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Abstract 

Wind energy as a main part of renewable energy has important role in many electricity industries, 

because of increasing concerns about environmental impacts of conventional power plants fuels. Wind 

power integration in the electricity system operation has some technical and economic effects because 

of the intermittent and variety nature of wind power production. Therefore, it is important for every 

utility or system operator to consider these technical or economical aspects especially as unit commit-

ment problem. One of the most important strategies for increasing profits of each utility is integrating 

the wind power resources with limited energy resources such as pumped storage (PS) plants. Pumped 

storage can provide some of the flexibility that power system operators need to balance load and gen-

eration in an uncertain environment, and thus enhance a power system’s ability to incorporate wind 

power. This paper presents a new approach for solving the weekly unit commitment including wind 

farms and PS plants. For this purpose, the modified PSO mechanism is recommended. The proposed 

PSO is applied to two test systems (which are included two wind farms and one PS plant) and the 

results of this modified PSO are compared with the conventional PSO. Evaluation of the results of 

these test systems’ solutions show that better optimal schedules are obtained.  

 

 

Keywords: Unit commitment, particle Swarm optimization, pumped storage plant, wind power avail-

ability. 

 

1. INTRODUCTION 

Among the non-conventional energy resources, 

renewable energy has been recognized as the 

most promising means of new electric power 

generation in future. At present, small-scale and 

large-scale applications of wind and/or solar en-

ergy are in operation and are steadily gaining 

new markets. The growing public awareness, re-

garding the existing environment hazardous im-

pacts potential associated with conventional 

electric power generation plants, resulted in an 

increased emphasis on the large-scale utilization 

of these renewable resources. 

The intermittency nature of wind generation in-

creases the fluctuation and the uncertainty on 

the net load. When wind generation makes up a 

large proportion of the committed generation ca-

pacity, minimum load problems can arise when 

thermal generating units cannot operate at a 

much reduced output or cannot be stopped. 

Wind generation may then have to be curtailed 

[4]. Large-scale wind power integration also re-

quires additional operating reserve [5]. Pumped 
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hydro storage units can be used to store the ex-

cess energy from wind power and provide the 

reserve and flexibility needed in systems with 

large amounts of wind power. 

 An important task in the operation of power 

system is the optimal unit commitment (UC) 

that consider the technical and economic con-

straints over a time horizon. The UC problem 

consists of determining the optimal operation 

strategy for the next scheduling period, subject 

to a variety of constraints. This optimization is 

done under considering the different constraints. 

For example, the total output power at each time 

period must meet the demand anticipated over a 

given time horizon (usually a duration of one 

day to one week). The UC is a combinatorial op-

timization problem with both binary and contin-

uous variables. The number of combinations of 

binary variables grows exponentially as being a 

large-scale problem. Therefore, UC is one of the 

most difficult problems in power systems stud-

ies. 

 The scope of UC problem will vary strongly 

from one utility to another utility due to the type 

of mixture of the generating units and particular 

operating constraints. The economic conse-

quences of operational scheduling are very im-

portant. Since fuel cost is a major cost compo-

nent in electricity generation, reducing the fuel 

cost by 0.5% can result in savings of millions of 

dollars per year for large utilities.  

The exact solution of the unit commitment prob-

lem can be obtained by complete enumeration of 

all feasible combinations of generating units, 

which is possible in a realistic power system [1]. 

Since large economic benefits could be achieved 

from unit scheduling improvement, a considera-

ble attention has been devoted to develop the re-

lated solution methods. Various mathematical 

programming and heuristic based approaches 

have been used to solve the UC problem [2]-[8]. 

 One of the most important strategies for in-

creasing profits of each utility is integrating the 

wind power resources with limited energy re-

sources such as PS plants. A PS plant can be 

used to provide added value to a wind farm that 

takes place in the market in comparison with 

separate participation of them. The possibility 

of storing energy in PS plants can significantly 

reduce the risk of self-scheduling for wind 

power producers in the market. Pumped storage 

units can be used to store the excess energy of 

the wind power and provide the systems reserve 

and flexibility with large amounts of wind 

power. Several studies tried to develop a deci-

sion approach to set different objective func-

tions such as profit maximization [9], carbon 

emission reduction [10] and curtailment reduc-

tion [11]. PS would also benefit the system by 

balancing wind power in a market [12] or in an 

isolated power system [13].  

