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Abstract 

This paper aims to describe the role of electricity retailer in power market for persuading 

consumer to shift their loads. It presents the influence of load shifting on retailer profit and 

risk management in market environment. In this problem, retailer participates in bilateral 

contract, also stochastic programming is used to manage the uncertainties of pool prices and 

elasticity of consumer. It shows that by participating retailer in market contract, the retailer 

profit will be changed. This paper also analyzes the consumer behavior when the load is shifted 

from the time with high price to the time with low price. The tariff of demand response program 

used in this paper is Time of use pricing for the periods of week. Risk Measuring is done by 

Value at Risk (VaR) and Conditional Value at Risk (CVaR) in this study.  
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1. INTRODUCTION 
 

 Electric deregulation is the route of changing 

laws that controls the electric industry to 

provide customers with the choice of 

electricity suppliers who are either retailers or 

agents by allowing competition. Deregulation 

can develop the economic effectiveness of  

 

the production and use of electricity. Because 

of electric industry competition, the power 

price is expected to decrease and so the 

consumers profit. 

Reference [1] Estimated thermostat set 

point control of aggregate electric water 

heaters (EWHs) for load shifting, and 

prepared required balancing reserve for the 

utility. It also considered the economic profits 
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of Demand Response for the consumers 

within time-of-use pricing. 

Internet of Energy framework to examine 

the peak load shifting problem was studied in 

[2]. Where customers in the energy market 

could adopt their respective energy storage 

facilities to charge and discharge energy with 

the purpose of minimizing the total operating 

costs. In such a problem setting, every 

customers can be demander and supplier in the 

energy market, so that operating costs are 

involved; the energies from both traditional 

electrical systems and distributed renewable 

energy sources can be stored in energy storage 

facilities; real-time price of energy will be 

used adequately to influence energy 

distribution of supply and demand. 

Unique definition can be used for peak load 

shifting that shifts the energy usage demand 

during the peak load time to the off-peak load 

time with low energy demand. For example, 

in 1990s [3], the energy load management to 

reduce energy consumption and to organize 

proper power-generating schedules to reach 

the aim of peak load shifting was applied. 

Note that adjusting load is a common strategy 

to develop the performance in other fields, 

like load reduction multimedia data [4]. 

The work in [5] investigated the electricity 

demand of grids using a mathematical model 

for the home energy management system in 

order to save the energy consumption of home 

appliances as well as various energy storage 

facilities and to prevent any peak load of 

systems. 

A sudden load billing scheme was adopted 

[6] in order to shift consumers peak hour 

demand and to charge them equally for their 

energy consumption. In [7], utility companies 

and residential users were formed in two 

levels, which reduce demand variation and 

peak load. 

Theoretical and quantitative analysis of the 

useful influence of demand shifting (DS) in 

lessening market power by the generation side 

was presented in [8] for the first time. 

Quantitative analysis was proposed by a 

multi-period equilibrium programming model 

of the imperfect electricity market, accounting 

for the time-coupling operational constraints 

of DS as well as network constraints.  

One of the main approach in [9] was 

demand response, as a key section of smart 

grid technology. Demand response may keep 

the balance of power supply and demand by 

peak load shaving. In demand response 

programs, real-time pricing (RTP) is viewed 

as a useful method to handle price-responsive 

loads. According to [9], in load shifting 

context, load reduction is more common, load 

reduction during certain times is done by a 

load recovery effect during preceding or 

succeeding periods. This shift of energy 

demand from high- to low-price periods 

causes a demand profile flattening effect.  

Though several studies have explored the 

impacts of demand shifting (DS) on various 

looks of power system operation and planning 

[10]-[15], its impact in imperfect electricity 

markets has not been broadly explored yet. DS 

flexibility in an imperfect electricity market 

model through also considering the cross-

price elasticity of the demand side was 

developed in [16], but no theoretical or 

measureable analysis of the specific impacts 

of demand shifting on strategic producers 

market power was offered. 

