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Abstract: This paper presents an analytical solution for two-dimensional
conductive heat transfer in spherical composite pressure vessels. The vessels are
in a spherical shape and fibers are winded in circumferential direction. The vessel
Is made of one-layer reinforced composite material. The analytical solution is
obtained under the general boundary conditions which consist of convection,
conduction and radiation inside/outside of vessel. The heat transfer equation for
orthotropic conduction in spherical coordinates is derived and solved using
separation of variables method based on the Legendre and Euler functions. Here,
the effect of fiber's angle on heat conduction in orthotropic spherical pressure
vessels is investigated in detail. These results can be used extensively for
analyzing the thermal stress in this kind of vessels.

Keywords: Exact Analytical Solution, Legendre Function, Spherical
Composite Vessel, Steady Heat Conduction

1. Introduction

Heat conduction in composite materials is
particularly important for preventing thermal
fracture, analyzing fiber placement in production
processes, and controlling directional heat
transfer through laminates by varying the angles
and materials of the fibers. The problem of heat
conduction in composite structures can be
subdivided into: heat conduction in cartesian
coordinate [1-5], cylindrical coordinate in r-z
[6-9], and r-¢ [10,11] directions and heat
transfer in spherical shapes. Only few studies
[12,13] have considered heat conduction of
spherical layered materials (r-6). In these
studies, the layer materials are isotropic in each
layer. In this study, exact analytical solution for
heat conduction in spherical composite vessel

has been presented for the first time. Vessel is in
spherical shape and fibers are winded in a
circumferential direction. It is supposed that the
vessel is made of one composite layer. The
boundary conditions are the general linear
boundary conditions which can be simplified to
all mechanisms of heat transfer at the
inside/outside of vessels. Analytical solution has
been derived based on the separation method of
variables. The effect of fibers’ angle on
temperature distribution in composite vessel has
been investigated in details.

2. Heat Conduction in Spherical Composite
In this paper steady heat conduction in

spherical composite laminate is investigated.

¥ is the angle between fiber and horizontal
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direction and r <r<r,

nl?

0<0<m,0<p<2r.

The Fourier low in spherical direction for
orthotropic material will be:
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where k is the conductive heat transfer
coefficient, T is the temperature and q is the

heat flux. In order to study the heat conduction
in composite laminates, two different coordinate
systems, on-axis and off-axis, should be defined
[7]. Off-axis coordinate system is defined to
study the thermal properties in unique directions.
According to thermodynamic reciprocity, the
tensor of conductive heat coefficient should be
symmetric:

K, =k (2)
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On the other hand, the second law of
thermodynamics caused that the diametric
elements of this tensor be positive so the
following relation must be satisfavtory:

kik, >k2 ~ for Q=] (3)
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Using the Clausius-Duhem inequality, the
following inequalities for the conductive
coefficients of orthotropic materials are
achieved:

Kgiy =0 (4a)
1
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where k; represents the symmetric part of
tensor:
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The heat conduction coefficients can be
directly  obtained from  experimental
measurements or be calculated based on the
theoretical models. Applying the balance of
energy in the elements of a sphere which has
been shown in Fig. 1, the following equation
will be achieved:

dA
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Surface areas and volume of sphere
element are as follows:
dA, =r?sinéd ¢d 0
dA, =rsingd ¢d 6
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in Eq. (6) are the

density and specific heat capacity at constant
pressure, respectively. Substituting Eq. (1)
and Eq. (7) into Eq. (6) will result in:

Quantities pand ¢,

- 10 ,0T - 10T
w5 (=) 4k, —
reor or r’sing oo’
_ 1 9 aT . (k,+k,) 0T
—(sing— +—( 2 thy) 0T

® r2sing 00 00

_ 1 qr (k +k)
+k —+

rsind orog

*r?sing o0 r araa (8)
— 1T - - 1 T

“r_2£+( w th r’sing 0000
K cosd iz oT

*rsing or P ot

Here, steady-state conductive heat transfer
in the r and @ directions are considered as
well. Thus, Eqg. (8) can be simplified to:
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Fig. 1. Spherical Element.

