domain. The k-

sparse signal x  based on basis matrix,  , is 

expressed as: 
 

sx =                                                                        (2) 
 

where 1 NRs  with k nonzero elements 

denotes the sparse representation of signal x  
and   with size NN  is the sparse basis 

matrix. The second CS requirement called 

‘coherence’ means creating   and   

matrices such that they are maximally 

incoherent to each other. Satisfying the 

coherence guaranties the signal perfect 

recovery with few measurement samples. 

Combining Eq. (1) and Eq. (2), the observed 

signal is: 
 

y A s=                                                                       (3) 
 

where A =  with size NM   is called the 

dictionary. The main challenges for CS 

applications [15] are 1) using a stable 

measurement matrix   such that the salient 

information in any −k sparse or compressible 

signal is not damaged by the dimension 

reduction from 1Nx R  to 1MRy  2) 

finding a sparse domain which enables the 

high incoherence between measurement and 

representation matrices and 3) using an 

efficient algorithm which is able to recover x

from only M  observed data y  for NM  . 

 

2.2. CS Recovery Algorithms  
 

In general, the CS recovery algorithms try to 

find a unique solution for underdetermined or 

ill-posed problem in Eq. (3). However, 

according to CS theory, the original signal 

can be exactly recovered by solving the linear 

programming problem as long as x  is sparse 

in some domain. So far, different recovery 

algorithms have been developed for solving 

the underdetermined or sparse approximation 

problems which lie in two categories: the first 

group are norm-based algorithms [3]. 

Between the three norms used so far for CS 

recovery  i.e. 0 , 1  and 2 norms; 1 -norm 

showed to be powerful and reliable tool to 

find the sparse solution which is expressed 

as: 
 

sAyss
s

ˆ||ˆ||minargˆ == tosubject
1

               (4) 
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where 1  norm, defined as = n
nss |][||||| 1 .  

Often the observed vector includes additive 

noise, so it is modeled as:  
 

esAy +=                                              (5) 
 

where e  is stochastic or deterministic error 

with bounded energy 2|||| e  and 2 -norm 

defined as 
2

2 = n
nss |][||||| . Then, the 

sparsest s  is obtained by solving the 

following optimization problem: 
 

−=
21

tosubject  ||ˆy||||||minargˆ sAss
s

 (6) 

 

 The second group includes the greedy 

algorithms [4-6] which are well-known due 

to low complexity framework and fast run 

time. The core idea of greedy algorithms is 

finding the highest correlation between the 

residual of signal and the dictionary columns. 

In this paper, as we use the orthogonal 

matching pursuit (OMP) [5] recovery 

algorithm in our simulations, so it is briefly 

explained in following. 

 

OMP Recovery Algorithm 

• Compute the inner product
N

jj RrAg 1
T = − . 

• Find the index k  where |][|maxarg
,...,1

ik j
Ni

g
=

= . 

• Update the index set and matrix of 

chosen atoms }{1 kjj −= ΛΛ ,  

kjj
AAA 

1−
=  .         

• Obtain the new estimate 

yAAAx
T
ΛΛ

T
Λ jjj

1)(~ −= . Note that the size of x~  

is growing while the number of iterations is 

increasing. Compute the coefficient vector 

xΛx ~][ =jj . 

• Update the residual jj Axyr −= . 

Consider the iteration number, j , or obtain 

the residual norm value, 
2

|||| jr  Stop the 

algorithm if j
 
is greater or 

2
|||| jr  is less than 

the pre-defined value. Otherwise go through 

the first step.  

It should be noted that the main issues 

regarding recovery algorithms are the 

sparsity of the solution and the consumed 

time.  

 

2.3. CS Randomness 
 

Randomness of a measurement matrix is 

important for CS implementation. Although 

both random Gaussian and Bernoulli 

matrices were recommended [16], they have 

limited use in practice due to the fact that the 

structure is imposed on the measurement 

matrix by many measurement technologies 

[17], [18]. In this Section, the matrix 

randomness is evaluated in terms of entropy. 