Methods for employing customers into DR 

efforts include price-based DR programs via 

time-varying price mechanisms such as time-

of-use (TOU) pricing, critical peak pricing, 

variable peak pricing, and real-time pricing, as 

well as incentive-based direct load control DR 

programs for providing power utilities and 
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ISOs abilities to cut down/shift loads from 

peak periods to off-peaks [17]. Although, the 

price-based DR is not still used broadly, a 

comparison of TOU and real-time pricing [18] 

shows that real-time pricing signals will carry 

on more real-time operation information of 

power systems, which would cause more 

benefits to power systems in terms of 

flattening system load profiles and reducing 

peak demands as compared to TOU rates. This 

paper emphasizes price-based demand 

response programs with real-time pricing. 

Demand response management needs to be 

properly planned in order to reliably measure 

the benefits of demand response options and 

guarantee that both suppliers and customers 

are cost-effective and effective at providing 

needed demand reductions [19]. Also, the 

price-based DR needs to be improved so that 

customers are able to take control of their 

electricity costs with instable real-time pricing 

[20]. Additionally, although a high 

penetration of price-sensitive demand 

response loads would help to decrease the 

peak electricity prices, MCPs over time may 

still not be perfectly flat due to capacity 

limitations and minimum on/off time 

constraints of generating units, even if all 

loads fully participate into the price-based 

demand response program [21]. Price-

sensitive demand response causes additional 

dynamics and new challenges to the real-time 

supply and demand balance. Specially, if real-

time price based demand response programs 

are widely deployed in future, price-sensitive 

demand response load levels would constantly 

change in response to dynamic real-time 

prices, and the changes in DR loads will 

impact the economic dispatch plan and in turn 

affects the electricity market clearing prices. 

Closed-loop method design was analyzed 

[22] to power markets using eigenvalues. In 

[23], authors supposed that both power 

suppliers and consumers respond to real-time 

market prices are uninterruptedly increasing 

or reducing their sales or purchases, and it 

explores how the market results could deviate 

from the competitive situation. 

Case studies demonstrate that the time-

shifting flexibility of the consumers decrease 

the retailer revenue, since consumers can 

respond more effectively to strategic retail 

pricing samples, but also decrease the retailer 

cost, as it leads to flatter wholesale demand 

and price profiles, an effect which is not 

captured by former work [24]. The retailer can 

profit from the flexibility in demand side in 

some cases. The flexibility also leads to lower 

spot prices so that the customers in real-time 

price-based demand response enforce the 

lower electricity price for per-unit power 

consumption [25]. In half-term planning, the 

objective of an electricity retailer is to procure 

the electricity energy to supply its demands, 

while efficient control of the financial risks 

under uncertainties is as biotic as maximizing 

profit [26]. Optimal provision of electricity 

from wholesale market to minimize the 

provision cost and optimal selling price 

calculation considering a price responsive 

demand, to maximize income. On the 

provision side, retailer faces uncertainty of 

pool electricity price and at sell side, it sets 

selling price based on the elasticity of its 

consumer demand. The work contributes by 

highlighting the impact of demand behavior 

on a retailer decision making for different 

price elasticity and providing informed 

decision support under pool price uncertainty 

to address different risk-averse nature of 

retailers [27]. 

The main contributions of this paper are 

listed in following. 

1) Propose a logic model for retailers 

trading in pool based electricity markets and 

through bilateral contracts to persuade 
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consumers for shifting their consumption in 

low pool prices. 

2) Formulate the stochastic model as a 

nonlinear programming problem which can 

be effectively solved by using proper 

software. 

3) Manage and study the risk that retailer 

must be tolerate by using CVaR and VaR 

view. 

The used symbols and their definition to 

make the paper readable are listed in 

following. 

α=Confidence level 

b=Index for time periods for trading in 

bilateral market 

m=Index for months 

j=Index for customers 

r=Index for time periods for trading in pool 

market 

t=Index of time for trading with customers 

ω=Index of scenarios 

𝐹0=Expected profit of the retailer before 

shifting load 

𝐹𝐿=Expected profit of the retailer after shifting 

load 

𝑅𝜔=Profit of the retailer for scenario 𝟂 

∆F=Change in the expected profit 

∆Pjtω
C = rate of change of the power for the 

customer j, period t and scenario 𝟂 

∆λjt
C= rate of change of the price for the 

customer j, period t  

Ejtω= Elasticity of the customer j, period t and 

scenario 𝟂 

Lb
B  =Number of hours of period b 

Lt
C  = Number of hours of period C 

NB= Number of time periods considered to 

trade through bilateral contracts 

NJ= Number of all customers 

NT= Number of time periods considered to 

trade with customers 

NR= Number of time periods considered to 

trade through pool 

Nω= Number of scenarios 

Pb
B= power bought through bilateral in period 

b 

Pjt
c= the power contracted in period t for 

customer j 

λjt
c = Price of the energy for customer j in 

period t 

λb
B= Price of the bilateral contracts in time 

period b 

λrω
P = Price of the pool in time period r and 

scenario 𝟂 

ξ = Auxiliary variable used to calculate the 

CVaR ($). 

