Vibration of functionally graded cylindrical shells based on higher order shear deformation theory

M.M. Najafizadeh*, S.A. Mahnapour

Mechanical Engineering Department of Islamic Azad University, Arak Branch, Arak, Iran

Abstract

In this research, free vibration analysis of cylindrical shells compose of functionally graded material (FGM) is considered. The governing equations of a FG cylindrical shells are derived based on the higher order shear deformation theory. Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the Hamilton's principle, the system of fundamental partial differential equations of motion is established. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of configurations of the constituent materials on the frequencies. The results show that the frequencies are affected by the constituent volume fractions and the configurations of the constituent materials. The present analysis is validated by comparing results with those available in the literature.

Keywords: Vibration; Functionally graded material; cylindrical shells; Higher order

1. Introduction

In recent years functionally graded materials (FGMs) have gained considerable importance as materials to be used in extremely high temperature environments such as nuclear reactors and highspeed spacecraft industries (Yamanouchi et al., 1990). FGMs were first introduced by a group of scientists in Sendai Japan in 1984 (Koizumi, 1997). FGMs are new inhomogeneous materials, in which the mechanical properties vary smoothly and continuously from one surface to the other. This is achieved by gradually varying the volume fraction of the constituent materials. This continuous change in composition results in the graded properties of FGMs (Reddy and Cheng, 2001). This gradation in properties of the material reduces thermal stresses, residual stresses and stress concentration factors (Reddy et al., 1999). Typically these materials are made from a mixture of ceramic and metal or from a combination of different materials. The ceramic constituent of the material provides the high-temperature resistance due to its low thermal conductivity. The ductile metal constituent on the other hand, prevents fracture caused by stresses due to the high temperature gradient in a very short period of time. Furthermore a mixture of ceramic and metal with a continuously varying volume fraction can be easily manufactured (Fukui, 1991). This eliminates interface problems of composite materials, and thus, the stress distributions are smooth. Studies on FGMs have been extensive but are largely confined to analysis of thermal stresses and deformations. Tanigawa et al. (1997) derived a one dimensional temperature solution for a nonhomogeneous plate in the transient state and optimized the material compositions by introducing a laminated composite model. The optimal composition profile problems of the FGM to decrease the thermal stresses and thermal stress intensity factor were discussed by Noda (Noda and Fuchiyama, 1995; Noda, 1999). He concluded that when the continuously changing composition

^{*} Assistant professor, Email: m-najafizadeh@iau-arak.ac.ir

between ceramics and metals can be selected pertinently, thermal stresses in the FGM are drastically decreased. Javaheri and Eslami (2002) presented the thermal buckling of rectangular FGM plate based on the high order plate theories. The buckling analysis of circular FGM plates is given by Najafizadeh and Eslami (2002a, 2002b).

Studies on vibration of cylindrical shells are extensive. Many of these studies are for isotropic and composite shells. Among those who have carried out studies on the vibration of cylindrical shells include (Arnold and Warburton ,1949), (Ludwig and Krieg, 1981), (Chung, 1981), (Soedel, 1980), (Forsberg, 1964), (Bhimaraddi, 1984), (Soldatos and Hajigeoriou, 1990), and (Loy and Lam, 1997).

Studies on vibration of cylindrical shells made of FGMs are limited. Loy et al. (1999) presented Rayleigh-Ritz solutions for free vibration of simply supported FGM cylindrical shells. Pradhan et al. (2000) discussed the effects of boundary Conditions and volume fractions on the natural frequencies of the FGM cylindrical shells.

In the present work, vibration of functionally graded cylindrical shells based on the third order shear deformation theory are studied. The objective is to study the frequency characteristics, the influence of the constituent volume fractions, and the affects of the configurations of the constituent materials on the natural frequencies. To validate the analysis, results for simply supported cylindrical shells are compared with Loy et al. The comparisons show that the present results agreed well with those in the literature.

2. Functionally gradient materials

Functionally gradient materials (FGMs) are obtained by combining two or more materials. Most of the functionally gradient materials are employed in high-temperature environments and many of the constituent materials may possess temperature-dependent properties. The material properties P can be expressed as a function of temperature as (Touloukian, 1967)

$$P = P_0 (P_{-1}T^{-1} + 1 + P_1T + P_2T^2 + P_3T^3)$$
(1)

where P_0, P_{-1}, P_1, P_2 and P_3 are the coefficients of temperature T(K) expressed in Kelvin and are unique to the constituent materials. The material properties P of FGMs are function of the material properties and volume fraction of the constituent materials and are expressed as

$$P = \sum_{j=1}^{K} P_{j} V_{f_{j}}$$
(2)

where P_j and V_{f_j} are, respectively, the material property and volume fraction of the constituent material j. The volume fractions of all the constituent materials should add up to one.

$$\sum_{j=1}^{K} V_{f_j} = 1$$
(3)

For a cylindrical shell with a uniform thickness h and a reference surface at its middle surface, the volume fraction can be written as

$$V_f = \left(\frac{z + \frac{h}{2}}{h}\right)^N, \qquad N \ge 0, N = \inf inity$$
(4)

where *N* is the power-law index that takes value greater than or equal to zero. For a functionally gradient material with two constituent materials, the young's modulus E, Poisson ratio v and the mass density ρ can be expressed as

$$E = (E_1 - E_2)(\frac{2z + h}{2h})^N + E_2$$
(5)

$$\upsilon = (\upsilon_1 - \upsilon_2)(\frac{2z+h}{2h})^N + \upsilon_2$$
(6)

$$\rho = (\rho_1 - \rho_2)(\frac{2z+h}{2h})^N + \rho_2 \tag{7}$$

From these equations, it is interesting to note that at $z = \frac{h}{2}$, FGM material properties are same as those of material 2. While at $z = \frac{h}{2}$, FGM material properties are the same as those of material 1. Thus, the material properties vary continuously from material 2 at the inner surface of the cylindrical shell to material 1 at the outer surface of the cylindrical shell. Fig. 1 shows a geometric definition of the shell.

Fig. 1. Configuration of a generic shell.

3. Strains - displacement relationships

17

The strain-displacement relationships for a thin shell are (Soedel, 1981)

$$\in_{11} = \frac{1}{A_1(1 + \frac{\alpha_3}{R_1})} \left[\frac{\partial U_1}{\partial \alpha_1} + \frac{U_2}{A_2} \frac{\partial A_1}{\partial \alpha_2} + U_3 \frac{A_1}{R_1} \right]$$
(8)

$$\epsilon_{22} \frac{1}{A_2(1+\frac{\alpha_3}{R_2})} \left[\frac{\partial U_2}{\partial \alpha_2} + \frac{U_1}{A_1} \frac{\partial A_2}{\partial \alpha_1} + U_3 \frac{A_2}{R_2} \right]$$
(9)

$$\epsilon_{33} = \frac{\partial U_3}{\partial \alpha_3} \tag{10}$$

$$\epsilon_{12} = \frac{A_{1}(1 + \frac{\alpha_{3}}{R_{1}})}{A_{2}(1 + \frac{\alpha_{3}}{R_{2}})} \frac{\partial}{\partial \alpha_{2}} \left(\frac{U_{1}}{A_{1}(1 + \frac{\alpha_{3}}{R_{1}})} + \frac{A_{2}(1 + \frac{\alpha_{3}}{R_{2}})}{A_{1}(1 + \frac{\alpha_{3}}{R_{1}})} \frac{\partial}{\partial \alpha_{1}} \left(\frac{U_{2}}{A_{2}(1 + \frac{\alpha_{3}}{R_{2}})} \right)$$
(11)

$$\epsilon_{13} = A_1 \left(1 + \frac{\alpha_3}{R_1}\right) \frac{\partial}{\partial \alpha_3} \left(\frac{U_1}{A_1 \left(1 + \frac{\alpha_3}{R_1}\right)}\right) + \frac{1}{A_1 \left(1 + \frac{\alpha_3}{R_1}\right)} \frac{\partial U_3}{\partial \alpha_1}$$
(12)

$$\epsilon_{23} = A_2 \left(1 + \frac{\alpha_3}{R_2}\right) \frac{\partial}{\partial \alpha_3} \left(\frac{U_2}{A_2 \left(1 + \frac{\alpha_3}{R_2}\right)}\right) + \frac{1}{A_2 \left(1 + \frac{\alpha_3}{R_2}\right)} \frac{\partial U_3}{\partial \alpha_2}$$
(13)

$$A_{1} = \left| \frac{\partial \bar{r}}{\partial \alpha_{1}} \right| \qquad (14) \qquad , \qquad A_{2} = \left| \frac{\partial \bar{r}}{\partial \alpha_{2}} \right| \qquad (15)$$

where A₁ and A₂ are the fundamental form parameters or Lame parameters, U_1 , U_2 and U_3 are the displacement at any point (α_1 , α_2 , α_3), R_1 and R_2 are the radii of curvature related to α_1 and α_2 , respectively.