 This paper extends UC problem by introduc-

ing additional constraints to represent the wind 

farms generation with PS plants into the prob-

lem formulation. The main contributions of this 

work are listed in following. 

1. Presenting a new unit commitment for-

mulation which integrates both wind 

power generation and PS plants. 

2. Presenting a modified particle swarm 

optimization based on the concept of 

bacterial foraging. 

 In Section 2, the problem formulation of UC 

and the related constraints are discussed. The 

wind turbine and pumped storage models are 

also presented in Section 2. In Section 3, the hy-

brid particle swarm optimization has been de-

veloped by some aspects of bacterial foraging 

concepts. The test systems (which have six and 

twenty six conventional units) are used to pre-

sent the optimization method capabilities in 

Section 4. Also, the results of conventional and 

passive congregation PSO are compared. Fi-

nally, conclusion of this paper is presented in 

Section 5. 

 

2. PROBLEM FORMULATION 

In this section, wind farm and pumped storage 

(PS) plant models are presented and then UC 

formulation is introduced with the objective 

function and all main constraints based on a 

week time horizon with one hour period. 
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Fig. 1. Power curve of a wind turbine. 

 

2.1. Wind Farm Model 

The generated power varies with the wind speed 

at the wind farm (WF) site. The power output of 

a wind turbine can be determined from its power 

curve, which is a plot of output power versus 

wind speed. A turbine is designed to start gen-

erating at the cut-in wind speed (Vci) and is shut 

down for safety reasons at the cut-out wind 

speed (Vco). Rated power Pr is generated, when 

the wind speed is between the rated wind speed 

(Vr) and the cut-out wind speed. There is a non-

linear relationship between the power output 

and the wind speed when the wind speed lies 

within the cut-in and the rated wind speed as 

shown in Figure 1.  

 Therefore, the wind power generated corre-

sponding to a given wind speed can be obtained 

as,  
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where the constants A, B, and C [14] are pre-

sented as, 
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 The application of the common wind power 

generation model is illustrated in this paper by 

applying it to a wind turbine rated power at 2 

MW, and with cut-in, rated, and cut-out wind 

speeds of 3.5, 12.5, and 25 m/s, respectively. 

2.2. Pumped-Storage Model 

The PS plant is composed of upper and lower 

reservoirs. Typically, a reversible pump-turbine 

makes  storing of energy in off-peak hours pos-

sible that it can be sold during peak hours. That 

means,  the operation is economically profita-

ble. Thus, the pump-turbine will work as a tur-

bine when water is released from the upper res-

ervoir to the lower one, i.e. injecting its produc-

tion to the network. Likewise, when pumping is 

taking place, the energy is consumed to store 

water in the upper reservoir, which will be avail-

able later on for generation mode.  

 The variables associated to the PS plant in the 

model are considered in terms of energy. Thus, 

in each period, the state of the upper and lower 

reservoirs will be determined by the energy 

stored in them at the end of the period. Likewise, 

the volume capacity of both reservoirs are ex-

pressed as maximum and minimum energy lev-

els that can be stored in the reservoirs [27]. The 

energy stored in each lower and upper reservoirs 

of PS plant has an upper and a lower capacity 

limits as,  

maxmin )( EutEuEu   (2) 

maxmin )( EltElEl   (3) 

 It should be mentioned that in this paper, the 

contribution of PS plant in reserve power market 

is not considered. 

 

2.3. Unit Commitment Model 

The main objective of a UC problem is maxim-

izing the total profit of its generating units in the 

scheduled horizon. While the operation is con-

strained by a number of system and generating 

units’ constraints, total revenue is obtained from 

both energy and reserve market based on energy 

and reserve power forecasted prices. The time 

horizon of this problem is one week, with one 

hour as interval. The objective function of UC 

problem is defined as, 

TCTRJMax   (4) 
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 This objective function is subjected to many 

constraints; including: the forecasted demand, 

the reserve power requirement, the generating 

units’ constraints, and the wind power and PS 

generation. In order to  satisfy the system de-

mand, it is required that,  
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 The reserve requirement should be satisfied. 

The operating reserve requirement has two 

parts; one is in form of a percent of total system 

load (e.g. 5%) and the other is a surplus reserve 

which is chosen to compensate the errors in pre-

diction of actually produced wind power. Thus, 

the reserve for wind power errors (RESW) can 

be obtained assessing the recorded data on wind 

speed at wind turbine site [28]. In this study, the 

RESW is assumed 10%. 