𝜂𝜔 = Auxiliary variable related to scenario ω 

used to calculate the CVaR ($). 

Α = Confidence level used in the calculation 

of the CVaR. 

πω= Probability of occurrence of scenario ω. 

θtr= Relationship between time period r and t 

Ωrb= Relationship between time period b and 

r 

Λtm = Relationship between time period m 

and t. 

 

2. RELATIONSHIP BETWEEN 

RETAILER, DEMAND RESPONSE AND 

CONSUMPTION MANAGEMENT 
 

For any retailer, there are two types of 

contracts, buying energy and selling energy, 

usually part of buying and selling energy 

through instantaneous energy, where there are 

a lot of price fluctuations. On the other hand, 

the retailer is committed to provide the 

variable energy for consumers.  

While the retailer faces load fluctuations 

and price, consumers who face fixed price of 

electricity show less sensitivity towards the 

price changes in the wholesale market. 

Increasing the consumer sensitivity is 

followed by advantages like decreasing the 

production cost, decreasing authority in the 
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market, and decreasing the costs paid by the 

consumers. Applying methods which increase 

the consumers sensitivity could be 

advantageous both for the total system and the 

consumer as well. In order to solve this 

problem and increase the consumers 

sensitivity, the pricing models which vary 

with time like real time pricing, time use 

pricing, and critical-peak pricing were 

proposed.  

The main objective of these pricings is 

summarized as, 

1. Retailer price which reflects the 

wholesale market fluctuations to the final 

consumers so that they pay based on the real 

value of electricity in different times of the 

day.  

2. Encouraging the consumers to change 

working hours of the high consumption 

devices to non-peak hours to decrease their 

own costs and help to decrease the peak to 

medium load ratio  

By regarding all things described above, real 

time pricing (RTP) of electricity provides 

natural transmission of price signals from 

real-time market to small consumers. While 

real time pricing, consumers face hour prices 

which change daily and they decide based on 

these prices. In addition, real time pricing 

eliminates the risk of buying electricity which 

the retailer or the local distribution company 

might face due to buying from the wholesale 

market or the unstable instantaneous prices 

and selling it with fixed price. Also, 

employing instantaneous pricing transfers the 

price risk from the retailer or the local 

distribution company to the final consumer. 

 

2.1. Demand Response Program and TOU 

Pricing 
 

Demand response occurs when an electricity 

consumer reduces their energy demand at 

specific times of power system need – either 

in response to change in electricity price or to 

incentives during peak period. During such 

times wholesale market prices for electricity 

may be high, the power system is 

experiencing large peaks in demand, or there 

is a high risk for the electricity grid reliability.  

Demand response can be used into the 

energy cost-management strategy in different 

ways for electricity market. During peak 

periods, reduce the consumption by curtailing 

the facilities electricity usage or switching to 

on-site generation. Shifting production to an 

off-peak period is another opportunity to take 

advantage of lower electricity costs.  

In this paper, TOU tariffs are used. In this 

type of tariff, although the rate is rigid for the 

duration of the contract, it depends on the time 

of day. Time-of-use rate plans better align the 

price of energy with the cost of energy at the 

time it is produced. Lower rates during 

partial-peak and off-peak hours offer an 

incentive for customers to shift 

energy usage, away from more expensive 

peak hours, which can help the customers save 

money and reduce strain on the electric grid. 

 

2.2. Risk Measurement 
 

The measuring of the risk modeled in this 

study is done by VaR and CVaR. Value at risk 

is a measure of the risk of loss for investments. 