The third-order theory of Reddy (Reddy et al. 1999) used in the present study is based on the following displacement field

$$\begin{cases} U_{1} = u_{1}(\alpha_{1},\alpha_{2}) + \alpha_{3}.\phi_{1}(\alpha_{1},\alpha_{2}) + \alpha_{3}^{2}.\psi_{1}(\alpha_{1},\alpha_{2}) + \alpha_{3}^{3}.\beta_{1}(\alpha_{1},\alpha_{2}) \\ U_{2} = u_{2}(\alpha_{1},\alpha_{2}) + \alpha_{3}.\phi_{1}(\alpha_{1},\alpha_{2}) + \alpha_{3}^{2}.\psi_{2}(\alpha_{1},\alpha_{2}) + \alpha_{3}^{3}.\beta_{2}(\alpha_{1},\alpha_{2}) \\ U_{3} = u_{3}(\alpha_{1},\alpha_{2}) \end{cases}$$
(16)

These equations can be reduced by satisfying the stress-free conditions on the top and bottom faces of the laminates, which are equivalent to $\epsilon_{13} = \epsilon_{23} = 0$ at $z = \pm \frac{h}{2}$. Thus,

$$\begin{cases} U_{1} = u_{1}(\alpha_{1}, \alpha_{2}) + \alpha_{3}.\phi_{1}(\alpha_{1}, \alpha_{2}) - C_{1}.\alpha_{3}^{3}(-\frac{u_{1}}{R_{1}} + \phi_{1} + \frac{\partial u_{3}}{A_{1}\partial\alpha_{1}}) \\ U_{2} = u_{2}(\alpha_{1}, \alpha_{2}) + \alpha_{3}.\phi_{2}(\alpha_{1}, \alpha_{2}) - C_{1}.\alpha_{3}^{3}(-\frac{u_{2}}{R_{2}} + \phi_{2} + \frac{\partial u_{3}}{A_{2}\partial\alpha_{2}}) \\ U_{3} = u_{3}(\alpha_{1}, \alpha_{2}) \end{cases}$$
(17)

where $C_1 = \frac{4}{3h^2}$. Substituting Eq. (17) into nonlinear strain-displacement relation (8) to (13) gives

$$\begin{cases} \in_{11} \\ \in_{22} \\ \in_{12} \end{cases} = \begin{cases} e_{11}^{0} \\ e_{22}^{0} \\ e_{12}^{0} \end{cases} + \alpha_{3} \begin{cases} k_{11} \\ k_{22} \\ k_{12} \end{cases} + \alpha_{3}^{3} \begin{cases} k_{11}' \\ k_{22}' \\ k_{12}' \end{cases}$$
(18)

$$\begin{cases} \epsilon_{13} \\ \epsilon_{23} \end{cases} = \begin{cases} \gamma_{13}^{0} \\ \gamma_{23}^{0} \end{cases} + \alpha_{3}^{2} \begin{cases} \gamma_{13}^{2} \\ \gamma_{23}^{2} \end{cases} + \alpha_{3}^{2} \begin{cases} \gamma_{13}^{3} \\ \gamma_{23}^{2} \end{cases} \end{cases}$$
(19)

where

$$\begin{cases} \in_{11}^{0} \\ \in_{22}^{0} \\ \in_{12}^{0} \end{cases} = \begin{cases} (\frac{1}{A_{1}} \frac{\partial u_{1}}{\partial \alpha_{1}} + \frac{u_{2}}{A_{1}A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}} + \frac{u_{3}}{R_{1}}) \\ (\frac{1}{A_{2}} \frac{\partial u_{2}}{\partial \alpha_{2}} + \frac{u_{1}}{A_{1}A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}} + \frac{u_{3}}{R_{2}}) \\ \frac{A_{2}}{A_{1}} \frac{\partial}{\partial \alpha_{1}} (\frac{u_{2}}{A_{2}}) + \frac{A_{1}}{A_{2}} \frac{\partial}{\partial \alpha_{2}} (\frac{u_{1}}{A_{1}}) \end{cases} \\ \begin{pmatrix} k_{11} \\ k_{22} \\ k_{22} \\ k_{12} \\ \end{pmatrix} = \begin{cases} (\frac{1}{A_{1}} \frac{\partial \phi_{1}}{\partial \alpha_{1}} + \frac{\phi_{2}}{A_{1}A_{2}} \frac{\partial A_{1}}{\partial \alpha_{2}}) \\ (\frac{1}{A_{2}} \frac{\partial \phi_{2}}{\partial \alpha_{2}} + \frac{\phi_{1}}{A_{1}A_{2}} \frac{\partial A_{2}}{\partial \alpha_{2}}) \\ (\frac{1}{A_{2}} \frac{\partial \phi_{2}}{\partial \alpha_{2}} + \frac{\phi_{1}}{A_{1}A_{2}} \frac{\partial A_{2}}{\partial \alpha_{1}}) \\ (\frac{A_{2}}{A_{1}} \frac{\partial}{\partial \alpha_{1}} (\frac{\phi_{2}}{A_{2}}) + \frac{A_{1}}{A_{2}} \frac{\partial}{\partial \alpha_{2}} (\frac{\phi_{1}}{A_{1}})) \end{cases} \end{cases}$$
(20)

$$\begin{bmatrix} k_{11}' \\ k_{22}' \\ k_{12}' \\ k_{12}' \end{bmatrix} = -C_{1} \begin{bmatrix} (\frac{1}{A_{1}}(-\frac{\partial u_{1}}{R_{1}\partial\alpha_{1}} + \frac{\partial\phi_{1}}{\partial\alpha_{1}} + \frac{\partial^{2}u_{3}}{A_{1}\partial\alpha_{1}^{2}} - \frac{\partial A_{1}}{A_{1}^{2}\partial\alpha_{1}} \frac{\partial u_{3}}{\partial\alpha_{1}}) + \frac{\partial A_{1}}{\partial\alpha_{2}} \frac{1}{A_{1}A_{2}}(-\frac{u_{2}}{R_{2}} + \phi_{2} + \frac{\partial u_{3}}{A_{2}\partial\alpha_{2}})) \\ (\frac{1}{A_{2}}(-\frac{\partial u_{2}}{R_{2}\partial\alpha_{2}} + \frac{\partial\phi_{2}}{\partial\alpha_{2}} + \frac{\partial^{2}u_{3}}{A_{2}\partial\alpha_{2}^{2}} - \frac{\partial A_{2}}{A_{2}^{2}\partial\alpha_{2}} \frac{\partial u_{3}}{\partial\alpha_{2}}) + \frac{\partial A_{2}}{\partial\alpha_{1}} \frac{1}{A_{1}A_{2}}(-\frac{u_{1}}{R_{1}} + \phi_{1} + \frac{\partial u_{3}}{A_{1}\partial\alpha_{1}})) \\ (\frac{A_{2}}{A_{1}}(-\frac{\partial}{R_{2}\partial\alpha_{1}}(\frac{u_{2}}{A_{2}}) + \frac{\partial}{\partial\alpha_{1}}(\frac{\phi_{2}}{A_{2}}) + \frac{1}{A_{2}^{2}} \frac{\partial^{2}u_{3}}{\partial\alpha_{1}\partial\alpha_{2}} - \frac{1}{A_{2}^{4}} \frac{\partial A_{2}^{2}}{\partial\alpha_{1}} \frac{\partial u_{3}}{\partial\alpha_{2}}) + \\ + \frac{A_{1}}{A_{2}}(-\frac{\partial}{R_{1}\partial\alpha_{2}}(\frac{u_{1}}{A_{1}}) + \frac{\partial}{\partial\alpha_{2}}(\frac{\phi_{1}}{A_{1}}) + \frac{1}{A_{1}^{2}} \frac{\partial^{2}u_{3}}{\partial\alpha_{1}\partial\alpha_{2}} - \frac{1}{A_{1}^{4}} \frac{\partial A_{1}^{2}}{\partial\alpha_{2}} \frac{\partial u_{3}}{\partial\alpha_{1}})) \end{bmatrix}$$

$$(21)$$

$$\begin{cases} \gamma_{13}^{0} \\ \\ \\ \gamma_{23}^{0} \end{cases} = \begin{cases} (\phi_{1} - \frac{u_{1}}{R_{1}} + \frac{1}{A_{1}} \frac{\partial u_{3}}{\partial \alpha_{1}}) \\ (\phi_{2} - \frac{u_{2}}{R_{2}} + \frac{1}{A_{2}} \frac{\partial u_{3}}{\partial \alpha_{2}}) \end{cases},$$
(22)

$$\begin{cases} \gamma_{13}^{2} \\ \gamma_{23}^{2} \end{cases} = 3C_{1} \begin{cases} \left(-\frac{u_{1}}{R_{1}} + \phi_{1} + \frac{\partial u_{3}}{A_{1}\partial\alpha_{1}}\right) \\ \left(-\frac{u_{2}}{R_{2}} + \phi_{2} + \frac{\partial u_{3}}{A_{2}\partial\alpha_{2}}\right) \end{cases}$$
(23)

$$\begin{cases} \gamma_{13}^{3} \\ \\ \\ \gamma_{23}^{3} \end{cases} = C_{1} \begin{cases} \frac{(-\frac{u_{1}}{R_{1}} + \phi_{1} + \frac{\partial u_{3}}{A_{1}\partial\alpha_{1}})}{R_{1}} \\ \frac{(-\frac{u_{2}}{R_{2}} + \phi_{2} + \frac{\partial u_{3}}{A_{2}\partial\alpha_{2}})}{R_{2}} \end{cases}$$
(24)

where $(\varepsilon^0, \gamma^0)$ are the membrane strains, and $(k, k', \gamma^2, \gamma^3)$ are the bending strains, known as the curvatures.