1 1

( , ) ( , ) * ( , ) ( , ) ( )

1,2,...,

G WN N

GR W R

g w

P g t U g t RESW P w t V w t P t

t T

 

   



   
(9) 

 The generating unit Constraints also should be 

satisfied. Therefore the wind power availability 

should be satisfied as follows: 
( , ) ( , )

1,2,...,

W avP w t W w t

t T





 
(10) 

 And the maximum and minimum generation 

of the conventional units should be satisfied as 

follows: 

max,min, ),(),( GgGRGDGg PtgPtgPP   (11) 

 Consider a PS unit having an efficiency of 

pumping ( ) with an initial energy stored in the 

lower and upper reservoirs. Also, assume that 

within a time period of study horizon, the stored 

energy in both reservoirs is the same as initial 

states. The maximum and minimum energy stor-

ing in upper and lower reservoirs of PS plant is 

to be calculated and satisfied as,  
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3. IMPLEMENTATION OF MODIFIED 

PSO 

Particle Swarm Optimization (PSO) was pro-

posed by Kennedy and Eberhart [16] in 1995. 

This technique was inspired by the choreogra-

phy of a bird flock and can be seen as a distrib-

uted behavior algorithm that performs multidi-

mensional search. According to PSO, either the 

best local or the best global particle to help it fly 

through a hyperspace affects the behavior of 

each particle. Moreover, a particle can learn 

from its past experiences to adjust its flying 

speed and direction. Therefore, by observing the 

behavior of the flock and memorizing their fly-

ing histories, all the particles in the swarm can 

quickly converge to near-optimal geographical 

positions with well-preserved population den-

sity distribution. 

 

3.1. Overview of the Conventional PSO 

Bird flocking optimizes a certain objective func-

tion. Each agent knows its best value so far (

pbest ) and its position. Moreover, each agent 

knows its best value so far, in the group ( gbest ) 

among pbest 's. Each agent tries to modify its po-

sition using the following information: 

• The distance between the current position and 

its best position so far, 

• The distance between the current position and 

the best position of the group. 

Suppose that the search space is D-dimension, 

then the ith particle of the swarm can be repre-

sented by a D-dimensional vector, 

),...,,( 21 iDiii xxxX  . The velocity (position change) 
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of this particle can be represented by another D-

dimensional vector ),...,,( 21 iDiii vvvV  . The best 

previously visited position of the i th  particle is 

denoted as ),...,,( 21 iDiii ppppbest  . Defining gbest  

as the best particle in the swarm, then the swarm 

is updated according to the following equation 

(Conventional PSO): 

 

)]()([ 2211

1 k

id

k

d

kk

id

k

id

kk

id

k

id xgbestrcxpbestrcvwfcfkv   (14) 

n this velocity updating process ( 1cfk ), the val-

ues of parameters such as wf , 
1c  and 

2c  are de-

termined in advance. In general, the weighting 

factor ( wf ) of equation (14) is set as,  

iter
iter

wfwf
wfwf 




max

minmax
max

 
(15) 

 The model using (15) is called inertia weights 

approach (IWA) [17]. Using the above equation, 

the diversification characteristic is gradually de-

creased and a certain velocity, which gradually 

moves the current searching point close to pbest  

and gbest  can be calculated. Moreover, in order 

to guarantee the convergence of the PSO algo-

rithm, the constriction factor was defined in 

[18]. In this constriction factor approach (CFA), 

the basic system equations of the PSO can be 

used. 

4,,
42

2
21

2



 


cccfk

 

(16) 

 The current position (searching point in the 

solution space) can be modified by,  

11   k

id

k

id

k

id vxx  (17) 

 

3.2 Modified Congregation PSO (GPAC) 

According to the local-neighborhood variant of 

the PSO algorithm (LPSO) [19], each particle 

moves toward its best previous position and to-

ward the best particle in its restricted neighbor-

hood. The local-neighborhood leader of a parti-

cle, its nearest particle (in terms of distance in 

the decision space) with the better evaluation is 

considered. Since the constriction factor ap-

proach generates higher quality solutions in the 

basic PSO, the LPSO with the constriction fac-

tor was proposed in [20]. However, it was 

shown recently that more biological forces than 

those adopted in the state-of-the-art PSO are es-

sential for preserving the swarm’s integrity. 