It estimates how much a set of investments 

might lose (with a given probability and 

normal market conditions) in a set time period 

such as a day. VaR is typically used by firms 

and regulators in the financial industry to 

gauge the amount of assets needed to cover 

possible losses. For a given portfolio, time 

horizon, and probability p, the p VaR can be 

defined informally as the maximum possible 

loss during the time if we exclude worse 

outcomes whose probability is less than p.  

https://en.wikipedia.org/wiki/Probability
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Fig. 1. Concept of VaR and CVaR for risk 

measurment. 

 

     This assumes mark-to-market pricing, and 

no trading in the portfolio[28]. 

Conditional value at risk is a risk 

assessment technique often used to reduce the 

probability that a portfolio will incur large 

losses. This is performed by assessing the 

likelihood (at a specific confidence level) that 

a specific loss will exceed the value at risk. 

Based on mathematic, CVaR is derived from 

a weighted average between the value at 

risk and losses exceeding the value at risk. 

The CVaR at the α confidence level can be 

expressed as the expected profit of those 

scenarios related to the lower tail of the profit 

distribution, for example, scenarios whose 

profits are lower than or equal to (1-α) 

quantile of the profit distribution (see Fig. 1). 

Note that VaR is defined as (1-α) quantile of 

the profit distribution. 
 

𝐶𝑉𝑎𝑟 = 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝜉,𝑛𝑒𝑤     

 𝜉 −
1

1−𝛼
∑ 𝜋𝜔𝜂𝜔

𝑁
𝜔=1                                    (1) 

𝜉 − ∑
(∑ 𝑅𝑒𝑡𝑤

𝑅 − 𝐶𝑡𝑤
𝑃 − 𝐶𝑡

𝐹𝑁𝐸
𝑒=1 ) ≤ 𝜂𝜔 , ∀𝜔

 𝜂𝜔 ≥ 0,   ∀𝜔                                            

𝑁𝑇
𝑡=1   

            (2) 

The ideal rate of ξ is a risk measure accepted 

as Value-at-Risk (VaR), is the profit of 

scenario, and 𝜂𝜔is an auxiliary positive 

variable which is equal to the difference of 

VaR and the profit of scenario ω 

 

3. STOCHASTIC PROGRAMMING 
 

Stochastic programming is a framework 

for modeling optimization problems that 

involve uncertainty. In this problem, the 

retailer meets two sources of uncertainty: pool 

prices and price elasticities of the customers. 

Pool prices rely on the bids suggested by the 

market operator, and assuming a price-taker 

retailer, they are independent of the retailer 

actions. Price elasticities of the customers are 

also uncertain and free of the retailer choices, 

finally uncertainty in pool prices and customer 

elasticity explain via scenarios. Each scenario 

has a probability of happening πω , in such a 

way that the sum of the probabilities over all 

scenarios is equal to 1. 

 

3.1. Problem Formulation 
 

In general, the retailer profit in the electricity 

market can be shown as follows: 

Difference between the revenue obtained 

from selling energy to consumers and the cost 

of involvement in pool agreements and buying 

energy from bilateral agreements, so the final 

profits depends on stochastic prices of pool 

and customers demands [8]. For obtaining the 

retailer profit before load shifting, Eq. (3) is 

used:  

𝐹0 = ∑ ∑ 𝜆𝑗𝑡
𝑐 𝑃𝑗𝑡

𝑐 𝐿𝑡
𝐶

𝑁𝐽

𝑗=1

𝑁𝑇

𝑡=1

− ∑ 𝜆𝑏
𝐵𝑃𝑏

𝐵𝐿𝑏
𝐵    

𝑁𝐵

𝑏=1

 

-∑ ∑ ∑ 𝜋𝜔𝜆𝑟𝜔
𝑃 𝐿𝑟

𝑃(∑ 𝑃𝑗𝑡
𝐶 −

𝑁𝐽

𝑗=1𝑟∈𝜃𝑡𝑟

𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1

∑ 𝑃𝑏
𝐵

𝑏∈𝛺𝑟𝑏
)                                                  (3) 

Also, the retailer profit after load shifting 

can be shown by Eq. (4) to inspire customers 

to shift their load from periods related with 

high pool prices to periods with low pool 

prices, the retailer modifies selling prices 𝜆𝑗𝑡
𝐶 : 