4. Stress- strain relationships

For a thin shell, the stress -strain relationship are defined as (Soedel, 1981)

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{cases} = \begin{bmatrix} Q_{11} & Q_{12} & 0 & 0 & 0 \\ Q_{12} & Q_{22} & 0 & 0 & 0 \\ 0 & 0 & Q_{44} & 0 & 0 \\ 0 & 0 & 0 & Q_{55} & 0 \\ 0 & 0 & 0 & 0 & Q_{55} \end{bmatrix} \begin{cases} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{23} \\ \epsilon_{13} \\ \epsilon_{12} \end{cases} - \begin{cases} 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{cases} \end{pmatrix}$$
(25)

where

$$Q_{11} = Q_{22} = \frac{E}{1 - \nu^2}, \quad Q_{12} = \nu Q_{11}, \quad Q_{44} = Q_{55} = Q_{66} = \frac{E}{2(1 + \nu)}$$
 (26)

and ΔT is the temperature change from a stress-free state which the present study equal to zero. Defining:

$$(A_{ij}, B_{ij}, D_{ij}, E_{ij}, F_{ij}, G_{ij}, H_{ij}) = \int_{-\frac{h}{2}}^{\frac{h}{2}} Q_{ij}(1, \alpha_3, \alpha_3^2, \alpha_3^3, \alpha_4^3, \alpha_3^5, \alpha_3^6) d\alpha_3$$
(27)

where Q_{ij} are a function of z for functionally gradient materials. Here A_{ij} denote the extensional stiffnesses, D_{ij} the bending stiffnesses, B_{ij} the bending-extensional coupling stiffnesses and E_{ij} , F_{ij} , G_{ij} , H_{ij} are the extensional, bending, coupling, and higher-order stiffnesses.

5. The stress resultants

The force and moment resultants are expressed as

$$\begin{cases} N_{11} \\ N_{22} \\ N_{12} \end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \left\{ \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} d\alpha_{3}$$
(28),
$$\begin{cases} M_{11} \\ M_{22} \\ M_{12} \end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \left\{ \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} \alpha_{3} d\alpha_{3}$$
(29)

$$\begin{cases}
R_{1} \\
R_{2}
\end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \begin{cases}
\sigma_{13} \\
\sigma_{23}
\end{cases} \alpha_{3}^{2} d\alpha_{3} \qquad \begin{cases}
P_{13} \\
P_{23}
\end{cases} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \begin{cases}
\sigma_{13} \\
\sigma_{23}
\end{cases} \alpha_{3}^{3} d\alpha_{3} \quad (32),$$
(33)

Thus

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \begin{bmatrix} Q_{11}(\varepsilon_{11}^{0} + \alpha_{3}k_{11} + \alpha_{3}^{3}k_{11}') + Q_{12}(\varepsilon_{22}^{0} + \alpha k_{22} + \alpha_{3}^{3}k_{22}') \\ Q_{12}(\varepsilon_{11}^{0} + \alpha_{3}k_{11} + \alpha_{3}^{3}k_{11}') + Q_{22}(\varepsilon_{22}^{0} + \alpha_{3}k_{22} + \alpha_{3}^{3}k_{22}') \\ Q_{66}(\varepsilon_{12}^{0} + \alpha_{3}k_{12} + \alpha_{3}^{3}k_{12}') \end{bmatrix}$$
(34)

$$\begin{cases} N_{11} \\ N_{22} \\ N_{12} \end{cases} = \begin{bmatrix} A_{11} \in_{11}^{0} + B_{11}k_{11} + E_{11}k'_{11} + A_{12} \in_{22}^{0} + B_{12}k_{22} + E_{12}k'_{22} \\ A_{12} \in_{11}^{0} + B_{12}k_{11} + E_{12}k'_{11} + A_{12} \in_{22}^{0} + B_{12}k_{22} + E_{12}k'_{22} \\ A_{66} \in_{12}^{0} + B_{66}k_{12} + E_{66}k'_{12} \end{bmatrix}$$
(35)

$$\begin{cases} M_{11} \\ M_{22} \\ M_{12} \end{cases} = \begin{bmatrix} B_{11} \in_{11}^{0} + D_{11}k_{11} + F_{11}k'_{11} + B_{12} \in_{22}^{0} + D_{12}k_{22} + F_{12}k'_{22} \\ B_{12} \in_{11}^{0} + D_{12}k_{11} + F_{12}k'_{11} + B_{12} \in_{22}^{0} + D_{12}k_{22} + F_{12}k'_{22} \\ B_{66} \in_{12}^{0} + D_{66}k_{12} + F_{66}k'_{12} \end{bmatrix}$$
(36)

$$\begin{cases} P_{11} \\ P_{22} \\ P_{12} \end{cases} = \begin{bmatrix} (E_{11} \in_{11}^{0} + F_{11}k_{11} + H_{11}k'_{11}) + (E_{12} \in_{22}^{0} + F_{12}k_{22} + H_{12}k'_{22}) \\ (E_{12} \in_{11}^{0} + F_{12}k_{11} + H_{12}k'_{11}) + (E_{12} \in_{22}^{0} + F_{12}k_{22} + H_{12}k'_{22}) \\ E_{66} \in_{12}^{0} + F_{66}k_{12} + H_{66}k'_{12} \end{cases}$$
(37)

$$\begin{cases}
P_{13} \\
P_{23}
\end{cases} = \begin{cases}
E_{55}\gamma_{13}^{0} + G_{55}\gamma_{13}^{2} + H_{55}\gamma_{13}^{3} \\
E_{44}\gamma_{23}^{0} + G_{44}\gamma_{23}^{2} + H_{44}\gamma_{23}^{3}
\end{cases}$$
(38)

$$\begin{cases}
R_1 \\
R_2
\end{cases} = \begin{cases}
D_{55}\gamma_{13}^0 + F_{55}\gamma_{13}^2 + G_{55}\gamma_{13}^3 \\
D_{44}\gamma_{23}^0 + F_{44}\gamma_{23}^2 + G_{44}\gamma_{23}^3
\end{cases}$$
(39)

$$\begin{cases} Q_1 \\ Q_2 \end{cases} = \begin{cases} A_{55}\gamma_{13}^0 + D_{55}\gamma_{13}^2 + E_{55}\gamma_{13}^3 \\ A_{44}\gamma_{23}^0 + D_{44}\gamma_{23}^2 + E_{44}\gamma_{23}^3 \end{cases}$$
(40)

6. The equations of motion

The equations of motion for vibration of shell can be derived by using Hamilton's principle which is described by

$$\delta \int_{t_1}^{t_2} (\Pi - K) dt = 0 \quad , \qquad \Pi = U - V \tag{41}$$

where K, Π , U and V are the total kinetic, potential, strain and loading energies; t_0 and t_1 are arbitrary time. The kinetic, strain and loading energies of a cylindrical shell can be written as

$$K = \frac{1}{2} \iint_{\alpha_1 \alpha_2 \alpha_3} \rho(\dot{U}_1^2 + \dot{U}_2^2 + \dot{U}_3^2) d\forall$$
(42)

$$U = \iint_{\alpha} \iint_{\alpha} (\sigma_{11} \in \sigma_{11} + \sigma_{22} \in \sigma_{12} + \sigma_{13} \in \sigma_{13} + \sigma_{23} \in \sigma_{23}) d\forall$$
(43)

$$V = \int_{\alpha_1,\alpha_2} \int_{\alpha_2,\alpha_3} (q_1 \delta U_1 + q_2 \delta U_2 + q_3 \delta U_3) A_1 A_2 d\alpha_1 d\alpha_2$$
(44)

The infinitesimal volume is given by

22

$$d\forall = A_1 A_2 d\alpha_1 d\alpha_2 d\alpha_3 \tag{45}$$

Substituting Eqs. (44), (45) and (46) into Eq. (43) we get the equations of motions

