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Abstract: This paper presents an analytical solution for two-dimensional 

conductive heat transfer in spherical composite pressure vessels. The vessels are 

in a spherical shape and fibers are winded in circumferential direction. The vessel 

is made of one-layer reinforced composite material. The analytical solution is 

obtained under the general boundary conditions which consist of convection, 

conduction and radiation inside/outside of vessel. The heat transfer equation for 

orthotropic conduction in spherical coordinates is derived and solved using 

separation of variables method based on the Legendre and Euler functions. Here, 

the effect of fiber's angle on heat conduction in orthotropic spherical pressure 

vessels is investigated in detail. These results can be used extensively for 

analyzing the thermal stress in this kind of vessels. 

Keywords: Exact Analytical Solution, Legendre Function, Spherical 

Composite Vessel, Steady Heat Conduction 

1. Introduction  

Heat conduction in composite materials is 

particularly important for preventing thermal 

fracture, analyzing fiber placement in production 

processes, and controlling directional heat 

transfer through laminates by varying the angles 

and materials of the fibers. The problem of heat 

conduction in composite structures can be 

subdivided into: heat conduction in cartesian 

coordinate [1-5], cylindrical coordinate in r z  

[6-9], and r φ  [10,11] directions and heat 

transfer in spherical shapes. Only few studies 

[12,13] have considered heat conduction of 

spherical layered materials ( r θ ). In these 

studies, the layer materials are isotropic in each 

layer. In this study, exact analytical solution for 

heat conduction in spherical composite vessel 

has been presented for the first time. Vessel is in 

spherical shape and fibers are winded in a 

circumferential direction. It is supposed that the 

vessel is made of one composite layer. The 

boundary conditions are the general linear 

boundary conditions which can be simplified to 

all mechanisms of heat transfer at the 

inside/outside of vessels. Analytical solution has 

been derived based on the separation method of 

variables. The effect of fibers’ angle on 

temperature distribution in composite vessel has 

been investigated in details.  

2. Heat Conduction in Spherical Composite 

In this paper steady heat conduction in 

spherical composite laminate is investigated. 
ψ  is the angle between fiber and horizontal 
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direction and ,0 ,0 2o nlr r r θ π φ π      . 

The Fourier low in spherical direction for 

orthotropic material will be: 
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where k is the conductive heat transfer 

coefficient, T is the temperature and q  is the 

heat flux. In order to study the heat conduction 

in composite laminates, two different coordinate 

systems, on-axis and off-axis, should be defined 

[7]. Off-axis coordinate system is defined to 

study the thermal properties in unique directions. 

According to thermodynamic reciprocity, the 

tensor of conductive heat coefficient should be 

symmetric: 

ij jik k                                                        (2) 

On the other hand, the second law of 

thermodynamics caused that the diametric 

elements of this tensor be positive so the 

following relation must be satisfavtory: 

2
ii jj ijk k k for i j                          (3) 

Using the Clausius-Duhem inequality, the 

following inequalities for the conductive 

coefficients of orthotropic materials are 

achieved: 
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where 
ijk represents the symmetric part of 

tensor: 
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The heat conduction coefficients can be 

directly obtained from experimental 

measurements or be calculated based on the 

theoretical models. Applying the balance of 

energy in the elements of a sphere which has 

been shown in Fig. 1, the following equation 

will be achieved: 
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Surface areas and volume of sphere 

element are as follows:  
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Quantities  and 
pc  in Eq. (6) are the 

density and specific heat capacity at constant 

pressure, respectively. Substituting Eq. (1) 

and Eq. (7) into Eq. (6) will result in: 
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Here, steady-state conductive heat transfer 

in the r  and   directions are considered as 

well. Thus, Eq. (8) can be simplified to: 
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Fig. 1. Spherical Element. 