 

https://en.wikipedia.org/wiki/Mark_to_market_accounting
https://www.investopedia.com/terms/r/risk-assessment.asp
https://www.investopedia.com/terms/r/risk-assessment.asp
https://www.investopedia.com/terms/w/weightedaverage.asp
https://www.investopedia.com/terms/v/var.asp
https://www.investopedia.com/terms/v/var.asp
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Optimization_(mathematics)
https://en.wikipedia.org/wiki/Uncertainty
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𝐹𝐿 = ∑ ∑ ∑ 𝜋𝜔(𝜆𝑗𝑡
𝐶 +

𝑁𝐽

𝑗=1
𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1 ∆𝜆𝑗𝑡

𝐶 ) × (𝑃𝑗𝑡
𝐶 +

∆𝑃𝑗𝑡𝜔
𝐶 )   𝐿𝑡

𝐶 − ∑ 𝜆𝑏
𝐵𝑃𝑏

𝐵𝐿𝑏
𝐵 +

𝑁𝐵
𝑏=1

∑ ∑ 𝜋𝜔𝜆𝑟𝜔
𝑃 𝐿𝑟

𝑃𝑁𝑅
𝑟=1 ∑ 𝑃𝑏

𝐵
𝑏∈𝛺𝑟𝑏

𝑁𝑊
𝜔=1  

-∑ ∑ ∑ 𝜋𝜔𝜆𝑟𝜔
𝑃 𝐿𝑟

𝑃 ∑ (𝑃𝑗𝑡
𝐶 +

𝑁𝑗

𝑗=1𝑟∈𝜃𝑡𝑟

𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1

∆𝑃𝑗𝑡𝜔
𝐶 )                                                         (4) 

 

By defining Eq. (4), now describing the 

expected profit of retailer is easy: 

Expected profit achieved by a retailer is 

calculated as incomes from selling energy to 

consumers, minus costs from buying energy 

within a bilateral contract and minus costs 

from buying energy in the pool contract. 

The price elasticity of consumer is described 

as,  

𝐸𝑗𝑡𝜔=
−∆𝑃𝑗𝑡𝑤

𝐶 /𝑃𝑗𝑡
𝐶

∆𝜆𝑗𝑡
𝐶 /𝜆𝑗𝑡

𝐶                                             (5) 

The retailer tracks to maximize the 

modification in the expected profit, the 

objective function for retailer could be 

illustrate as, 
 

∆F= ∑ ∑ ∑ 𝜋𝜔
𝑁𝐽

𝑗=1
𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1 (1- 𝐸𝑗𝑡𝜔) ∆𝜆𝑗𝑡

𝑐 𝑃𝑗𝑡
𝑐 𝐿𝑡

𝐶 −

∑ ∑ ∑ 𝜋𝜔
𝑁𝐽

𝑗=1
𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1

𝐸𝑗𝑡𝜔𝑃𝑗𝑡
𝑐 𝐿𝑡

𝐶

𝜆𝑗𝑡
𝑐 (∆𝜆𝑗𝑡

𝑐 )2 +

∑ ∑ ∑ ∑ 𝜋𝜔
𝑁𝐽

𝑗=1𝑟∈Ɵ𝑡𝑟

𝑁𝑇
𝑡=1

𝑁𝑊
𝜔=1

𝐸𝑗𝑡𝜔𝑃𝑗𝑡
𝑐

𝜆𝑗𝑡
𝑐 𝐿𝑟

𝑃𝜆𝑟𝜔
𝑃 ∆𝜆𝑗𝑡

𝑐   

 (6) 

Objective function in Eq. (6) would be the 

optimization according to Eqs. (7-12): 

  
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒

∆𝜆𝑗𝑡
𝐶  ∀𝑗,𝑡,𝜉,𝑢𝜔   ∀𝜔

          𝜉 −
1

1−𝛼
∑ 𝜋𝜔𝑢𝜔

𝑁𝑊
𝜔=1    (7) 

− ∑
𝐸𝑗𝑡𝜔𝑃𝑗𝑡

𝑐 𝐿𝑡
𝐶

𝜆𝑗𝑡
𝑐∈𝛬𝑡𝑚

∆𝜆𝑗𝑡
𝑐 = 0;    ∀𝑗, ∀𝑚, ∀𝜔  (8) 