$$\begin{split} &-\frac{\partial(N_{11}A_{2})}{\partial\alpha_{1}} + N_{22}\frac{\partial A_{2}}{\partial\alpha_{1}} - \frac{\partial(N_{12}A_{1}^{2})}{A_{1}\partial\alpha_{2}} - \frac{\partial}{R_{1}}A_{1}A_{2} - \frac{\partial}{\partial\alpha_{1}}(\frac{P_{11}C_{1}A_{2}}{R_{1}}) + \frac{P_{22}C_{1}}{R_{1}}\frac{\partial A_{2}}{\partial\alpha_{1}} - \frac{\partial}{\partial\alpha_{2}}(\frac{P_{12}C_{1}A_{1}^{2}}{R_{1}}) \frac{1}{A_{1}} \\ &+\frac{3C_{1}R_{13}}{R_{1}}A_{1}A_{2} - \frac{C_{1}P_{13}A_{1}A_{2}}{R_{1}^{2}} = -(\ddot{u}_{1}I_{*}+\ddot{\eta}_{1}+[-C_{1}(-\frac{\ddot{u}_{1}}{R_{1}}+\ddot{\eta}_{1}+\frac{\partial\ddot{u}_{3}}{A_{1}\partial\alpha_{1}}) + \frac{C_{1}\ddot{u}_{1}}{R_{1}}]I_{3} + \frac{C_{1}\ddot{\eta}_{1}}{R_{1}}I_{4} \\ &-\frac{C_{1}^{2}}{R_{1}}(-\frac{\ddot{u}_{1}}{R_{1}}+\ddot{\eta}_{1}+\frac{\partial\ddot{u}_{3}}{A_{1}\partial\alpha_{1}})I_{6}-q_{1}) \end{split} \tag{46} \\ &\frac{\partial(N_{22}A_{1})}{\partial\alpha_{2}} - N_{11}\frac{\partial A_{1}}{\partial\alpha_{2}} + \frac{\partial(N_{12}A_{2}^{2})}{A_{2}\partial\alpha_{1}} + \frac{Q_{23}}{R_{2}}A_{1}A_{2} + \frac{\partial}{\partial\alpha_{2}}(\frac{P_{22}C_{1}A_{1}}{R_{2}}) - \frac{P_{11}C_{1}}{R_{2}}\frac{\partial A_{1}}{\partial\alpha_{2}} + \frac{\partial}{\partial\alpha_{1}}(\frac{P_{12}C_{1}A_{2}^{2}}{R_{2}})\frac{1}{A_{2}} \\ &-\frac{3C_{1}R_{23}}{R_{2}}A_{1}A_{2} + \frac{C_{1}P_{23}A_{1}A_{2}}{R_{2}^{2}} = (\ddot{u}_{2}I_{*}+\ddot{\varphi}_{2}I_{1}-\left[-c_{1}\left(-\frac{\ddot{u}_{2}}{R_{2}}+\ddot{\varphi}_{2}+\frac{\partial\ddot{u}_{3}}{A_{2}\partial\alpha_{2}}\right) + \frac{C_{1}\ddot{u}_{2}}{R_{2}}\right)I_{4} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}}\partial\alpha_{2}} \\ &-\frac{3C_{1}R_{23}}{R_{2}}A_{1}A_{2} + \frac{C_{1}P_{23}A_{1}A_{2}}{R_{2}^{2}} = (\ddot{u}_{2}I_{*}+\ddot{\varphi}_{2}I_{1}-\left[-c_{1}\left(-\frac{\ddot{u}_{2}}{R_{2}}+\ddot{\varphi}_{2}+\frac{\partial\ddot{u}_{3}}{A_{2}}\partial\alpha_{2}}\right) + \frac{C_{1}\ddot{u}_{2}}{R_{2}}\right]I_{4} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}}\partial\alpha_{2}} \\ &-\frac{\partial^{2}(P_{11}C_{1}A_{2}/A_{1})}{R_{2}}\partial\alpha_{2}} + \frac{A_{1}A_{2}}{A_{2}\partial\alpha_{2}}}\partial\alpha_{2}\partial\alpha_{1}} + \frac{A_{1}A_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{A_{1}A_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{A_{1}A_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}{A_{2}\partial\alpha_{2}}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{2}}}{A_{2}\partial\alpha_{2}} + \frac{C_{1}\ddot{\mu}_{$$

$$(49) + \frac{C_{1}P_{13}}{R_{1}}A_{1}A_{2} = -\left[\ddot{u}_{1}I_{1} + \ddot{\phi}_{1}I_{2} - C_{1}\ddot{u}_{1}I_{3} + (-2C_{1}\ddot{\phi}_{1} + C_{1}\frac{\ddot{u}_{1}}{R_{1}} - -\frac{C_{1}}{A_{1}}\frac{\partial\ddot{u}_{3}}{\partial\alpha_{1}})I_{4} + C_{1}^{2}(-\frac{\ddot{u}_{1}}{R_{1}} + \ddot{\phi}_{1} + \frac{\partial\ddot{u}_{3}}{A_{1}\partial\alpha_{1}})I_{6}\right] \\ - \frac{\partial(M_{22}A_{1})}{\partial\alpha_{2}} + \frac{\partial(C_{1}A_{1}P_{22})}{\partial\alpha_{2}} + M_{11}\frac{\partialA_{1}}{\partial\alpha_{2}} - C_{1}P_{11}\frac{\partialA_{1}}{\partial\alpha_{2}} - \frac{\partial(M_{12}A_{2}^{2})}{A_{2}\partial\alpha_{1}} + \frac{\partial(P_{12}C_{1}A_{2}^{2})}{A_{2}\partial\alpha_{1}} - 3C_{1}R_{23}A_{1}A_{2} + A_{1}A_{2}Q_{23} \\ + C_{1}\frac{\ddot{u}_{2}}{R_{2}} - \frac{C_{1}}{A_{2}}\frac{\partial\ddot{u}_{3}}{\partial\alpha_{2}})I_{4} + C_{1}^{2}(\frac{\ddot{u}_{2}}{R_{2}} + \ddot{\phi}_{2} + \frac{\partial\ddot{u}_{3}}{A_{2}\partial\alpha_{2}})I_{6}\right] + \frac{C_{1}P_{23}}{R_{2}}A_{1}A_{2} = -\left[\ddot{u}_{2}I_{1} + \ddot{\phi}_{2}I_{2} - C_{1}\ddot{u}_{2}I_{3} + (-2C_{1}\ddot{\phi}_{2} + C_{1}\frac{\dot{\mu}_{2}}{A_{2}\partial\alpha_{2}})I_{6}\right] + C_{1}\frac{\ddot{u}_{2}}{R_{2}} - \frac{C_{1}}{A_{2}}\frac{\partial\ddot{u}_{3}}{\partial\alpha_{2}})I_{4} + C_{1}^{2}(\frac{\ddot{u}_{2}}{R_{2}} + \ddot{\phi}_{2} + \frac{\partial\ddot{u}_{3}}{A_{2}\partial\alpha_{2}})I_{6}\right]$$

$$(50)$$

7. The equations of motion for vibration of functionally graded cylindrical shells

The curvilinear coordinates and fundamental form parameters for the cylindrical shell are , $\alpha_1 = x$ $\alpha_2 = \theta$, $\alpha_3 = \alpha_3$, $A_1 = 1$, $A_2 = a$, $\frac{1}{R_1} = 0$ $R_2 = a$ (51)

Thus, the equations of motions for the cylindrical shell are converted to

$$(52) a \frac{\partial N_{11}}{\partial x} + \frac{\partial N_{12}}{\partial \theta} = -q_1 + I_0 \ddot{u}_1 + (I_1 - C_1 I_3) \ddot{\phi}_1 - C_1 I_3 \frac{\partial \ddot{u}_3}{\partial x}$$

$$\frac{\partial N_{22}}{\partial \theta} + C_1 \frac{\partial P_{12}}{\partial x} + Q_{23} - 3C_1 R_{23} + C_1 P_{23} = (I_0 + 2\frac{C_1}{a}I_3 + \frac{C_1^2}{a^2}I_6) \ddot{u}_2 + (I_1 - C_1 I_3 + \frac{C_1}{a}I_4 - \frac{C_1^2}{a}I_6) \ddot{\phi}_2 - (\frac{C_1}{a}I_3 - \frac{C_1^2}{a^2}I_6) \frac{\partial \ddot{u}_3}{\partial \theta} - q_2$$
(53)

$$-C_{1}a\frac{\partial^{2}P_{11}}{\partial x^{2}} + N_{22} - \frac{C_{1}}{a}\frac{\partial^{2}P_{22}}{\partial \theta^{2}} - 2C_{1}\frac{\partial^{2}P_{12}}{\partial x\partial \theta} - a\frac{\partial Q_{13}}{\partial x} + 3C_{1}a\frac{\partial R_{13}}{\partial x} - \frac{\partial Q_{23}}{\partial \theta} + 3C_{1}\frac{\partial R_{23}}{\partial \theta} - \frac{C_{1}}{a}\frac{\partial P_{23}}{\partial \theta} = \\ + (-\frac{C_{1}}{a}I_{4} + \frac{C_{1}^{2}}{a}I_{6})\frac{\partial\ddot{\phi}_{2}}{\partial \theta} - \frac{C_{1}^{2}}{a^{2}}I_{6}\frac{\partial\ddot{u}_{2}}{\partial \theta} - C_{1}I_{3}\frac{\partial u_{1}}{\partial x} - \frac{C_{1}}{a}I_{3}\frac{\partial u_{2}}{\partial \theta} + (-C_{1}I_{4} + C_{1}^{2}I_{6})\frac{\partial\ddot{\phi}_{1}}{\partial x} + \\ + C_{1}^{2}I_{6}\frac{\partial^{2}\ddot{u}_{3}}{\partial x^{2}} + \frac{C_{1}^{2}}{a}I_{6}\frac{\partial^{2}\ddot{u}_{3}}{\partial \theta^{2}} - \ddot{u}_{3}I_{0} - q_{3}$$
(54)

$$-a\frac{\partial M_{11}}{\partial x} + C_{1}a\frac{\partial P_{11}}{\partial x} - \frac{\partial M_{12}}{\partial \theta} + C_{1}\frac{\partial P_{12}}{\partial \theta} - 3C_{1}R_{13}a + aQ_{13} = -I_{1}\ddot{u}_{3} + C_{1}I_{3}\ddot{u}_{1} + (-I_{2} + 2C_{1}I_{4} - C_{1}^{2}I_{6})\ddot{\phi}_{1} + (C_{1}I_{4} - C_{1}^{2}I_{6})\frac{\partial\ddot{u}_{3}}{\partial x}$$
(55)

$$-\frac{\partial M_{22}}{\partial \theta} - C_1 \frac{\partial P_{22}}{\partial \theta} - a \frac{\partial M_{12}}{\partial x} + C_1 a \frac{\partial P_{12}}{\partial x} - 3C_1 R_{23} a + aQ_{23} + C_1 R_{23} =$$
(56)

$$(-I_{1} + C_{1}I_{3} - \frac{C_{1}}{a}I_{4})\ddot{u}_{2} + (-I_{2} + 2C_{1}I_{4})\ddot{\phi}_{2} - \frac{C_{1}}{a}I_{4}\frac{\partial\ddot{u}_{3}}{\partial\theta}$$

