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Abstract: This paper presents a hybrid technique for simultaneous estimation of 
parameter and function in inverse heat conduction problems. No prior information 
is used for the functional form of the heat flux in the present study. The scheme 
presented here is a combination of two different classical methods: The Variable 
Metric Method (VMM) and Gauss Method (GM). The determination of the 
unknown thermal coefficients includes two steps per iteration of the estimation 
algorithm: the function estimation step; and the parameter estimation step. VMM 
and GM are used to handle function estimation and parameter estimation problems, 
respectively. It is shown via simulated experiment that unknown quantities can be 
obtained with reasonable accuracy using this method despite existing noise in the 
measurement data. 
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1. Introduction  

The prediction of thermal coefficients in a 
thermal system has many engineering applications 
in various branches of science and engineering. 
This can be achieved via providing information in 
other parts of the system through special equip-
ments. Such problems involve a variety of 
challenges and have received considerable atten-
tion from many researchers in recent years [1]. 
Assessment of boundary conditions or of the 
thermophysical properties of a conductive body 
from the measurements of temperature at a few 
points in the domain is typically called the inverse 
heat conduction problem (IHCP). This happens 
when the direct measurement of those quantities is 
unfeasible. The solution of inverse problems is not 
straightforward as the unavoidable noise in the 
data can produce large or even unbounded 
deviations in the results. This is due to “ill posed” 
nature of the IHCP [1-7]. In general, solution of 
the IHCP can be achieved via minimization of a 
sum of squared error function; which is focused 
on the difference between the values of the 
measured temperatures and those obtained by an 
efficient computational method. The unknown 

thermal coefficients on the mathematical model (i.e., 
thermal properties, boundary or initial conditions) 
that lead to an acceptable value for the aforemen-
tioned error function (for example based on the 
iterative regularization method) are the solution of the 
IHCP [8-15].  

IHCPs are usually categorized as parameter and 
function estimation problems. The parameter 
estimation problems show the identification of a 
relatively small number of unknowns; the parameters 
are often coefficients in the governing equations. 
Examples of these parameters are thermal conductiv-
ity, thermal emittance, convection coefficient, 
specific heat, density, and even the parameters that 
appear in the studies of turbulent flows. Many 
researchers have employed different inverse methods 
to determine unknown parameters [12-16]. On the 
other hand, a function estimation problem determines 
functions represented by numerous unknowns, which 
may vary spatially and temporally. Function estima-
tion problems have been the subject of extensive 
investigations, thanks to their numerous and various 
applications [1,11]. It is worth mentioning that an 
IHCP may be a combined parameter and function 
estimation problem. Anillustration can be found in 
the simultaneous prediction of heat flux and thermal 
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conductivity of a heat-conducting body, which is 
exposed to an unknown heat flux. Assessment of 
thermophysical properties utilizing experimental 
techniques not only demands the knowledge of 
recorded temperature history during the test, but 
also the transient heat flux profile should be valid. 
Paradoxically, the bibliography on combined 
parameter and function estimation in the 
fundamental equation of the heat transfers is very 
limited; Loulou and Artioukhine discussed the 
application of numerical algorithms based on 
gradient-type methods for recovering unknown 
variables. As the descent variable in gradient-type 
methods is chosen to be the same for the 
independent unknowns, the very slow or no 
convergence at all of the gradient-type methods 
can be observed. To overcome this difficulty, 
Loulou and Artioukhine presented a discussion of 
the implementation of the iterative algorithms for 
solving the general problem of recovering a 
complete set of thermal coefficients; and 
introduced a vectorial descent variable and 
reported a considerable increase in the conver-
gence rate [17]. 

The purpose of this research is to develop an 
efficient and uncomplicated method for simulta-
neously predicting the unknown parameters and 
functions in an IHCP. The method is quite 
different from the previous method of Loulou and 
Artioukhine [17]. On the basis of the proposed 
approach, the determination of the unknown 
thermal coefficients includes two steps per 
iteration of the estimation algorithm: The function 
estimation step; and the parameter estimation step. 
A flowchart showing the sequence of calculations 
in the algorithm is given in Fig. 1. After initial 
setting of the unknown parameters and function, 
the solver repeatedly cycles through the following 
steps:  
1- In the function estimation process, by using 

initial guess values for the unknown thermal 
conductivity, the IHCP becomes a function 
estimation problem. Estimated function (heat 
flux) by using Variable Metric Method with 
Adjoint Problem (VMMAP) is then used for 
parameter estimation procedure.  