In general, the entropy of matrix p  with N 

elements is [19]: 
 


=

−=

N

i

ii ppph

1

ln)(                                       (7) 

 

 It is notified that the entropy value is 

always positive [19] with range of [0, Nln ]. 

The minimum value, 0)( =ph , is achieved 

when only one 
ip  equals 1 and others equal  

0 whereas the maximum value is achieved 

when all 
ip ’s are equal N1 . Generally, it is 

concluded [19] that the entropy could be used 

as a measure of matrix randomness. In this 

way, the low entropy is equivalent to high 

randomness. Before using the entropy as a 

measure of randomness, elements of 

measurement matrix should be normalized. 

As an example, if 
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 NNNN  ,,;;,,  1111=  with size 

NN   is an arbitrary matrix, the 

corresponding normalized matrix is 

 NNNNnorm  = ,,;;,,  1111  where


= =

=
N

i

N

j

ijijij

1 1

2 . 

 Obviously, the randomness interval value 

of any arbitrary matrix depends on the two 

parameters, i.e. elements probability and the 

matrix size. So, randomness of different 

matrices is incomparable. For example, zero 

is expected for the randomness of matrix with 

repetitive elements, but the calculated 

randomness by means of entropy doesn’t 

support this idea. So, in order to have an ideal 

number for comparison of randomness 

between different matrices, we have 

proposed a method which is explained as 

follows.  

 At first, the input matrix is normalized 

by the mean value; i.e. G =  where G  is 

the average value of the matrix. Then the 

entropy of new matrix is obtained and 

considered as the measure of randomness: 
 

1 1

1 1

1 1

1 1 1 1

ln

                    ln

                    (ln ln )

                    ln ln

N N

ij ij

i j

N N
ij ij

i j

N N
ij

ij

i j

N N N N
ij ij

ij

i j i j

Randomness

G G

G
G

G
G G

 

 




 


= =

= =

= =

= = = =

 = −

 
= −


= − −

 
= − +







 

(8) 

 

2.4. Coherence 
 

The coherence property is defined between 

the measurement or sensing matrix, Φ , with 

size NM  , and the basis or sparse basis 

matrix, Ψ  with size NN  , as: 
 

|ψ,Φ|maxψ),(Φ
,1

=


jz
Njz

N                                 (9) 

 

where zΦ  is the z–th row of Φ  and jψ  refers 

to the j–th column of ψ  and 1),( =  means 

maximum incoherence. 

so when matrix  has repetitive elements, 

the average G is equal to the value of every 

  elements, then according to the definition, 

Eq. (8), the randomness of matrix  is zero. 

Satisfaction of restricted isometry property 

(RIP) [15] guaranties the maximum 

incoherence between the sampling matrix, 

, and the sparse basis matrix  . According to 

CS theory, the matrices Φ  and ψ  should 

have maximum incoherence. It was shown 

that random matrices are largely incoherent 

with any fixed basis [15].  

 

3. NOISELETS 
 

The Noiselet basis, originally presented in 

[11], has received interest recently due to the 

following facts: 1) being maximally 

incoherent to the Haar basis, 2) having a fast 

implementation algorithm. Thus, they have 

been employed in CS to sample signals that 

are sparse in wavelet domain where Haar is 

the sparse matrix [20]. Noiselets family on 

the interval [0,1) are constructed as follows: 
 

)12()1()2()1()(

),12()1()2()1()(

),()(

12

2

]1.0[1

−−++=

−++−=

=

+ zfizfizf

zfizfizf

zzf

nnn

nnn



      (10) 

 

where { jf } is a basis, and ]1.0[ (z) =1 on the 

definition interval [0,1) and 0 otherwise. In 

order to generate the Noiselets matrix, 

Noiselets functions should be extended and 

discretized [21]. 
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 It is started with a 11  matrix ]1[1 =N , 

then a sequence of Noiselet matrices 

mNNN
242 ,....,, with sizes 22 , 44 ,…., 

mm 22   , are generated. So, the Noiselet 

matrix with size nn  is built up recursively 

according to: 
 

/2

1
( , ) (1 1 ) ( , )

2 2

            , 0,2,4,..., 2.

n n

k
N k i i N

k n

 = − +  

= −

         (11) 

 

.1,...,5,3,1,),
2

1
()11(

2

1
),( 2/ −=

−
−+= nk

k
NiikN nn      (12) 

 

where   denotes the Kronecker product [21] 

and ),( kNn  denotes the row vector of nN . 