(see Appendix 1, 2)

8. Analysis

It is assumed that the boundary conditions for circular cylindrical shell with simply supported are such that

$$u_{3}(0,\theta,t) = 0, \qquad u_{3}(l,\theta,t) = 0 u_{\theta}(0,\theta,t) = 0, \qquad u_{\theta}(l,\theta,t) = 0 M_{xx}(0,\theta,t) = 0, \qquad M_{xx}(l,\theta,t) = 0 N_{xx}(0,\theta,t) = 0, \qquad (57) N_{xx}(l,\theta,t) = 0$$

The displacement fields which satisfy these boundary conditions can be written as

$$u_{1} = A \cos \frac{m\pi x}{l} \cos n(\theta - \phi) e^{j\omega t}$$

$$u_{2} = B \sin \frac{m\pi x}{l} \sin n(\theta - \phi) e^{j\omega t}$$

$$u_{3} = C \sin \frac{m\pi x}{l} \cos n(\theta - \phi) e^{j\omega t}$$

$$\phi_{1} = D \cos \frac{m\pi x}{l} \cos n(\theta - \phi) e^{j\omega t}$$

$$\phi_{2} = E \sin \frac{m\pi x}{l} \sin n(\theta - \phi) e^{j\omega t}$$
(58)

where A, B, C, D and E are the constants denoting the amplitudes of vibration, n and m are the axial and circumferential wave numbers, and $\omega(rads^{-1})$ is the natural angular frequency of the vibration. For free vibration we have

$$q_1 = q_2 = q_3 = 0 \tag{59}$$

Substituting Eqs. (60) into Eqs. (54) through (58) we get

$$\begin{bmatrix} C \\ B \\ C \\ D \\ E \end{bmatrix} - \omega^2 \begin{bmatrix} M \\ B \\ C \\ D \\ E \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
(60)

where

24

$$\begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} \end{bmatrix}$$

(61)

(62)

	m_{11}	m_{12}	m_{13}	m_{14}	m_{15}
	m_{21}	m_{22}	m_{23}	m_{24}	m_{25}
[M] =	m_{31}	m_{32}	<i>m</i> ₃₃	m_{34}	<i>m</i> ₃₅
	m_{41}	m_{42}	m_{43}	m_{44}	m_{45}
	m_{51}	m_{52}	m_{53}	m_{54}	m ₅₅

The coefficients c_{ij} and m_{ij} are listed in the appendix 3 and 4. Eq. (62) is solved by imposing nontrivial solutions and equating the characteristic determinant $(C_{ij} - M_{ij}\omega^2) = 0$. Expanding the characteristic determinant the following polynomial is obtained.

$$\det\left(C_{ij} - M_{ij}\omega^2\right) = 0 \tag{63}$$

9. Results and discussion

To validate the analysis, results for simply supported cylindrical shells are compared with Loy (1999), see Tables 2 to 9. The comparisons show that the present results agreed well with those in the literature.

In this paper studies are presented on the vibration of a simply supported functionally graded (FG) cylindrical shells. The functionally gradient material (FGM) considered is composed of stainless steel and nickel and its properties are graded in thickness direction according to a volume fraction power-law distribution. Results for the frequency characteristics, the influence of the constituent volume fractions V_f and the effects of the FGM configuration are presented. The influence of constituent volume fractions is studied by varying the value of the power-law exponent N. The effects of the FGM configuration are studied by studying the frequencies of two FG cylindrical shells:

Type I: FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface

Type II: FG cylindrical shell has stainless steel on its inner surface and nickel on its outer surface. The material properties for stainless steel and nickel, calculated at T=300K, are presented in Table 1. The natural frequencies first decreased and than increased with circumferential wave numbers n. The frequencies for higher axial modes m are higher than those for lower axial modes. Thus, the fundamental frequencies occur at m=1. It is interesting to note that the value of the power-law exponent *N* did not affect the value of the circumferential wave number at which the fundamental natural frequency might occur. For example, in Table 2, for $\frac{L}{R} = 20$, the fundamental frequencies

for N = 0.5, 0.7, 1, 2, 5 and 15 all occur at circumferential wave number n=3. The natural frequencies of a short cylindrical shell. small $\frac{L}{R}$ ratios, are higher than those of a long shell, and the natural frequencies of a thick cylindrical shell, big h/R ratios, are higher than those for a thin shell.

Tables 2 and 4 show the variations of the natural frequencies (Hz) with the circumferential wave numbers n for a Type I FG cylindrical shell. The columns N^{ss} and N^N show the natural frequencies for a stainless steel cylindrical shell and a nickel cylindrical shell, respectively. As Nincreased, the natural frequencies decreased. The decreased in the natural frequencies from N = 1 to N = 15 is about 2.3% at n=1 and about 2.4% at n=10. When N is small, the natural frequencies approached those of N^{ss} and when N is large they approached those of N^N . Hence, the natural frequencies for N > 0 fell between those of N^{ss} and N^N for a given circumferential wave number n.

Tables 3 and 5 show the variations of the natural frequencies (Hz) with the circumferential wave numbers n for a Type II FG cylindrical shell. The influence of N or constituent volume fraction on the natural frequencies in the opposite of a Type I FG cylindrical shell. Unlike a Type I FG cylindrical shell where the natural frequencies decreased with N, the natural frequencies for a Type II FG cylindrical shell increased with N. The increase in natural frequencies from N = 1to N = 15 in about 2.3% at n=1 and about 2.4% at n=10. Thus the influence of the constituent volume fractions for a Type II FG cylindrical shell is different from a Type I FG cylindrical shell.

Comparing the frequencies in tables 2 and 4 with those in Tables 3 and 5, it can be seen that for N > 1, the natural frequencies for a Type II FG cylindrical shell are higher than a Type I FG cylindrical shell. On the other hand, for N < 1, the frequencies for a Type I FG cylindrical shell are higher than a Type II FG cylindrical shell. For example, for N = 15 at n=10 and $\frac{h}{R} = 0.002$, the natural frequency for a Type II FG cylindrical shell is about 4.67% higher than a Type I FG cylindrical shell. For N = 0.5 at n=10 and $\frac{h}{R} = 0.002$, the natural frequency for a Type I FG cylindrical shell is 1.66% higher than a Type II FG cylindrical shell. Thus the natural frequencies are affected by the configuration of the constituent materials in the functionally graded cylindrical shells.

Tabels 6 and 7 show the variations of the fundamental natural frequencies (Hz) with $\frac{L}{R}$ ratios for Type I and Type II FG cylindrical shells. The numbers in the brackets indicate the circumferential wave numbers at which the fundamental frequencies occur. For Type I FG cylindrical shell, the fundamental frequencies decreased with *N*, and for Type II FG cylindrical shell, the fundamental frequencies increased with *N*. The difference in the fundamental frequencies between N = 1 and N = 15 about 2.2% for Type I and Type II FG cylindrical shells. The fundamental natural frequencies for Type I and Type II FG cylindrical shells occur at the same circumferential wave numbers. For all values of *N*, the fundamental natural frequencies fall between those for N^{ss} and N^N . Tables 8 and 9 show the variations in the fundamental natural frequencies (Hz) with $\frac{h}{R}$ ratios for Type I and Type II FG cylindrical shells. For Type I FG cylindrical shell the fundamental frequencies decrease with *N*, and for the Type II FG cylindrical shell, the fundamental frequencies decrease with *N*, and for the Type II FG cylindrical shell, the fundamental frequencies decrease with *N*. For all *N* the fundamental natural frequencies (Hz) with $\frac{h}{R}$ ratios for Type I and Type II FG cylindrical shells. For Type I FG cylindrical shell the fundamental frequencies decrease with *N*, and for the Type II FG cylindrical shell, the fundamental frequencies increased with *N*. For all *N* the fundamental natural frequencies fall between those for N^{ss} and N^N .

Thus the constituent volume fractions and the configurations of the constituent materials affect the natural frequencies.

Coefficents	St	ainless steel	Nickel			
	$E(Nm^{-2})$	υ	$\rho(Kgm^{-3})$	$E(Nm^{-2})$	υ	$\rho(Kgm^{-3})$
PO	201.04 ×10 ⁹	0.3262	8166	223.95 ×10 ⁹	0.3100	8900
P-1	0	0	0	0	0	0
P1	3.079 ×10 ⁻⁴	-2.002 ×10 ⁻⁴	0	-2.794×10 ⁻⁴	0	0
P2	-6.534 ×10 ⁻⁷	3.797 ×10 ⁻⁷	0	-3.998 ×10 ⁹	0	0
Р3	0	0	0	0	0	0
	2.07788×10^{11}	0.317756	8166	2.05098×10^{11}	0.3100	8900