Specifically, Parrish and Hammer [21] proposed 

mathematical models to show how these forces 

organize the swarms. These can be classified 

into two categories: the aggregation and the con-

gregation forces. 

 Aggregation refers to the swarming of parti-

cles by nonsocial, external physical forces. 

There are two types of aggregation: passive ag-

gregation and active aggregation. Passive aggre-

gation is a swarming by physical forces, such as 

the water currents in the open sea group the 

plankton [21]. Active aggregation is a swarming 

by attractive resources such as the place with the 

most food. The second term in the conventional 

PSO algorithm (14) (the global best position) 

represents the active aggregation [15], [21]. 

 However, the congregation is a swarming by 

social forces, which is the source of attraction of 

a particle to others and it is classified into two 

types: social and passive. Social congregation 

usually happens when the swarm’s fidelity is 

high, such as genetic relation. Social congrega-

tion necessitates active information transfer, 

e.g., ants that have high genetic relation use an-

tennal contacts to transfer information about lo-

cation of resources [15], [21]. Finally, passive 

congregation is an attraction of a particle to 

other swarm members, where there is no display 

of social behavior since particles need to moni-

tor both environment and their immediate sur-

roundings such as the position and the speed of 

neighbors. Such information transfer can be em-

ployed in the passive congregation. In this pa-

per, the global variant-based passive congrega-

tion PSO (GPAC PSO) [15] with the con-

striction factor approach [20], [22] is enhanced 

and employed. The swarms of the enhanced 

GPAC are manipulated by the velocity update, 
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where k

idpbest  is the best previous position of the 

ith particle; k

mdlbest  is either the global best posi-

tion ever attained among all particles (similar to 

conventional PSO or CPSO) or the local best po-

sition of particle-i (namely, the position of its 

nearest particle-m with better evaluation similar 

to LPSO) and k

rdpcong  is the position of passive 

congregator (position of a randomly chosen par-

ticle-r) [23]. 

 

3.3. Algorithm of GPAC PSO 

In this Section, a new approach to develop a 

PSO based algorithm for solving the UC prob-

lems is proposed. The proposed method deals 

with the equality and inequality constraints of 

the UC problems when modifying each parti-

cle’s search point in the PSO algorithm. The 

process of the modified PSO algorithm are: 

 Step 1) Initialization and Structure of Parti-

cles: In the initialization process, a set of parti-

cles is created at a random order. In this paper, 

the structure of a particle for UC problem is 

composed of a set of elements (i.e., generation, 

reserve, wind power and pumped storage out-

puts of all units in each time interval). There-

fore, particle i ’s position at iteration 0 in period 

of t  can be represented in vector form as,  
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 Thus, the dimension of each particle in this 

study is TNNND SWG  )2( . Note that it is very 

important to create a group of individuals satis-

fying the constraints (8) to (13). This procedure 

must be repeated for the all time periods.  

 Step 2) Position Updating Considering Con-

straints: After creating the initial position of 

each particle, the velocity of each particle is also 

created at random. To modify the position of 

each particle, it is necessary to calculate the ve-

locity of each particle, which is obtained from 

(14) or (18). In this position updating process, 

the values of parameters such as wf , 
1c , 

2c  and 

3c  are determined in advance.  The resulting po-

sition of a particle is not always guaranteed to 

satisfy the equality/inequality constraints due to 

over/under velocity. If any element of a particle 

violates its inequality constraint due to over/un-

der speed then the position of the particle is 

fixed to its maximum/ minimum operating 

point.  

 Step 3) Update of Pbest and Gbest: The Pbest 

of each particle at any iteration and Gbest are 

updated with respect to cost function. 

 Step 4) Stopping Criteria: This process is ter-

minated if the iteration approaches to the prede-

fined maximum iteration. 

 

4. RESULTS OF TEST SYSTEMS 

To examine the merits of the proposed method, 

two test systems are simulated in this Section. 

For both test systems, two wind farms and one 

PS plant are included. The input data of two 

wind farms (wind1 and wind2) are given in Ta-

ble 1. Each wind farm has 20 wind turbine units 

with 2 MW power output. The forecasted load 

shape in percentage at each time interval of the 

study period is shown in Figure 2.  

 The variation of available wind power gener-

ations of these two wind farms during the study 

time are shown in Figure 3. The forecasted mar-

ket prices for energy and reserve power are 

shown in Figure 4. In this study, the RESW is 

assumed to be 10% of the total available wind 

power of two wind farms. 