2- In this procedure, the parameters will denote as 
the unknown variables and will recover using 
Gauss Method (GM) based on the knowledge 
of function estimated at the previous step. It 
should be noted that this procedure repeats for 
each unknown parameter.  

3- Then an intermediate set of the thermal coefficient 
values is substituted for the unknown parameters 
and function in the following analysis. Several 
iterations are needed before obtaining the 
undetermined thermal coefficients. 

2. Direct problem 

The physical problem considered in this article 
consists of a one-dimensional slab of thickness L 
initially at the temperature T0(x). The surface of the 
slab at x = L is heated with a heat flux q(t), while the 
other surface at x = 0 is kept insulated. The 
mathematical formulation for the physical problem 
considered here can be written as: 
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3. Inverse problem formulation 

In the inverse problem considered in this study, the 
time-dependent heat flux and thermal conductivity 
are regarded as being unknowns and to be estimated 
from measured temperatures by sensors. These 
unknown variables are gathered in a single unknown 

vector ( ) ,P q t k� �= � �
�

. The solution of present inverse 

problem is to be sought in such a way that the 
following functional is minimized: 
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where Yi,j’s are the measured temperatures and Ti,j 
’s are the estimated temperatures at the measurement 
locations obtained by the developed direct code. M is 
the number of total time steps, and iN is the number 
of the used sensors. As the problem is simultaneously 
of parameter and function estimation type, a 
combined procedure is proposed to handle it. This 
procedure is based on two different methods: 
VMMAP for the function estimation stage (i.e., heat 
flux); and GM for the parameter estimation stage.  

3.1. Function estimation stage 

In the function estimation stage, initial value is 
assumed for the thermal conductivity (i.e., the initial 
guess values, which are improved during the iterative 
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Fig. 1. A flowchart of the combined parameter and function estimation strategy 

process) and then the unknown function (i.e., 
heat flux) can be estimated by using temperature 
measurements taken within the slab. The compo-
nents of heat flux function are determined via 
minimization of the following functional: 
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Among the well-known methods for boundary 
estimation problems, the gradient methods have 
received the most attention. The minimization 
procedure of the function (6) by utilizing the 
gradient-type methods is built as follows:  

( ) ( ) ( )tdtqtq iiii β−=+1                                               (7) 

where the superscript i is the iteration number, iβ  is 

the optimal step length and di(t) is search direction. 
The success of these methods depends on effective 
choices of both the direction di(t) and the step 
length iβ . Depending on the selection of search 

direction, various types of gradient methods exist. 
The search direction often has the form: 

( ) iii fBtd ∇−= −1                                                       (8) 

In the steepest descent method Bi is simply the 
identity matrix, while in Newton’s method Bi is the 
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exact Hessian .2
if∇  In the Fletcher–Reeves form of 

the conjugate gradient method, (Bi)
-1 has the 

following form [18]: 
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where si=�idi(t). In quasi-Newton methods, Bi is 
an approximation to the Hessian that is updated at 
every iteration by means of a low-rank formula. For 
instance, the BFGS version of VMM uses the 
following equation for (Bi)

 -1[18]: 
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As mentioned in [10], the accuracy of four 

versions of VMM does not differ appreciably from 
each other. Then, there is no attempt made here to 
consider the behavior of four available versions of 
the VMMAP and the interested reader is referred to 
[10,18] for a more detailed discussion. 

The optimal step length �i is chosen as the one 
that minimizes the function f[q(t)] at each iteration 
i. By using a first-order Taylor series approximation 
and performing the minimization, the following 
expression results for the search step size: 
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For the implementation of the iterative procedure 
described here the sensitivity term ( )[ ]tdtxT ij :,∆  

and gradient ( )[ ]tqf i∇  are required. The former is 

determined with the sensitivity problem and the 
latter with adjoint problem. Both problems are 
briefly described next. 

a. The sensitivity problem 

The sensitivity problem is used to determine the 
variation of the dependent variables due to the 
changes in the unknown quantity. Therefore, the 
sensitivity problem can be obtained by assuming 
that the temperature T(x,t) is perturbed by an 
amount �T(x,t), when the unknown heat flux q(t) is 
perturbed by �q(t) in the specific direction. Thus, 
the following problem for the sensitivity function 
�T(x,t) can be obtained: 
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b. The adjoint problem 