Table 1Properties of materials

Table 2

Vibration of natural frequencies (Hz) against circumferential wave number

$$\mathbf{n}\left(\frac{L}{R}=20,\frac{h}{R}=0.002,m=1\right)$$

	Tape I FG Cylindrical Shell											
n	Method	$N^{ss} = 0$	$N^{N} = 0$	N=0.5	N = 0.7	<i>N</i> = 1	<i>N</i> = 2	<i>N</i> = 5	N = 15	<i>N</i> = 30		
1	3 order	13.5476	12.8935	13.3208	13.268	13.2107	13.1028	12.9978	12.9326	12.9135		
1	Loy	13.548	12.894	13.321	13.269	13.211	13.103	12.998	12.933	12.914		
2	3 order	4.5918	4.3686	4.5165	4.4992	4.4800	4.4432	4.4065	4.3832	4.3763		
2	Loy	4.5920	4.3690	4.5168	4.4994	4.480	4.4435	4.4068	4.3834	4.3765		
2	3 order	4.2630	4.0484	4.1909	4.1746	4.1565	4.1233	4.0890	4.0650	4.0573		
3	Loy	4.2633	4.0489	4.1911	4.1749	4.1569	4.1235	4.0891	4.0653	4.0576		
4	3 order	7.2248	6.8573	7.0970	7.0687	7.0382	6.9817	6.9248	6.8851	6.8722		
4	Loy	7.2250	6.8577	7.0972	7.0691	7.0384	6.9820	6.9251	6.8856	6.8726		
5	3 order	11.5417	10.9544	11.3352	11.2900	11.2407	11.1509	11.0607	10.9986	10.9778		
5	Loy	11.542	10.955	11.336	11.290	11.241	11.151	11.061	10.999	10.978		
6	3 order	16.8962	16.0369	16.5937	16.5268	16.4547	16.3225	16.1916	16.1009	16.0708		
0	Loy	16.897	16.037	16.594	16.527	16.455	16.323	16.192	16.101	16.071		
7	3 order	23.2435	22.0607	22.8258	22.7345	22.6345	22.4537	22.2726	22.1478	22.1078		
/	Loy	23.244	22.061	22.826	22.735	22.635	22.454	22.273	22.148	22.108		
0	3 order	30.5727	29.0168	30.0227	29.9028	29.7706	29.5328	29.2958	29.1317	29.0776		
8	Loy	30.573	29.017	30.023	29.903	29.771	29.533	29.296	29.132	29.078		
0	3 order	38.879	36.9017	38.1807	38.0277	37.8618	37.5586	37.2567	37.0475	36.9807		
9	Loy	38.881	36.902	38.181	38.028	37.862	37.559	37.257	37.048	36.981		
10	3 order	48.1673	45.7157	47.3009	47.1109	46.9049	46.5287	46.1546	45.8967	45.8124		
10	Loy	48.168	45.716	47.301	47.111	46.905	46.529	46.155	45.897	45.813		

Table 3

Vibration of natural frequencies (Hz) against circumferential wave

number n
$$\left(\frac{L}{R} = 20, \frac{h}{R} = 0.002, m = 1\right)$$

				Tape 1	I FG Cylin	ndrical Sho	ell			
n	Method	$N^{ss}=0$	$N^N = 0$	N=0.5	<i>N</i> = 0.7	<i>N</i> = 1	<i>N</i> = 2	<i>N</i> = 5	N = 15	<i>N</i> = 30
1	3 order	13.5476	12.8935	13.1027	13.1537	13.2107	13.1265	13.4327	13.5048	13.5224
	Loy	13.548	12.894	13.103	13.154	13.211	13.321	13.433	13.505	13.526
2	3 order	4.5918	4.3686	4.4380	4.4548	4.4740	4.5112	4.5502	4.5755	4.5832
	Loy	4.5920	4.3690	4.4382	4.4550	4.4742	4.5114	4.5504	4.5759	4.5836
3	3 order	4.2630	4.0484	4.1149	4.1307	4.1484	4.1824	4.2189	4.2447	4.2533
	Loy	4.2633	4.0489	4.1152	4.1309	4.1486	4.1827	4.2191	4.2451	4.2536
4	3 order	7.2248	6.8573	6.9752	7.0024	7.0327	7.0903	7.1508	7.1941	7.2082
	Loy	7.2250	6.8577	6.9754	7.0026	7.0330	7.0905	7.1510	7.1943	7.2085
5	3 order	11.5417	10.9544	11.1448	11.1885	11.2376	11.3285	11.4246	11.4938	11.5157
	Loy	11.542	10.955	11.145	11.189	11.238	11.329	11.425	11.494	11.516
6	3 order	16.8962	16.0369	16.3167	16.3807	16.4528	16.5868	16.7268	16.8265	16.8586
	Loy	16.897	16.037	16.317	16.381	16.453	16.587	16.727	16.827	16.859
7	3 order	23.2435	22.0607	22.4466	22.5348	22.6326	22.4535	23.0107	23.1467	23.1917
ŕ	Loy	23.244	22.061	22.447	22.535	22.633	22.454	23.011	23.147	23.192
8	3 order	30.5727	29.0168	29.5237	29.6407	29.7700	30.0138	30.2665	30.4458	30.5048
C	Loy	30.573	29.017	29.524	29.641	29.770	30.014	30.267	30.446	30.505
9	3 order	38.879	36.9017	37.5475	37.6954	37.8607	38.1707	38.4916	38.7200	38.7946
	Loy	38.881	36.902	37.548	37.696	37.861	38.171	38.492	38.720	38.795
10	3 order	48.1673	45.7157	46.5168	46.7000	46.9035	47.2876	47.6857	47.9678	48.0607
	Loy	48.168	45.716	46.517	46.700	46.904	47.288	47.686	47.968	48.061

Table 4Vibration of fundamental natural frequencies (Hz) against L/R ratios $\left(\frac{h}{R} = 0.002, m = 1\right)$

	Tape I FG Cylindrical Shell											
L/R	Method	$N^{ss} = 0$	$N^N = 0$	N=0.5	<i>N</i> = 0.7	<i>N</i> = 1	<i>N</i> = 2	<i>N</i> = 5	N = 15			
0.2	3 order	439.34 (20)	417.51(20)	432.10(20)	430.43(20)	428.60(20)	425.14(20)	421.58(20)	419.14(20)			
	Loy	439.36(20)	417.54(20)	432.12(20)	430.46(20)	428.62(20)	425.16(20)	421.60(20)	419.17(20)			
0.5	3 order	175.46(15)	166.72(15)	172.54(15)	171.91(15)	171.15(15)	169.79(15)	168.35(15)	167.39(15)			
	Loy	175.49(15)	166.76(15)	172.59(15)	171.93(15)	171.19(15)	169.81(15)	168.38(15)	167.41(15)			
1	3 order	87.329(11)	82.991(11)	85.87(11)	85.559(11)	85.191(11)	84.502(11)	83.795(11)	83.314(11)			
	Loy	87.331(11)	82.993(11)	85.890(11)	85.561(11)	85.195(11)	84.506(11)	83.798(11)	83.316(11)			
2	3 order	43.371(8)	41.215(8)	42.654(8)	42.491(8)	42.309(8)	41.967(8)	41.615(8)	41.375(8)			
	Loy	43.373(8)	41.217(8)	42.656(8)	42.493(8)	42.311(8)	41.969(8)	41.618(8)	41.378(8)			
5	3 order	16.915(5)	16.076(5)	16.636(5)	16.573(5)	16.501(5)	16.369(5)	16.231(5)	16.139(5)			
	Loy	16.917(5)	16.079(5)	16.639(5)	16.576(5)	16.505(5)	16.371(5)	16.234(5)	16.141(5)			
10	3 order	8.6032(4)	8.1720(4)	8.4589(4)	8.4262(4)	8.3902(4)	8.3226(4)	8.2531(4)	8.2050(4)			
	Loy	8.6035(4)	8.1723(4)	8.4591(4)	8.4265(4)	8.3904(4)	8.3228(4)	8.2533(4)	8.2052(4)			
20	3 order	4.2630(3)	4.0485(3)	4.1909(3)	4.1745(3)	4.1565(3)	4.1232(3)	4.0889(3)	4.0651(3)			
	Loy	4.2633(3)	4.0489(3)	4.1911(3)	4.1749(3)	4.1569(3)	4.1235(3)	4.0892(3)	4.0653(3)			
50	3 order	1.4916(2)	1.4165(2)	1.4662(2)	1.4604(2)	1.4542(2)	1.4425(2)	1.4305(2)	1.4222(2)			
	Loy	1.4918(2)	1.4167(2)	1.4665(2)	1.4608(2)	1.4545(2)	1.4428(2)	1.4308(2)	1.4225(2)			
100	3 order	0.5592(1)	0.5322(1)	0.5500(1)	0.5478(1)	0.54559(1)	0.54112(1)	0.5368(1)	0.5339(1)			
	Loy	0.5595(1)	0.5325(1)	0.5502(1)	0.5480(1)	0.54561(1)	0.54115(1)	0.5368(1)	0.5341(1)			

Table 5Vibration of fundamental natural frequencies (Hz) against L/R ratios $\left(\frac{h}{R} = 0.002, m = 1\right)$