It should be noted that the Noiselet matrices 

are not real valued. As an example, 2N and 4N  

by using Eqs. (11)-(12) are: 
 

2

4

1 11
,

1 12

1 1

1 11
 

1 12

1 1

i i
N

i i

i i

i i
N

i i

i i

− + 
=  

+ − 

− 
 

−
 =
 −
 

− 

                       

 

(13) 

 

 In addition, the imaginary part element 

summation in every Noiselet matrix is always 

equal to zero, or in other words, the average 

value of imaginary part of Noiselet matrix, 

irrespective of its size, is zero. As mentioned 

in [2], well known random matrices like 

Gaussian, which are mostly used in CS, are 

largely incoherence with any basis   with 

size NN  and the coherence is about 

Nlog2 . Noiselets which are not as popular 

as random sampling matrices, also have good 

incoherence with fixed basis  matrices with 

size NN  like Fourier and wavelets [2]. 

 The coherence between Noiselets and 

Haar wavelets is equal 2  and that between 

Noiselets and Daubechies-4 (D4) and D8 

wavelets is, respectively, about 2.2 and 2.9. 

So, this gave us motivation to analyze the 

performance of different CS recovery 

algorithms when Noiselet is used as the 

measuring matrix. 

 

4. EXPERIMENTAL RESULT 
 

In this Section, at first, we are going to 

calculate the randomness of three 

measurement matrices, including: Gaussian, 

Bernoulli and Noiselet. Despite the real part 

of Noiselet matrix that contain positive 

elements, imaginary part has both negative 

and positive elements that are same valued 

and equal in numbers. 

 This feature of imaginary part makes the 

matrix average value be 0; hence, in our 

proposed method for calculating the 

randomness, the division of elements to the 

average number would be infinity, so it is not 

reported in Table 1. Comparing the square 

sized matrices, the randomness of Gaussian 

matrix irrespective of size is always greater 

than both Bernoulli and Noiselet. Fig. 1 

shows the three mentioned matrices with 

sizes 128×128 and 512×512 for structure 

comparison. As it is seen, Gaussian has fully 

random shape whereas Noiselet has repetitive 

pattern. Whereas it seems that Noiselet 

cannot be used in CS framework according to 

the randomness value (Table. 1) and 

repetitive pattern shape (Fig. 1), one should 

bear in mind that measurement matrix in CS 

framework is not square but with size of 

M N  where M N  . 

 So, in second scenario, we are going to 

compare the abovementioned matrices when 

they are in size M N . As the Noiselet is a  

 



Signal Processing and Renewable Energy, March 2020                                                                                              69 

 

Table 1. Comparing the randomness of Gaussian, Bernoulli, and Noiselet with different matrix sizes. 
 

  Randomness  

Matrix 

size 
Gaussian Bernoulli 

Noiselet  

(Real part) 

64×64 5107621.4   
3108491.2   4101092.2   

128×128 6101445.2   
4101385.1   5108334.1   

256×256 7101836.4   
4105354.4   5104316.7   

512×512 8108408.1   
5108142.1   6102192.6   

 

 
Fig 1. The pattern of measurement matrices: Gaussian (a)-

(b), Bernoulli (c)-(d), and Noiselet (e)-(f). First Column 

matrices are with size 128×128 and second column with 

512×512. 

 

complex measurement matrix, the 

corresponding randomness is calculated for 

both the real and imaginary parts. Here it 

should be noted that as Noiselets are 

generated in square sizes, so, to generate the 

matrix in equivalent sampling size, we have 
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generated the nearest square Noiselet matrix 

which is bigger than M  at first, then it is cut 

into 30, 40, 60% of its rows size to have a 

M N  measurement matrix. For example, for 

an original matrix with size of 128×128, 

when 40%
M

N
= , the measurement matrix size 

is 6553×16384. The computed randomness is 

written in Table 2 where Noiselet is the best. 