In order to derive the adjoint problem for heat 
flux, (1) is multiplied by the Lagrange multiplier 
function �(x,t), and the resulting expressions are 
integrated over the time and the space domain. Then 
the final results are added to the right hand side of 
(6) to yield the following expression for the 
functional f [q(t)]: 
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The variation �f is obtained by perturbing q by 
�q and T by �T in (16), subtracting from the 
resulting expression the original (16) and neglecting 
the second-order terms. We thus find: 
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Using integration by parts as well as the boun-
dary and initial conditions, the derivatives are 
transferred to the lagrange multiplier function. After 
some algebraic manipulation, the following adjoint 
differential equation is obtained for the lagrange 
multiplier function �(x,t) 
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When � (x,t) satisfies the above differential 
equation, the functional given by (17) reduces to: 
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By definition, the functional increment can be 
presented as: 
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A comparison of (22) and (23) leads to the 
following expression for the gradient of functional  

( ) ( ),J q t L tλ∇ = −� �� �                                               (24) 

3.2. Parameter estimation stage 

In the parameter estimation stage, the thermal 
conductivity denotes as the unknown variable and 
recover based on the knowledge about the estimated 
function at the previous stage. The solution to the 
present inverse problem can be determined by 
satisfying the following equation: 
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One of the prevalent iterative methods for 
minimizing the objective function, F, is the GM. 
The computational procedure for the estimation of 
the unknown parameters at iteration i can be 
summarized as follows: 
1- Solve the direct problem with available 

estimated ki in order to obtain temperature field 
within the slab ( )iT k . 

2- Compute F from the (25). 
3- Compute the sensitivity matrix X defined by the 

following equation: 
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4- Solve the following linear system of equation to 
find ik∆ . 
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where superscript T denotes transpose sign, and 
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5- The updating rule for the BKM’s algorithm is 
then applied to determine the unknown 
parameter 

1i i ik k k+ = + ∆                                                    (30) 

6- Solve the direct problem with this new 
estimated 1ik +  in order to obtain T(ki+1); and then 

compute F, as defined by (25). 
7- Check the stopping (convergence) criterion 

given by (31): 

( )1iF k ε+ <                                                       (31) 

8- Stop the iteration procedure if (31) is satisfied; 
otherwise, replace i by i+1 and return to step 3. 

3.3. Computational procedure for inverse metho-

dology 

The computational procedure for the estimation 
of the unknown parameters can be summarized as 
follows: 
1- Choose initial guess q0 and k0. 
2- Solve the direct problem with qi and ki to obtain 

temperature at sensor locations. 
3- Evaluate the objective functional, S, using (5). 
4- Calculate heat flux, qi+1, as described in the 

function estimation stage. 
5- Solve the direct problem with estimated heat 

flux at previous stage, qi+1, in order to obtain 
temperatures at sensor locations. 

6- The updating rule for the GM’s algorithm is then 
applied to determine the unknown parameters, 
ki+1. This procedure applies individually for each 
parameter. 

7- Check the stopping criterion given by (32): 

( )( )1i
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where � is a small number (O(10-4 ~ 10-6)). 
However, in the presence of unavoidable noise 
embedded in the data, the iterative process is 
stopped according to the discrepancy principle 
criterion [19], i.e., upon satisfaction of the 
following condition: 
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where � is the integrated error of the measured 
data at time tj and having �i,j as standard deviation. 
If the standard deviation is adopted to be the 
identical for all data measurements, then the 
compacted error will have the following statement: 

2
N Mδ σ= × ×                                                      (34) 

where � is the standard deviation of the errors in 
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the temperature. The discrepancy principle is based 
on terminating the procedure as soon as the 
objective functional is in the order of magnitude of 
the compacted error, which represents the best 
evaluation expected in the order of the data error. 

4. Results and discussions  

In order to demonstrate the accuracy and 
efficiency of the present method, a simulated test 
case for simultaneous parameter and function 
estimation is considered. Following values are used 
for the materials properties, boundary and initial 
conditions in this test case: k=75 (W/m.K), 
�Cp=3729 (kJ/m3.K), L=5 cm, T0=300 K and the 
heat flux function, q(t), is assumed to have 
rectangular (or pulsed) form. The duration of the 
experiment was assumed to be 100 s. A 
computational grid with 51 spatial nodes is used to 
solve the problem. The number of time-steps taken 
is 101. The measured temperature on the exposed 
surface, Y(t), applied in the function estimation 
procedure are obtained from numerical simulations 
by the developed numerical code. These data are 
perturbed by adding random errors to their exact 
values, Yexact(t). 