	Tape II FG Cylindrical Shell												
L/R	Method	$N^{ss} = 0$	$N^N = 0$	N=0.5	<i>N</i> = 0.7	N = 1	<i>N</i> = 2	<i>N</i> = 5	N = 15				
0.2	3 order	439.34(20)	417.51(20)	424.18(20)	425.76(20)	427.60(20)	431.11(20)	434.90(20)	437.52(20)				
	Loy	439.36(20)	417.54(20)	424.20(20)	425.80(20)	427.62(20)	431.15(20)	434.93(20)	437.57(20)				
0.5	3 order	175.46(15)	166.72(15)	169.41(15)	170.04(15)	170.75(15)	172.17(15)	173.69(15)	174.72(15)				
	Loy	175.49(15)	166.76(15)	169.43(15)	170.06(15)	170.79(15)	172.20(15)	173.71(15)	174.76(15)				
1	3 order	87.329(11)	82.991(11)	84.314(11)	84.632(11)	84.991(11)	85.695(11)	86.444(11)	86.971(11)				
	Loy	87.331(11)	82.993(11)	84.316(11)	84.634(11)	84.995(11)	85.697(11)	86.448(11)	86.974(11)				
2	3 order	43.371(8)	41.215(8)	41.872(8)	42.033(8)	42.210(8)	42.559(8)	42.931(8)	43.192(8)				
	Loy	43.373(8)	41.217(8)	41.875(8)	42.033(8)	42.212(8)	42.561(8)	42.934(8)	43.195(8)				
5	3 order	16.915(5)	16.076(5)	16.331(5)	16.393(5)	16.463(5)	16.600(5)	16.745(5)	16.846(5)				
	Loy	16.917(5)	16.079(5)	16.335(5)	16.396(5)	16.466(5)	16.602(5)	16.748(5)	16.849(5)				
10	3 order	8.6032(4)	8.1720(4)	8.3047(4)	8.3362(4)	8.3719(4)	8.4409(4)	8.5146(4)	8.5670(4)				
	Loy	8.6035(4)	8.1723(4)	8.3050(4)	8.3365(4)	8.3722(4)	8.4411(4)	8.5148(4)	8.5672(4)				
20	3 order	4.2630(3)	4.0485(3)	4.1150(3)	4.1306(3)	4.1482(3)	4.1824(3)	4.2189(3)	4.2449(3)				
	Loy	4.2633(3)	4.0489(3)	4.1152(3)	4.1309(3)	4.1486(3)	4.1827(3)	4.2191(3)	4.2451(3)				
50	3 order	1.4916(2)	1.4165(2)	1.4399(2)	1.4451(2)	1.4514(2)	1.4633(2)	1.4761(2)	1.4852(2)				
	Loy	1.4918(2)	1.4167(2)	1.4400(2)	1.4455(2)	1.4517(2)	1.4636(2)	1.4763(2)	1.4854(2)				
100	3 order	0.5592(1)	0.5322(1)	0.5410(1)	0.54321(1)	0.5452(1)	0.5500(1)	0.5546(1)	0.5575(1)				

31

³² Journal of Mechanical Research and Application (JMRA), Vol.12 No.1, 1401(2022), 15-43

Loy 0.5595(1) 0.5325(1) 0.5412(1) 0.54324(1) 0.5456(1) 0.5502(1) 0.5548(1) 0.5578(1)									
	Loy	0.5595(1)	0.5325(1)	0.5412(1)	0.54324(1)	0.5456(1)	0.5502(1)	0.5548(1)	0.5578(1)

 Table 6

 Vibrational of fundamental natural frequencies (Hz) against h/R ratios

$$\left(\frac{L}{R}=20, m=1\right)$$

	Tape I FG Cylindrical Shell											
h/R	Method	$N^{ss}=0$	$N^N = 0$	<i>N</i> =0.5	<i>N</i> = 0.7	<i>N</i> = 1	<i>N</i> = 2	<i>N</i> = 5	N =15			
0.001	3 order	2.7915(3)	2.6533(3)	2.7459(3)	2.7353(3)	2.7236(3)	2.7015(3)	2.6790(3)	2.6636(3)			
	Loy	2.7919(3)	2.6537(3)	2.7461(3)	2.7356(3)	2.7239(3)	2.7018(3)	2.6792(3)	2.6639(3)			
0.005	3 order	5.4990(2)	5.2280(2)	5.4091(2)	5.3885(2)	5.3653(2)	5.3219(2)	5.2773(2)	5.2476(2)			
	Loy	5.4992(2)	5.2283(2)	5.4094(2)	5.3887(2)	5.3656(2)	5.3221(2)	5.2776(2)	5.2478(2)			
0.007	3 order	6.378(2)	6.0629(2)	6.2742(2)	6.2504(2)	6.2236(2)	6.1733(2)	6.1216(2)	6.0864(2)			
	Loy	6.380(2)	6.0631(2)	6.2746(2)	6.2506(2)	6.2239(2)	6.1736(2)	6.1219(2)	6.0867(2)			
0.01	3 order	7.9330(2)	7.5355(2)	7.8000(2)	7.7680(2)	7.7364(2)	7.6741(2)	7.6101(2)	7.5659(2)			
	Loy	7.9333(2)	7.5358(2)	7.8001(2)	7.7700(2)	7.7367(2)	7.6744(2)	7.6104(2)	7.5661(2)			
0.02	3 order	13.549(1)	12.894(1)	13.321(1)	13.270(1)	13.212(1)	13.104(1)	13.000(1)	12.933(1)			
	Loy	13.552(1)	12.898(1)	13.325(1)	13.273(1)	13.215(2)	13.107(2)	13.001(2)	12.936(2)			
0.03	3 order	13.553(1)	12.900(1)	13.327(1)	13.275(1)	13.217(1)	13.110(1)	13.003(1)	12.939(1)			
	Loy	13.557(1)	12.902(1)	13.330(1)	13.278(1)	13.220(1)	13.112(1)	13.006(1)	12.941(1)			
0.04	3 order	13.560(1)	12.905(1)	13.333(1)	13.281(1)	13.224(1)	13.117(1)	13.011(1)	12.945(1)			
0.01	Loy	13.563(1)	121.909(1)	13.336(1)	13.284(1)	13.226(1)	13.119(1)	13.013(1)	12.948(1)			
0.05	3 order	13.569(1)	12.915(1)	13.342(1)	13.290(1)	13.231(1)	13.124(1)	13.019(1)	12.954(1)			
	Loy	13.572(1)	12.917(1)	13.345(1)	13.293(1)	13.235(1)	13.127(1)	13.021(1)	12.956(1)			

 Table 7

 Vibrational of fundamental natural frequencies (Hz) against h/R ratios

$\left(\frac{L}{R}=20, m=1\right)$)
------------------------------------	---

	Tape II FG Cylindrical Shell											
h/R	Method	$N^{ss}=0$	$N^N = 0$	N=0.5	<i>N</i> = 0.7	N = 1	<i>N</i> = 2	<i>N</i> = 5	N = 15			
0.001	3 order	2.7915(3)	2.6533(3)	2.6955(3)	2.7058(3)	2.7172(3)	2.737(3)	2.7637(3)	2.7804(3)			
	Loy	2.7919(3)	2.6537(3)	2.6958(3)	2.7060(3)	2.7175(3)	2.740(3)	2.7640(3)	2.7807(3)			
0.005	3 order	5.4990(2)	5.2280(2)	5.3106(2)	5.3305(2)	5.3533(2)	5.3975(2)	5.4450(2)	5.4774(2)			
	Loy	5.4992(2)	5.2283(2)	5.3109(2)	5.3308(2)	5.3536(2)	5.3979(2)	5.4452(2)	5.4777(2)			
0.007	3 order	6.378(2)	6.0629(2)	6.1595(2)	6.1827(2)	6.2091(2)	6.2603(2)	6.3152(2)	6.3536(2)			
	Loy	6.380(2)	6.0631(2)	6.1598(2)	6.1830(2)	6.2094(2)	6.2606(2)	6.3155(2)	6.3539(2)			
0.01	3 order	7.9330(2)	7.5355(2)	7.6580(2)	7.6870(2)	7.7200(2)	7.7834(2)	7.8512(2)	7.8997(2)			
	Loy	7.9333(2)	7.5358(2)	7.6583(2)	7.6873(2)	7.7202(2)	7.7837(2)	7.8516(2)	7.8999(2)			
0.02	3 order	13.549(1)	12.894(1)	13.105(1)	13.154(1)	13.212(1)	13.322(1)	13.435(1)	13.504(1)			
	Loy	13.552(1)	12.898(1)	13.107(1)	13.157(1)	13.215(1)	13.325(1)	13.437(1)	13.508(1)			
0.03	3 order	13.553(1)	12.900(1)	13.110(1)	13.160(1)	13.217(1)	13.326(1)	13.440(1)	13.510(1)			
	Loy	13.557(1)	12.902(1)	13.112(1)	13.162(1)	13.219(1)	13.329(1)	13.442(1)	13.513(1)			
0.04	3 order	13.560(1)	12.905(1)	13.115(1)	13.165(1)	13.224(1)	13.333(1)	13.445(1)	13.517(1)			
0.04	Loy	13.563(1)	12.909(1)	13.118(1)	13.169(1)	13.226(1)	13.336(1)	13.448(1)	13.520(1)			
0.05	3 order	13.569(1)	12.915(1)	13.124(1)	13.174(1)	13.231(1)	13.341(1)	13.455(1)	13.526(1)			
	Loy	13.572(1)	12.917(1)	13.126(1)	13.177(1)	13.234(1)	13.344(1)	13.457(1)	13.528(1)			

References

Yamanouchi, M., Koizumi, M., 1990. Functionally gradient materials. Proceeding of the first international symposium in Japan.

Koizumi, M., 1997. FGM activities in Japan. Composites Part B 28 (1-2), 1-40.

Reddy, J.N., Cheng, Z.Q., 2001. Three dimensional thermomechanical deformations of functionally graded rectangular plates. Eur. J. Mech. A/Solids 20, 841-855.

Reddy, J.N., Wang, C.M., Kitopornchi, S., 1999. Axisymmetric bending of functionally graded circular and annular plates. Eur. J. Mech. A/Solids 18, 185-199.

Fukui, Y., 1991. Fundamental investigation of functionally gradient material manufacturing system using centrifugal force, Int. J. Jpn Soc. Mech. Eng. 3 (34), 144-148.