 

In order to simplify formulations, the 

following terms are also considered: 
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where ψ  is the angle between the tangent line 

to fibers and the tangent line to Sphere in  

direction. Substituting the determined off-

axis coefficients (Eq. 10) into energy 

equation (Eq. 9) results in: 
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where parameter   is given by: 
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The general linear boundary conditions 

inside and outside the sphere are in the 

following forms which can cover a wide 

range of applicable thermal conditions: 
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Note that 1( )f  , 2 ( )f   are the arbitrary 

functions, the constants 1a , 2a  have the same 

dimension as convection coefficient and 1b , 

2b  have the same dimension as conduction 

coefficient. 

3. Analytical Solution  

In this section, the analytical solution of 

steady temperature distribution under 

generalized linear boundary conditions is 

presented based on the separation of variable 

methods. By applying the separation of 

variable method on Eq. (11), the temperature 

distribution could be separated as two 

independent functions  R r  and   : 

( , ) ( ) ( )  T r R r                                     (14) 

Substituting Eq. (14) into the Eq. (11), heat 

conduction equation has been separated as: 
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here   is a constant. By supposing sinx  , 

the separated equation in   direction can be 

solved as a Legendre equation: 
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                    (16) 
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The solution of Eq. (16) is as follows: 

 ( ) n nA P Cos  
                              (17)

 

where nP  indicates the Legendre function of 

degree n  and order one, and nA  is the 

coefficient of Legendre series. Comparing Eq. 

(15) and Eq. (16),  will be achieved as follows: 

2
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According to Eq. (15), the separated 

equation in r  direction is an Euler equation 

with the following solution: 
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The temperature distribution will be: 
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Applying the inside and outside boundary 

conditions in the direction of  r  the coefficients 

0a  , 
0b , 

na , 
nb  are obtained as follows:  
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Using the existing relations for orthogonal 

Legendre functions and rearranging the Eqs. 

(22a) and (22b), the unknown coefficients 

will be achieved.  

 Resorting Eq. (22a) results in: 
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 Similarly, Eq. (22b) results in: 
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Eqs. (23a), and (23e) should be solved to 

determine the coefficients 
na  and 

nb . 

4. Results and discussion 

In this section, the researchers examined the 

ability of the current analytical solution to find 

the temperature distribution in composite 

vessels. The result of Arpaci [15] solution for 

the heat conduction in isotropic sphere is 

employed to validate the result of this paper. 

The results are completely coincident as shown 

in Fig. 2. 

The geometry and environment para-meters 

of vessels are as follows: 

,mm1.0r,mm5.0r 0nl   

,m/W1h,C200T 2
  

),sin(100)(f 2    

,Cm/W910k 20
11   

Cm/W514k 20
22                                         (25) 

Fig. 3. shows the variation of vessel 

temperature in radial direction for different 

values of   angle under a specified angle 

90   ; as it is seen from this figure, the 

temperature of laminate is higher in the case 

of 90   and decreases when the   angle is 

near to 0  .  

The variation of laminate temperature 

respect to radius of the vessel is presented in 

Fig. 4. This figure is depicted for various 

angle under the specific case of 45  . 

Regarding this figure, the temperature of the 

vessel decreases with the growth of cone angle.  

5. Conclusions 

This paper presents an analytical solution for 

heat transfer in spherical composite vessels. This 

exact solution is derived based on an separation 

of variables method. Regarding to the exact 

analytical method which is used here, the results 

can be employed for verifying the numerical 

solution in this field. The temperature distri-

bution in spherical laminates has an important 

role in analyzing of thermal stresses in spherical 

vessels. Using the exact results of this paper, the 

effects of fibers' placement angle of composite 

material on temperature distribution of rein-

forced composite vessel can be investigated as 

well as possible. 

 
Fig. 2. Temperature distribution in an isotropic sphere. 
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Fig. 3. Temperature distribution of the composite for different set of . 

 

Fig. 4. Temperature distribution of the composite for different set of
.
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