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Abstract 

In this paper, at first, compressive sensing theory involves introducing measurement matrices 

to dedicate the signal dimension and so sensing cost reduction, and sparse domain to exam-

ine the conditions for the possibility of signal recovering, are explained. In addition, three 

well known recovery algorithms called Matching Pursuit (MP), Orthogonal Matching Pursuit 

(OMP), and L1-Norm are briefly introduced. Then, the performance of three mentioned re-

covery algorithms are compared with respect to the mean square error (MSE) and the result 

images quality. For this purpose, Gaussian and Bernoulli as the measurement matrices are 

used, where Haar and Fourier as sparse domains are applied. 
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1. INTRODUCTION 
 

Due to the high dimensions of some of the 

images and their storage volume in different 

areas such as radar and medicine, the need to 

provide algorithms for reducing the size of 

images felt. The purpose of this paper is to 

provide an image compression algorithm to 

reduce the size and so the cost of sensing and 

using different recovery algorithms as well. 

One of the activities carried out in the field of 

Compress Sensing is magnetic resonance  

 

 

 

imaging and magnetic resonance imaging 

(MRI). In the field of imaging, a lot of work 

has been done by compact sampling, with the 

main aim of reducing the number of sensors 

in the camera and consequently cost reduc-

tion. It should be notified that the number of 

sensors reduction is identical to be the size of 

the camera small which is an important factor 

in today's technology. Also, if information 

other than the signal bandwidth, such as the 

Sparse of displaying it in an appropriate 

space, can be used by nonlinear optimization *Corresponding Author’s Email: s_ghofrani@azad.ac.ir 
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methods to accurately reconstruct the signal 

from a far less observational method than 

what Shannon’s theory suggests. Although, 

magnetic resonance imaging (MRI) is im-

portant in medical imaging, it is a time con-

suming process. So, using the compressive 

sensing for MRI can decrease the scan time.  

In this paper, at first, the compressive 

sensing theory is reviewed. Then, three algo-

rithms called MP, OMP, and L1-Norm are 

explained as the recovery algorithms. Finally, 

the simulation results are shown, and conclu-

sions are given based on the recovery as the 

recovered images as image quality and mean 

square error (MSE) as the main image as-

sessment parameter. 

 

2. COMPRESSIVE SENSING (CS) 
 

Consider a real-valued, finite-length, one-

dimensional, discrete-time signal x, which 

can be viewed as a  column vector. 

Any signal in 𝑅𝑁
can be represented in terms 

of a basis for  vectors   . For 

simplicity, assume that the basis is orthonor-

mal. Using the  basis matrix 

with the vectors as 

columns, a signal x can be expressed as 

 (1) 
 

  (2) 

where s is the column vector N × 1 with 

weighting coefficients  . In 

fact, X in the time domain and s in the ψ do-

main represents the signal. If in the vector s, 

only K component is nonzero, so that K << 

N, the X signal is called K-Sparse, which is 

compressible according to the theory of 

compressive sensing. Between the X and the 

compressed Y, there is a measurement matrix 

Φ with the dimension M × N, where M is 

much smaller than N, 

                         (3) 

The obtained Y signal is a vector with di-

mensions M × 1. Given the Eqs. (2) and (3), 

we have: 

Y = ΨΦs      (4) 

where  is an M × N matrix. The 

measurement process is not adaptive, mean-

ing that  is fixed and does not depend on 

the signal X. The problem consists of design-

ing: a) a stable measurement matrix  such 

that the salient information in any K-sparse 

or compressible signal is not damaged by 

dimensionality reduction from x ∈ RN to y ∈ 

RM and b) a reconstruction algorithm to re-

cover x from only M ≈ K measurements y (or 

about as many measurements as the number 

of coefficients recorded by a traditional 

transform coder) and dictionary matrix ? ? . 
 

3. SIGNAL RECOVERY ALGORITHMS 
 

According to the compressive sensing theory 

explained in Section 2, using the measure-

ment matrix  with dimension M × N and 

the sparse matrix ψ with dimension N × N, 

we are going to retrieve the signal. By using 

three recovery algorithms called MP, OMP 

and L1-Norm. Features and steps for the al-

gorithm implementation are explained in fol-

lowing. 

 

3.1. Matching Pursuit (MP) Algorithm 
 

The MP algorithm is one of the greedy meth-

ods seeking to find the best fit in projecting a 

multi-dimensional data over the dictionary 

called Θ where . At each step, it se-

lects a column from the dictionary that has 

the largest internal multiplication with the Y 
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matrix as input at the first iteration or residu-

al for the next steps of the algorithm. The 

steps for implementing the MP algorithm are 

listed below: 
 

1. 
Ns R0  0  

2. Compute the inner product, 
N

jj Y Rg 1

T   . 