 The PS plant has the efficiency of 80% and 

the maximum capacity of generating and pump-

ing modes are 90 and 80 MW, respectively. The 

maximum and minimum capacity of energy 

storage in upper dam is assumed 1250 and 450 

MWh and for lower dam are 800 and 0 MWh.  

The running cost of PS plants is ignored in both 

generating and pumping modes. 
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Fig. 2. Forecasted hourly load. 

 

 
Fig. 3. Available wind power generation of wind 

farms. 

 

 The PS plant has the efficiency of 80% and 

the maximum capacity of generating and pump-

ing modes are 90 and 80 MW, respectively. The 

maximum and minimum capacity of energy 

storage in upper dam is assumed 1250 and 450 

MWh and for lower dam are 800 and 0 MWh.  

The running cost of PS plants are ignored in 

both generating and pumping modes. 

 

Fig. 4. Forecasted energy and reserve power market 

prices. 

 

4.1. Test the First System  

 

This test system has six conventional generat-

ing units, two wind farms and one PS plant 

(briefly: 6C+2W+1PS). The input data of 6 con-

ventional units of this test case is written in Ta-

ble 1. The weekly peak load is predicted to be 

300 MW for this study. 

 Careful value selection of the parameters is 

important in order to have appropriate results in 

this simulation. Several parameters are to be de-

termined for implementation of the proposed 

PSO. In this paper, some parameters have been 

obtained through the experiments. The values of 

maxw , 
minw  and itermax  are assumed as 0.5, 0.3 and 

200, respectively. The other parameters such as 

1c , 
2c  and 

3c  are selected after many runs on the 

first test system. The values of 
1c  and 

2c  are var-

ied from 0.1 to 1.0 in; 10 steps 

 

Table 1. Generator characteristics and cost function coefficients. 

Parame-

ters 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Wind 1 Wind 2 

max,GP

(MW) 
50 60 100 120 100 60 80 80 

min,GP

(MW) 
10 10 10 10 10 10 0 0 

Variable 

O&M Cost 

($/MWh) 

0.9 0.9 0.8 0.8 0.8 0.9 3 2 

a ($/hr) 500 650 700 450 500 600 - - 

b ($/MWh) 25 26.5 18 16 15 27.5 - - 

c ($/MW2h) 0.01 0.012 0.004 0.006 0.004 0.01 - - 
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Table 2. Best results in CPSO for different values of 

constants ( 0.1,1.0 21  cc  and 0.03 c ). 

Approach Population 
1c  2c  Total Profit 

(K$) 

CPSO with 

IWA 

10 0.1 0.8 892.056 

10 0.2 0.9 870.658 

10 0.3 0.7 874.541 

10 0.4 1.0 878.025 

10 0.5 0.8 899.260 

10 0.6 0.9 885.996 

10 0.7 0.7 879.682 

10 0.8 1.0 891.693 

10 0.9 0.8 901.032 

10 1.0 0.9 867.792 

 

(each one is 0.1). It is assumed that 0.0c3  , 

when employing the conventional PSO (CPSO) 

The best results of these variations are written 

in Table 2.  For example, the maximum total 

profit is obtained at 9.01 c  and 8.02 c  in con-

ventional PSO for 10 particles (grey area in Ta-

ble 2). Now, with these values of 
1c  and 

2c , the 

variation of 
3c  in GPAC PSO model is selected 

from 1.0 to 2.0 in step 0.1. Table 3 shows the 

value of 
3c  for the best result of objective func-

tion (grey area in Table 3). Figure 5 shows the 

convergence of GPAC PSO when the best value 

is selected for 
3c  ( 3.13 c  when 

1c  and 
2c  are 0.4 

and 1.0). The minus value of total profit is also 

shown in Figure 5. 

 
Fig. 5. Convergence index for best results of GPAC 

PSO (the first test case ). 

 

 

Fig. 6. Individual output generation of all unit’s cat-

egories and total demand (PSO during setting coeffi-

cients process-best output of Table 3). 

 

 

Table 3. Best results in GPAC approaches of PSO for different values of constants ( 0.20.1 3  c ). 