However, as explained in Section 2, 

randomness and coherence are two important 

properties for signal perfect reconstruction in 

CS. The ideal coherence between the 

measurement and sparse matrix is equal one. 

Here, for coherence comparison, three 

sensing matrices called Gaussian (G), 

Bernoulli (B), Noiselet (N) and three sparse 

matrices called Fourier (F), DCT (D) and 

Haar wavelet (H) are selected. In addition, 

the coherence between the random sensing 

matrix with values 0, 1 with Fourier (F) 

sparse matrix is also computed and the results 

are written in Table. 3. Coherence for every 

sensing and sparse pair matrices are obtained 

under following set up: 

• Because of computer memory limitation, 

the coherence is computed for images with 

size 64×64 pixels. 

• All values are computed using 20 

iterations, that means the different rows of 

sensing matrices are chosen randomly 20 

times. 

 

Table 2. Comparing the randomness of Gaussian, Bernoulli, and Noiselet in different sizes with 

various sampling rates. 

Sampling 

Rate (%) 
Size 

Randomness 

Gaussian Bernoulli 
Noiselet 

(Real part) 

Noiselet 

(Imaginary part) 

30 
32×32 9103208.1   5101877.2   6107868.7   25104107.1   

64×64 10103669.3   6104857.3   8104602.2   26100397.9   

40 
32×32 9107362.4   5109056.2   6109987.9   25101773.2   

64×64 11102652.1   6106511.4   8102789.3   26102095.1   

60 
32×32 10109995.4   5103730.4   5104306.4   24102001.4   

64×64 11109506.7   6109804.6   8109207.4   26102626.1   

 

Table3. Comparison of different measurement and sparsifying basis matrices. 
 

 Coherence 

 G-D G-F G-H B-H B-F B-D N-H N-F N-D 

coded 0 &1 

with 

Fourier 

S
a

m
p

li
n

g
 

R
a

te
 0.1 5.04 3.62 4.84 4.12 3.71 5.28 1 28.12 26.76 1.41 

0.5 5.13 4.37 5.16 5.25 3.94 5.41 1 30.87 28.79 2.23 

0.9 5.62 3.85 5.15 4.59 3.89 5.64 1 30.87 28.79 2.44 
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Fig. 2. Original test images. 

 

 
(a) 

 
(b) 

Fig. 3. Recovered images (a) Lenna, (b) Shape by using OMP with different sensing, sparse matrices 

and sampling rates. 

 

 

 As a result, the random sensing matrix 

with values 0, 1 with Fourier (F) and pair N-

H got the least coherence, so they are 

recommended for CS implementation.  

 Now, for visual evaluation, two test 

images shown in Fig. 2 with sizes 64×64 

pixels are chosen and recovered by using 

OMP algorithm in CS framework with 

different sensing and sparse matrices and also 

different sampling rates. The recovered 

images are shown in Fig. 3. Also, in order to 

support the visual conclusion, two image 

assessments, peak signal to noise ratio 

(PSNR) [22] and structural similarity index 

(SSIM) [23] are obtained for the recovered 

images. The achieved PSNR and SSIM 

values are written in Table 4 for OMP 

recovery algorithm.  

 According to visual results shown in Fig. 

3, it can be concluded that the visual quality 

of recovered images improves by increasing 

the measurement rates. 
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Table 4. PSNR and SSIM values of recovered Lenna and Shape images by using OMP algorithm. 
 