3. Find the index k  where: 

|][|maxarg
,...,1

ik j
Ni

g


 . 

4. Update ][][][ 1 kksks jjj g   where 

][ks j  and ][kjg  refer to the k -th ele-

ment in 
N

j Rs   and N
j Rg . Then, 

compute the residual 

kjjj kYY   ][1 g  where k  is the 

 k -th column of dictionary . 
5. Consider the iteration number, j , or 

obtain the residual norm value, 
2

|||| jY . 

Stop the algorithm if j  is greater or 

2
|||| jY  is less than the pre-defined val-

ue. Otherwise go through the second 

step.  

 

3.2. Orthogonal Matching Pursuit (OMP)  

Algorithm 
 

OMP algorithm is the most widely used as 

signal recovery algorithm in compressive 

sensing and is proved to be practical and easy 

for implementation. OMP algorithm is a clas-

sical greedy algorithm and its performance is 

dependent heavily on the properties of the 

measurement matrix. The procedure of OMP 

algorithm are presented in following:  
 

1. 
Ns R0  0  

2. 0Λ  

3. Compute the inner product, 
N

jj Y Rg 1

T   . 

4. Find the index k  where 

|][|maxarg
,...,1

ik j
Ni

g


 . 

5. Update the index set and matrix of 

chosen atoms }{1 kjj  ΛΛ ,  

kjj


 1
.         

6. Obtain the new estimate

y
T

ΛΛ

T

Λ jjj
s  1)(~ . Note that the 

size of x~  is growing while the num-

ber of iteration is increasing. Com-

pute the coefficient vector 

ss jj
~][ Λ . 

7. Update the residual jj sYY  . 

8. Consider the iteration number, j , or 

obtain the residual norm value, 

2
|||| jY  Stop the algorithm if j

 
is 

greater or 
2

|||| jY  is less than the pre-

defined value. Otherwise go through 

the second step.  

 

3.3. L1-Norm Algorithm 
 

ŝ = arg min
s

||s||1   (5) 

This algorithm is based on the first norm and 

it does not use internal multiplication. In this 

algorithm, the goal is to retrieve the vector s 

of . The first approach to retrieve s is to 

consider the optimization problem in that 

which ensures s is consistent with the meas-

urements and s can be retrieved as a Sparse 

matrix which is in accordance with the meas-

urements . 

 

4. EXPERIMENTAL RESULTS 
 

For compressive sensing, different matrices 

can be used as the measurement matrix  
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(a) 

 

 
(b) 

 

 
(c ) 
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(d) 

Fig. 1. Comparison the performance of recovery algorithms called MP, OMP, L1-Norm in compressive 

sensing for different measurement matrices and sparse domains. (a) Bernoulli- Haar, (b) Gaussian-

Haar, (c) Bernoulli- Fourier, (d) Gaussian- Fourier. 

 

 

and the sparse matrix ψ.  In this paper, the 

main goal is to evaluate the performance of 

different matrices when we apply three intro-

duced recovery algorithms. For this purpose, 

we have used three test images. In this re-

gard, measurement matrices are Bernoulli 

and Gaussian and the sparse matrices are 

Haar and Fourier and three recovery algo-

rithms are MP, OMP and L1-Norm. The re-

sults of simulation are shown in Fig. 1 (a- e). 

In all simulations, the original size (X)  is 

64 × 64, the observed image size (Y) is 32 × 

64, the recovered image size is 64 × 64, the 

dictionary matrix size (Θ) is 4096 × 2048, 

the spase matrix size (ψ) is 4096 × 4096, and 

finally, the measurement matrix size () is 

4096 × 2048. 

 

5. CONCLUSION  
 

As seen in Fig. 1-a, for the Bernoulli meas-

urement matrix and Haar sparse matrix, none 

of the three MP, OMP, and L1-Norm recov-

ery algorithms perform well, whereas for 

Gaussian-Haar pairs due to the proper coher-

ency between the Sparse matrix and the 

measurement matrix, the performance of 

OMP algorithm is appropriate. This algo-

rithm also works well for Gaussian-Fourier 

as well. According to the results, the MP re-

covery algorithm is not recommended for all 

pairs of the measurement and sparse matri-

ces. However, the L1-Norm algorithm is rec-

ommended for the Bernoulli measurement 

space and Fourier sparse space. Quantitative 

values for MSE also confirm the achieved 

visual results. 
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