∑ (𝑃𝑗𝑡
𝐶𝑁𝑇

𝑡=1 −
𝐸𝑗𝑡𝜔𝑃𝑗𝑡

𝑐

𝜆𝑗𝑡
𝑐 ∆𝜆𝑗𝑡

𝑐 )𝐿𝑡
𝐶(𝜆𝑗𝑡

𝐶 + ∆𝜆𝑗𝑡
𝑐 ) -

∑ 𝜆𝑗𝑡
𝑐 𝑃𝑗𝑡

𝑐 𝐿𝑡
𝐶 ≤ 0;        ∀𝑗, ∀𝜔

𝑁𝑇
𝑡=1                    (9) 

-𝑎𝑃𝑗𝑡
𝐶 ≤ −

𝐸𝑗𝑡𝜔𝑃𝑗𝑡
𝑐

𝜆𝑗𝑡
𝑐 ∆𝜆𝑗𝑡

𝑐 ≤ 𝑎𝑃𝑗𝑡
𝐶  

∀𝑗, ∀𝑡 ∈ 𝛬𝑡𝑚, ∀𝑚, ∀𝟂                              (10) 

  λjt
C + ∆λjt

c ≥ 0;                  ∀j, ∀t               (11) 

𝑃𝑗𝑡
𝐶 −

𝐸𝑗𝑡𝜔𝑃𝑗𝑡
𝑐

𝜆𝑗𝑡
𝑐 ∆𝜆𝑗𝑡

𝑐 ≥ 0         ∀𝑗, ∀𝑡, ∀𝜔      (12) 

The objective function (7) which should be 

maximized, contains the CVaR of the profit at 

the confidence level α.  

Constraints (8) insist that the energy 

consumed by each customer during a month 

cannot be changed, it means that welfare of 

the customer cannot be decreased because of 

high electricity prices and only load shifting 

between the time periods of each month is 

permited. 

Constraints (9) insist that the expense of no 

customer can increase. The first term shows 

the payment of a customer after price changes 

though the second term shows the primary 

payment of the customer. 

Constraints (10) enforce demand ramp rate 

bounds for per month. 

Constraints (11) express that the selling 

prices after modifications must be positive. 

Constraints (12) assure that the power used 

up by each customer after load shifting is 

positive. 

 

3.2. Problem Data 
 

We count a retailer working in a power market 

and a time limit of 1 month for bilateral 

contract. Hourly pool prices are collected in 6 

periods, and agreements signed between the 

retailer and the consumers are time-of-use 

pricing, where two periods are studied for 

each month. The choice of 6 values for every 

month is driven by the pool price performance 

in the Iberian electricity market [25] to show 

the sequential deviation of the electricity pool 

price during a month.  

The retailer sells energy to a group of 100 

customers separated into three groups with 

related features about a) selling prices, b) 

consumption configurations, and c) reaction 

to the price suggested by the retailer 
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(elasticity). The three kinds of customers are 

residential (84 customers), commercial (12 

customers) and industrial (4 customers). 

Power consumption for peak and off-peak 

periods is about 3.6 kW and 2.9 kW for 

residential customers, about 60 kW and 49 

kW for commercial customers, and about 3.3 

MW and 2 MW for industrial customers. 

Selling price for peak and off-peak periods is 

about 94 €/MWh and 88 €/MWh for 

residential customers, around 88 €/MWh and 

82 €/MWh for commercial customers, and 

about 80 €/MWh and 73 €/MWh for industrial 

customers. The retailer has contracted a 

bilateral contract of 7 MW at 75 €/MWh for 

the counted time horizon. This quantity relates 

to almost the 60 of the total power sold to 

customers. 

Totally 800 scenarios have been selected, 

40 pool prices scenarios are made for one 

month peryear. Moreover, 20 elasticity 

scenarios are counted in the model which have 

been made accidentally using a normal 

distribution with mean and standard deviation 

values 1.25 and 0.03 for residential customers, 

pairs (1.1, 0.05) and (1.4, 0.08) for 

commercial and industrial customers in order.  

Constant α is 0.20, which indicates a 

maximum power variation of 20 is permitted. 

 

3.3. Problem Timing 
 

It is assumed that a retailer participates in a 

pool-based power market (buying or selling 

energy), buying energy throughout bilateral 

contracts and selling energy to customers 

throughout contracts. 