( ) ( )exactY t Y t ωσ= +                                              (35) 

where ω  is a random variable being within -2.576 
to 2.576 for a 99% confidence bound and variable 
σ  is the standard deviation. Two sensors are 
assumed to be located at x = 0 (cm) and x = 4 (cm). 
The temperature values were obtained using the 
direct heat conduction calculations and their values 
at sensor locations are saved and used as sensors 
data. 

In order to specify the deviation of the estimated 

thermal coefficients ( ( )tq̂  and k̂ ) from the exact 

ones ( ( )tq  and k), relative errors are defined as 

follows: 
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The initial guess values for q(t) and k in the 
current algorithm  are taken to be 1000 (W/m2) and 
5 (W/m.K), respectively. The results obtained using 
exact and inexact data and two stopping criteria are 
summarized in table 1. Using errorless data, the 

excellent agreement between the exact solutions and 
the estimated results can be seen. In this situation, 
heat flux and thermal conductivity are recovered 
their theoretical values and the corresponding 
relative error is machine zero. The close agreement 
between the exact solutions and the estimated 
values underlines the capability of the algorithm to 
finding the accurate values in IHCP.  

It was observed that the difference between the 
values of the predicted heat flux and the exact 
solution is indistinguishable, even at the areas of 
rapid increases/decreases in the heat flux (at the 
elapsed times of 20 and 80 s). Due to using the 
exact measurements, the desired stopping criterion 
in this case is given by (32) and the precision is 
taken to be � = 10–6.  

At the next stage, the verification of the proposed 
strategy for solving the IHCP with noisy data is 
considered. The measured temperatures with 5σ =  
are obtained according to (35). The stopping 
criterion in this case is based on the discrepancy 
principle, (33). Fig. 2 demonstrates the retrieved 
heat flux. As expected, the largest errors appear 
near the sharp discontinuities. It is observed that the 
error of the estimated function is small in com-
parison to the added noise and reliable results can 
still be obtained when measurement errors are 
included. The reduction of the objective functional 
for two sets of data is plotted in Fig. 3. As can be 
seen, using noise-free data, the objective function 
leads to significantly smaller values for the 
objective function noisy data. 

Table 1. Results of estimating heat flux 

Data 
Heat Flux Thermal Conductivity 

Initial 
Guess 

qerr % 
Estimated 
value 

kerr % 

Noise-free 1000 3×10-10 75.00002 2.5×10-5 

Noisy (�=5)  1000 0.76 74.46 0.72 

 

Fig. 2. The exact and estimated values of heat flux (noisy data) 
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Fig. 3. Reduction histories of the objective function for 

errorless and noisy data 

4. Conclusions 

A framework is introduced for taking advantage 
of the traditional techniques in combined parameter 
and function estimation problems and broadening 
their appeal through a basic understanding of their 
application. To take into account the benefits of the 
variable metric method in handling function 
estimation problems as well as the Gauss method 
advantages in parameter estimation problems, a 
joint method for solving combined parameter and 
function estimation problems was used in this 
paper. In general, the numerical results showed that 
the proposed methodology in this study yields 
reliable estimation of the unknown thermal 
coefficients in the range of desired accuracy. 

Nomenclature 

CP specific heat, J/kg.K 
d descent direction 
dl time step, s 
f the objective functional 
B identity matrix (in the steepest descent method) 
I identity matrix 

J 
the objective functional for function estimation 
problem 

K thermal conductivity, W/m.K 
ki unknown parameter 
L slab thickness, m 
M number of total time steps 
N number of sensors 
P vector of unknown parameters 
q(t) unknown surface heat flux, W/m2 

S 
the objective functional for combi-ned 
parameter and  function estimation problem 

T temperature, K 
T0 initial temperature, K 
t time, s 
tf final time, s 
Y temperature measured by sensors, K 
X sensitivity matrix 

x space variable, m 
� the optimal step length 
� small variation 
�T sensitivity function 
� integrated error 
� very small value 
� adjoint variable 
� density, kg/m3 

� 
standard deviation of the errors in the measured 
temperatures 

� random variable 
∇f gradient of the objective functional 

Subscripts 

i iteration number 
j iteration number 
exact exact value 

Superscripts 

T transpose of a matrix   
	 estimated value 
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