Approach Population 
1c  

2c  
3c  Total Profit (K$) 

Proposed PSO 

with IWA 

10 0.1 0.8 1.4 902.367 

10 0.2 0.9 1.2 891.409 

10 0.3 0.7 1.8 902.141 

10 0.4 1.0 1.3 926.909 

10 0.5 0.8 1.3 894.826 

10 0.6 0.9 1.7 915.157 

10 0.7 0.7 1.8 884.873 

10 0.8 1.0 1.0 895.284 

10 0.9 0.8 1.8 895.507 

10 1.0 0.9 1.4 919.127 

 

Table 4. Best results in different approaches of PSO for 100 iterations and 100 runs. 

Approach Pop. 
1c  

2c  
3c  Total Profit (K$) 

Min. Ave. Max. Std. Dev. 

Conventional 

PSO 
10 0.3 0.9 - 812.851 828.099 862.491 7.6364 

GPAC PSO 10 0.3 0.9 1.9 818.683 854.764 903.521 21.4819 
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 The results of UC problem of the first test sys-

tem which is executed by GPAC PSO with se-

lected coefficients of Table 3 including the 

power generation of conventional units, wind 

farms and PS plant, are presented in Figure 6. 

 The maximum, average and minimum of ob-

jective function of UC is presented by applica-

tion of PSO coefficients which is set in previous 

part. Table 4 writes the best result of this UC 

problem employing 100 iterations and 100 trails 

in different PSO methods. Also, Table 4 shows 

that the maximum value of total profit has been 

obtained in the proposed PSO with respect to 

CPSO method. 

 

4.2. Test the Second System  (26C+2W+2PS) 

The other test system has 26 conventional units 

(modified IEEE 24-bus system), two wind farms 

and one PS plants that the data for these wind 

farms and PS plants are given in previous Sec-

tion. The input data of all conventional units of 

this test system is given in [24] and [25], and 

also, the total peak load is 2700 MW. Other cost 

data for this test system was given in [26]. 

 Table 5 shows the best result of these varia-

tions. For example, the maximum total profit is 

obtained at 5.01 c  and 1.02 c  in conventional 

PSO for 10 particles (grey area in Table 5). 

Now, with these values of 
1c  and 

2c , the varia-

tion of 
3c  in GPAC PSO model is selected from 

1.0 to 2.0 in step 0.1. Table 6 shows the value of 

3c  for the best result of objective function (see 

the grey part). Figure 7 shows the convergence 

of GPAC PSO when the best value is selected 

for 3.13 c . The minus value of total profit is 

shown in Figure 7. 

 

Table 5. Best results in CPSO for different values of 

constants ( 0.1,1.0 21  cc  and 0.03 c ). 

Approach Population 
1c  2c  Total Profit 

(M$) 

CPSO with 

IWA 

10 0.1 0.2 12.3690 

10 0.2 0.1 12.3863 

10 0.3 0.1 12.3579 

10 0.4 0.5 12.3378 

10 0.5 0.1 12.3886 

10 0.6 0.1 12.3694 

10 0.7 0.1 12.3585 

10 0.8 0.3 12.3845 

10 0.9 0.1 12.3800 

10 1.0 0.2 12.3751 

 

Table 6. Best results in GPAC approaches of PSO 

for different values of constants ( 0.20.1 3  c ). 

Approach Popula-

tion 
1c  

2c  
3c  Total Profit 

(M$) 

Proposed 

PSO with 

IWA 

10 0.1 0.2 1.2 12.4351 

10 0.2 0.1 1.0 12.4390 

10 0.3 0.1 1.3 12.4256 

10 0.4 0.5 1.9 12.4053 

10 0.5 0.1 1.3 12.4613 

10 0.6 0.1 1.3 12.4528 

10 0.7 0.1 1.3 12.4353 

10 0.8 0.3 1.3 12.4569 

10 0.9 0.1 1.5 12.4357 

10 1.0 0.2 1.6 12.4589 

 

 
Fig. 7. Convergence index for GPAC PSO for the 

second test system. 

 

Table 7. Best results in different approaches of PSO for 100 iterations and 100 runs. 

Approach Pop. 
1c  

2c  
3c  Total Profit (M$) 

Min. Ave. Max. Std. Dev. 

CPSO 10 0.5 0.1 0.0 12.2660 12.3623 12.4039 0.020589 

GPAC PSO 10 0.5 0.1 1.3 12.3714 12.4268 12.4908 0.0182485 
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Fig. 8. Individual output generation of all units’ cat-

egories and total demand for the second test system. 