The time framework for pool exchange in 

this study is six time blocks representing the 

level of pool prices. The time blocks are 

named Saturday peak, Saturday off-peak, 

working day (Sunday-Thursday) peak,  

working day off-peak, Friday peak, and 

Friday off-peak. Peak period varies from 12 

A.M. to 11 P.M. whereas off-peak period 

ranges from 12 P.M. to 11 A.M. 

 

4. SIMULATION RESULTS 
 

Stochastic problem (7)–(12) is answered to 

determine the price variations to persuade 

customers to shift their consumption. The 

subject is a nonlinear programming problem 

which is solved using MINOS within Package 

GAMS on a Windows-based server with one 

processor clocking at 2.30 GHz and 6 GB of 

RAM. Confidence level is considered to be 

equal to 0.9. 

Fig. 2 depicts price variations for residential 

customers throughout peak periods. In this 

period, for encouraging customers to reduce 

their consumption when pool prices are high, 

the retailer will increase the selling price. 

Fig 3 shows price variation for residential 

customers throughout off-peak periods, for 

this period, retailer will decrease the selling 

price for the off-peak period to achieve the 

opposed performance of the customers. 

Obviously, the price variations are higher for 

customers who have lower elasticity rates. 

Some of this 84 customers are not agree to 

vary their consumption, so, the prices related 

with their tariffs do not change. 

Fig 4 illustrates the mean rates for variations 

in the power consumed by residential 

customers for peak periods and Fig. 5 shows 

the power variation for off-peak periods, As 

usual, the general movement is that customers 

decrease their consumption in the peak period  

whereas increase it in the off-peak period, 

causing in a flatter load duration curve. 

It is known that many customers are not 

eager to change their consumption, it should 

be noted that the energy consumed by each 

customer during the time horizon must be 

fixed. 
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Fig. 2. Price variation of residential customer in 

peak periods. 

 

 
Fig.3. Price variation of residential customer in 

off-peak periods. 

 

 
Fig. 4. Power variation of residential customer 

in peak periods. 

 

Fig. 6 shows some selected scenarios and 

profit for the retailer related to that scenarios. 

By this scenarios, the retailer makes a better 

performance in power market, and the retailer 

is able to make the best decision in dealing 

with its customer.  

 

 
Fig. 5. Power variation of residential customer 

in off-peak periods. 

 
 

Fig. 6. Profit of the retailer for selected 

scenarios. 

 

 
 

Fig. 7. Power contracted by the commercial 

customers. 

 

Fig. 7 shows the power contracted between 

commercial customers and retailer. This value 

completely affect the retailer profit both after 

and before load shifting, i.e. (𝐹0) and (𝐹𝐿). 

Figs. 8 and 9 are corresponded to Eqs. (1-2-7), 

which illustrate the risk simulation and risk 

management. 
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Fig. 8. Expected profit versus confidence level 

(α=in risk measuring). 

 

 
Fig. 9. Relationship between confidence level 

and CVaR. 

 

Fig. 8 shows the relation between expected 

profit vs confidence level (α), when 

confidence level increases, lower changes in 

energy prices are forced by the retailer, and 

then, the load redistribution decreases. 

Fig. 9 displays the relationship between 

CVaR and confidence level, when the 

confidence level raises, the retailer is eager to 

adopt the low risk and achieve key results.    

   The reflecting problem shows the more risk 

opposed case, where the retailer is only 

to maximize the lowest rates of the profit 

distribution, it causes the lowest expected 

profit. 

 

5. CONCLUSION 
 

This paper proposed a model, according to 

stochastic programming, which lets a retailer 

to fix the price changes in order to motivate 

customers to shift their loads between time 

periods. The retailer is interested in bending 

the customer consumption with its energy 

availability, reducing the energy purchased 

in the pool-based electricity market. The 

retailer looks uncertain pool prices and 

uncertain price elasticities for customers. The 

risk of the retailer profit is developed by 

using CVaR. For future research, it would be 

interesting to use game theory formulation 

between two or more retailer to define a sales 

prices for encouraging customers to 

participate on its own program. Furthermore, 

it would also be exciting to develope the 

model for defining alternative tariff, like 

interruptible tariffs. 
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