In order to simplify formulations, the
following terms are also considered:

kl_k22
Ky =(C 08W) Ky +(SINW) ks, (10)

where ¥ is the angle between the tangent line

to fibers and the tangent line to Sphere inéd
direction. Substituting the determined off-
axis coefficients (Eq. 10) into energy
equation (Eq. 9) results in:

26T 1 1 o0 ,. 0T
sind—-)=0
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where parameter 1 is given by:
— k22
o mPky; +n7Ky,
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The general linear boundary conditions
inside and outside the sphere are in the
following forms which can cover a wide
range of applicable thermal conditions:

al (ro,9)+b1%ir(r0'9)=f1(9) (13a)

aT (1:6)+b, 5 -(1,0) =1,(0) (130)

Note that f,(0), f,(8) are the arbitrary
functions, the constants a,, a, have the same
dimension as convection coefficient and b,
b, have the same dimension as conduction
coefficient.

3. Analytical Solution

In this section, the analytical solution of
steady temperature distribution  under
generalized linear boundary conditions is
presented based on the separation of variable
methods. By applying the separation of
variable method on Eq. (11), the temperature
distribution could be separated as two
independent functions R(r) and ©(9):

T (r,0)=R(r)0(0) (14)

Substituting Eq. (14) into the Eq. (11), heat
conduction equation has been separated as:

cosd O O
(r* +2r7)__7(sm6*6 e~* (15)
here A is a constant. By supposing x =sin@,
the separated equation in @ direction can be

solved as a Legendre equation:

%(1—x22—§))+n(n +1)©=0 (16)
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The solution of Eq. (16) is as follows:

®(0)=>_A,P, (Cos0)
(17)
where P, indicates the Legendre function of
degree n and order one, and A, is the
coefficient of Legendre series. Comparing Eq.
(15) and Eq. (16), A will be achieved as follows:
_n(n+1)

“ (18)
According to Eq. (15), the separated
equation in I direction is an Euler equation
with the following solution:

A
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ByInr +C, forn=0 (19)

The temperature distribution will be:
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Where:
a,=AB,
r=0,n
b, =AC, (21)

Applying the inside and outside boundary
conditions in the direction of r the coefficients
a, , b,,a,, b, areobtained as follows:
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Using the existing relations for orthogonal
Legendre functions and rearranging the Eqgs.
(22a) and (22b), the unknown coefficients
will be achieved.

e Resorting Eq. (22a) results in:
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o Similarly, Eq. (22b) results in:
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Egs. (23a), and (23e) should be solved to

determine the coefficients a, and b, .

4. Results and discussion

In this section, the researchers examined the
ability of the current analytical solution to find
the temperature distribution in composite
vessels. The result of Arpaci [15] solution for
the heat conduction in isotropic sphere is
employed to validate the result of this paper.
The results are completely coincident as shown
in Fig. 2.

The geometry and environment para-meters
of vessels are as follows:

ry =0.5mm, ry =0.1mm,
T, =200°C, h=1W / m?,
f, (6)=100sin(8),

ki, =910W / m?C,

ky, =514W / m®°C (25)

Fig. 3. shows the variation of vessel
temperature in radial direction for different
values of @ angle under a specified angle
w=90" ; as it is seen from this figure, the
temperature of laminate is higher in the case
of 6=90" and decreases when the 6 angle is
nearto 6=0°.

The variation of laminate temperature
respect to radius of the vessel is presented in
Fig. 4. This figure is depicted for various

angle under the specific case of 6=45".

Regarding this figure, the temperature of the
vessel decreases with the growth of cone angle.

5. Conclusions
This paper presents an analytical solution for

heat transfer in spherical composite vessels. This
exact solution is derived based on an separation
of variables method. Regarding to the exact
analytical method which is used here, the results
can be employed for verifying the numerical
solution in this field. The temperature distri-
bution in spherical laminates has an important
role in analyzing of thermal stresses in spherical
vessels. Using the exact results of this paper, the
effects of fibers' placement angle of composite
material on temperature distribution of rein-
forced composite vessel can be investigated as
well as possible.
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Fig. 2. Temperature distribution in an isotropic sphere.
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Fig. 3. Temperature distribution of the composite for different set of .
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Fig. 4. Temperature distribution of the composite for different set of
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