 

 The results of UC problem of the first test sys-

tem which is executed by GPAC PSO with se-

lected coefficients of Table 3 are presented in 

Figure 8.  

 The maximum, average and minimum of ob-

jective function of UC is presented by applica-

tion of PSO coefficients which is set in previous 

part. Table 7 shows the best result of this UC 

problem employing 100 iterations and 100 trails 

in different PSO methods. 

Table 7 shows that the maximum value of total 

profit has been obtained in the proposed PSO 

with respect to CPSO method. 

 

5. CONCLUSION 

This paper presents a new approach to solve the 

UC problem based on the hybrid PSO algorithm. 

A new formulation for UC problem is developed 

to manage the uncertainties of wind power gen-

eration with PS plant. Modified PSO is obtained 

by implementation of social forces. This new 

UC model is applied to two test systems and 

solved using conventional and modified PSO 

methods. The results show that the best utility 

profit obtained by modified particle swarm op-

timization. 

 

NOMENCLATURE 

ggg cba ,,  The coefficients of generating unit g  

321 ,, ccc  Weighting factors called acceleration 

constants 

)(bC  The step size of the tumble for the bth 

bacterium, which determines the height 

of each random step 

cfk  Constriction factor in CFA 

D  Dimension of the particle 

),( tsEl  Lower reservoir energy level of pumped 

storage s  at time period t , in MWh 

)(max sEl  Lower reservoir energy capacity limit of 

pumped storage s , in MWh 

)(tEP  Forecasted energy price at time period t

, in $/MWh 

),( tsEu  Upper reservoir energy level of pumped 

storage s  at time period t , in MWh 

)(max sEu  Upper reservoir energy capacity limit of 

pumped storage s , in MWh 

k

dgbest  Dimension d of the best particle in the 

swarm group until iteration k 

g  Index for thermal generator unit 

iter  Current iteration number 

k  The iteration number 

itermax  Maximum number of iterations 

),( tsM  Commitment state of pumped storage s  

at time period t  (generation mode = 1, 

pumping mode = 0) 

N  The size of the swarm 

GN  Number of thermal generator units 

SN  Number of pumped storage plants 

WN  Number of wind farms 

)(gOMVCT  Operation and maintenance variable cost 

of thermal unit g , in $/MWh 

)(wOMVCW  Operation and maintenance variable cost 

of wind unit w , in $/MWh 

k

idpbest  Dimension d of the own best position of 

particle i  until iteration k 

)(tPd
 System demand at time t , in MW 

min,GgP  Lower limit of thermal unit g , in MW 

max,GgP  Upper limit of thermal unit g , in MW 

),( tgPGD
 Load contribution of thermal unit g  at 

time t , in MW 

)(tPR
 System reserve requirement at time t , in 

MW 
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),( tgPGR
 Reserve contribution of thermal unit g  

at time t , in MW 
),( twPW  Generation of wind unit w  at time t , in 

MW 

max,WP  Maximum generation of wind unit w , in 

MW 
)(max, sPS g  Maximum limit of generation mode of 

pumped storage s , in MW 
),( tsPS g  Generation mode of pumped storage s  at 

time period t , in MW 

),( tsPS p
 Pumping mode of pumped storage s  at 

time period t , in MW 

)(max, sPS p
 Maximum limit of pumping mode of 

pumped storage s , in MW 

kkk rrr 321 ,,  Random numbers, uniformly distributed 

in [0,1] at iteration k 

rand  Random number, uniformly distributed 

in [0,1] 

RESW  Uncertainty of wind power, in percent 

)(tRP  Forecasted reserve price at time period t

, in $/MWh 

s  Index for pumped storage plant 

t  Index for time 

T  Number of periods under study (168 

Hours) 

TC  Total operating costs 

TR  Total revenues 

),( tgU  Commitment state of unit g  at time t  

(on = 1, off = 0) 

),( twV  Commitment state of wind unit w  at 

time t  (on = 1, off = 0) 
k

idv  Dimension d of the velocity of particle i  

at iteration k 

w  Index for wind unit 
),( twWav  Maximum available wind power of wind 

unit w  at time t , in MW 

wf  Weighting function 

maxwf  Final value of weighting coefficient 

minwf  Initial value of weighting coefficient 

k

idx  Dimension d of the current position of 

particle i  at iteration k 

)(s  Efficiency of pumping mode of pumped 

storage s  
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