N-H N-F N-D B-H B-F B-D G-H G-F G-D Lenna 

34.08 29.14 29.49 29.13 30.41 29.51 28.99 30.65 29.40 PSNR 

0.3 
0.73 0.55 0.15 0.33 0.57 0.39 0.35 0.57 0.40 SSIM 

37.66 29.00 27.19 30.58 32.74 30.49 30.87 33.62 31.33 PSNR 
0.5 

0.95 0.55 0.22 0.56 0.72 0.55 0.59 0.75 0.63 SSIM 

36.59 31.74 34.89 34.02 36.25 33.26 34.22 36.82 33.54 PSNR 
0.7 

0.92 0.74 0.85 0.78 0.86 0.75 0.80 0.87 0.77 SSIM 

 
 

N-H N-F N-D B-H B-F B-D G-H G-F G-D Shape 

30.28 29.55 28.65 28.34 28.86 28.01 28.22 28.86 28.12 PSNR 
0.3 

0.47 0.60 0.48 0.19 0.32 0.31 0.16 0.37 0.25 SSIM 

30.60 29.64 29.07 28.24 29.10 28.38 28.21 29.09 28.44 PSNR 

0.5 
0.78 0.69 0.66 0.34 0.53 0.48 0.31 0.59 0.48 SSIM 

30.79 29.87 29.95 28.51 29.68 28.74 28.72 29.33 28.68 PSNR 
0.7 

0.78 0.77 0.76 0.54 0.71 0.67 0.57 0.72 0.67 SSIM 

 
 To validate the power of structured 

sensing matrices, random sensing matrix 

with values 0, 1 and Fourier (F) sparse matrix 

which got the second rank in terms of 

coherence, is used to recover well-known 

phantom image with size 256×256.  

The recovered images using three different 

sampling matrices where 1 - norm is used as 

the recovery algorithm are shown in Fig. 4 

and the corresponding PSNR and SSIM are 

written in Table 5.  

 In addition, the scenario is repeated for 

phantom image with size 256×256 where the 

sampling rate is 0.05, and Gaussian and 

speckle noise with variance 0.1 damage the 

image. Using 1 - norm recovery algorithm, 

the image is recovered. The achieved results 

shown in Fig. 5 and written in Table 6 

indicate that in spite of existing noise, nearly 

clean image is recovered. 

 It should be noted that all of the 

simulations are done with a 64bit O.S. which 

has 4GB RAM and core i7 Intel CPU. 

 As far as Noiselets are complex valued, 

the recovered images using this measurement 

will also be complex valued; hence, we have 

used their absolute value to represent images. 

As it was expected, N-H overcomes all pairs 

in terms of subjective and objective criteria. 
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Fig. 4. (a) Original Phantom image with size 256×256. (b), (d), (f) are undersampled Phantom image 

with S.R.=5, 10, 30% in order. (c), (e), (g) are the recovered Phantom image by using 
1
-norm. 

 

Table 5. PSNR, SSIM and cost time of recovered Phantom images. 
 

S.R. SSIM PSNR (dB) Time (s) 

5% 0.49 37.69 196 

10% 1 inf 41 

30% 1 inf 37 

 

Although the size of test images was 64×64, 

in real applications where images with bigger 

sizes are used, using Noiselets because of 

being complex valued, enforces 

implementation problems. 
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Fig. 5. (a) Original Phantom image with size 256×256. (b), (d) corrupted images by 

Gaussian and speckle noise. (c), (e) the recovered image with only 5% samples. 

 

Table 6. PSNR, SSIM of recovered noisy Phantom images. 
 

Noise Type Gaussian Speckle 

PSNR (dB) 37.66 37.67 

SSIM 0.26 0.33 

 
5. CONCLUSION 
 

In this paper, the Noiselets and also 

structured random 0 and 1 measurement 

matrices are studied precisely and also 

compared with other well-known 

measurement matrices like Gaussian and 

Bernoulli in two point of views; matrix 

randomness by means of entropy and 

coherence with sparsifying matrices. Being 

complex valued and also the need of large 

capacity to store is still the main drawback of 

using Noiselet in real applications. Whereas 

the structured random 0 and 1 measurement 

matrix showed a great potential to be used in 

CS framewrok as it is largely incoherent with 

Fourier basis, enables large scale data 

recovery by using 1 -norm algorithm, and 

enables the CS recovery algorithms to be 



Signal Processing and Renewable Energy, March 2020                                                                                              75 

noise robust and also inherently remove 

noise. 
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