Tanigawa, Y., Matsomoto, M., Akai T., 1997. Optimization of material composition to minimize thermal stresses in nonhomogeneous plate subjected to unsteady heat supply. JSME Int. J. Ser. A 40(1), 84-93.

Noda, N., Fuchiyama, T., 1995. Analysis of stresses in a plate of functionally gradient material. JSME of Japan, 263-269.

Noda, N., 1999. Thermal stresses in functionally graded materials. In: Proc. Third International Congress on Thermal Stresses, Poland, 33-38.

Javaheri, R., Eslami, M.R., 2002. Thermal buckling of graded plates based on higher order theory. J. Thermal Stresses 25, 603-625.

Najafizadeh, M.M., Eslami, M.R., 2002. First order theory based thermoelastic stability of functionally graded material circular plates. J. AIAA 40, 1444-1450.

Najafizadeh, M.M., Eslami, M.R., 2002. Buckling analysis of circular plates of functionally graded materials under uniform redial compression. Int. J. Mech. Sci. 4, 2479-2493.

Arnold, R.N., Warburton, G.B., 1949. Flexural vibration of the walls of thin cylindrical shells having freely supported ends. Proceedings of the Royal Society London. A 197, 238-256.

Ludwig, A., Krieg, R., 1981. An analytical quasi-exact method for calculating eigenvibrations of thin circular cylindrical shells. Journal of Sound and Vibration 74, 155-174.

Chung, H., 1981. Free vibration analysis of circular cylindrical shells. Journal of Sound and Vibration 74, 331-350.

Soedel, W., 1980. A new frequency formula for closed circular cylindrical shells for a large variety of boundary conditions. Journal of Sound and Vibration 70, 309-317.

Forsberg, K., 1964. Influence of boundary conditions on modal characteristics of cylindrical shells. AIAA Journal 2, 182-189.

Bhimaraddi, A., 1984. A higher order theory for free vibration analysis of circular cylindrical shells. International Journal of Solids and Structures 20, 623-630.

Soldatos, K.P., Hajigeoriou, V.P., 1990. Three dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and panels. Journal of Sound and Vibration 137, 369-384.

Loy, C.T., Lam, K.Y., 1997. Vibration of cylindrical shells with ring support. International Journal of Mechanical Sciences 39, 455-471.

Loy, C.T., Lam, K.Y., Reddy, J.N., 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences 41, 309-324.

Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N., 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics 61, 111-129.

Touloukian, Y.S., 1967. Thermophysical properties of high temperature solid materials. Macmillan, New York.

Love, AEH., 1952. A treatise on the mathematical theory of elasticity . 4th Ed. Cambridge, Cambridge University Press .

Soedel, W., 1981. Vibration of shells and plates. MARCEL DEKKER, INC, New York.

Appendix 1

Substituting Eq. (53) into Eqs. (21) to (25) gives

$$\begin{split} & \in_{11}^{0} = \frac{\partial u_{1}}{\partial x} \\ & \in_{22}^{0} = \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + \frac{u_{3}}{a} \\ & \in_{12}^{0} = \frac{\partial u_{2}}{\partial x} + \frac{1}{a} \frac{\partial u_{1}}{\partial \theta} \\ & k_{11} = \frac{\partial \phi_{1}}{\partial x} \\ & k_{22} = \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} \\ & k_{12} = \frac{\partial \phi_{2}}{\partial x} + \frac{1}{a} \frac{\partial \phi_{1}}{\partial \theta} \\ & k_{12} = \frac{\partial \phi_{2}}{\partial x} + \frac{1}{a} \frac{\partial \phi_{1}}{\partial \theta} \\ & k_{12}' = \frac{C_{1}}{a^{2}} \frac{\partial u_{2}}{\partial \theta} - \frac{C_{1}}{a} \frac{\partial \phi_{2}}{\partial \theta} - \frac{C_{1}}{a} \frac{\partial^{2} u_{3}}{\partial x^{2}} \\ & k_{22}' = \frac{C_{1}}{a^{2}} \frac{\partial u_{2}}{\partial \theta} - \frac{C_{1}}{a} \frac{\partial \phi_{2}}{\partial \theta} - \frac{C_{1}}{a} \frac{\partial^{2} u_{3}}{\partial x^{2}} \\ & k_{12}' = \frac{C_{1}}{a} \frac{\partial u_{2}}{\partial x} - C_{1} \frac{\partial \phi_{2}}{\partial \theta} - 2 \frac{C_{1}}{a} \frac{\partial^{2} u_{3}}{\partial x \partial \theta} - \frac{C_{1}}{a} \frac{\partial \phi}{\partial \theta} \\ & \gamma_{13}^{0} = \phi_{1} + \frac{\partial u_{3}}{\partial x} \\ & \gamma_{23}^{0} = \phi_{2} - \frac{u_{2}}{a} + \frac{1}{a} \frac{\partial u_{3}}{\partial \theta} \\ & \gamma_{13}^{2} = -3C_{1}\phi_{1} - 3C_{1} \frac{\partial u_{3}}{\partial x} \\ & \gamma_{23}^{2} = 3 \frac{C_{1}}{a} u_{2} - 3C_{1}\phi_{2} - 3 \frac{C_{1}}{a} \frac{\partial u_{3}}{\partial \theta} \\ & \gamma_{13}^{3} = 0 \\ & \gamma_{23}^{3} = -\frac{C_{1}}{a^{2}} u_{2} + \frac{C_{1}}{a} \phi_{2} + \frac{C_{1}}{a^{2}} \frac{\partial u_{3}}{\partial \theta} \end{split}$$

Appendix 2

The stress resultants are expressed as

$$N_{11} = A_{11} \frac{\partial u_1}{\partial x} + B_{11} \frac{\partial \phi_1}{\partial x} - E_{11}C_1 \frac{\partial \phi_1}{\partial x} - E_{11}C_1 \frac{\partial^2 u_3}{\partial x^2} + A_{12} \frac{1}{a} \frac{\partial u_2}{\partial \theta} + A_{12} \frac{1}{a} \frac{u_3}{u_3} + B_{12} \frac{1}{a} \frac{\partial \phi_2}{\partial \theta}$$

$$\begin{split} N_{22} &= A_{12} \frac{\partial u_{1}}{\partial x} + B_{12} \frac{\partial \phi_{1}}{\partial x} + B_{22} \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} + E_{12} \frac{C_{1}}{a^{2}} \frac{\partial u_{2}}{\partial \theta} - E_{12} \frac{C_{1}}{a} \frac{\partial^{2}}{\partial \theta^{2}} + E_{12} \frac{C_{1}}{a} \frac{\partial^{2}}{\partial \theta^{2}} + E_{12} \frac{C_{1}}{a^{2}} \frac{\partial^{2}}{\partial \theta} + E_{12} \frac{C_{1}}{\partial \theta} \frac{\partial \phi_{1}}{\partial x} - E_{12} C_{1} \frac{\partial^{2}}{\partial x^{2}} + A_{22} \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + A_{22} \frac{1}{a} u_{3} + \\ N_{12} &= A_{66} \frac{\partial u_{2}}{\partial x} + A_{66} \frac{1}{a} \frac{\partial u_{1}}{\partial \theta} + B_{66} \frac{\partial \phi_{2}}{\partial x} + B_{66} \frac{1}{a} \frac{\partial \phi_{1}}{\partial \theta} - E_{22} \frac{C_{1}}{a} \frac{\partial^{2}u_{3}}{\partial x^{2}} + E_{66} \frac{C_{1}}{a} \frac{\partial u_{2}}{\partial x} - E_{66} C_{1} \frac{\partial \phi_{2}}{\partial x} - \\ &- 2E_{66} \frac{C_{1}}{a} \frac{\partial^{2}u_{3}}{\partial x \partial \theta} - E_{66} \frac{C_{1}}{a} \frac{\partial \phi_{1}}{\partial \theta} \\ M_{11} &= B_{11} \frac{\partial u_{1}}{\partial x} + D_{11} \frac{\partial \phi_{1}}{\partial x} - F_{11} C_{1} \frac{\partial \phi_{1}}{\partial x} - F_{11} C_{1} \frac{\partial^{2}u_{3}}{\partial x^{2}} + B_{12} \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + B_{12} \frac{1}{a} u_{3} + D_{12} \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} \\ &+ F_{12} \frac{C_{1}}{a^{2}} \frac{\partial u_{2}}{\partial \theta} - F_{12} \frac{C_{1}}{a} \frac{\partial \phi_{2}}{\partial x^{2}} - F_{12} C_{1} \frac{\partial^{2}u_{3}}{\partial x^{2}} \\ M_{22} &= B_{12} \frac{\partial u_{1}}{\partial x} + D_{12} \frac{\partial \phi_{1}}{\partial x} - F_{12} C_{1} \frac{\partial \phi_{1}}{\partial x} - F_{12} C_{1} \frac{\partial^{2}u_{3}}{\partial x^{2}} + B_{22} \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + B_{22} \frac{1}{a} u_{3} \\ &+ D_{22} \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} - F_{12} \frac{C_{1}}{a} \frac{\partial \phi_{2}}{\partial x^{2}} \\ H_{12} &= B_{66} \frac{\partial u_{2}}{\partial x} + B_{66} \frac{1}{a} \frac{\partial u_{1}}{\partial \theta} - D_{66} \frac{\partial \phi_{2}}{\partial x} - B_{66} \frac{1}{a} \frac{\partial \theta}{\partial \theta} + F_{66} \frac{C_{1}}{a} \frac{\partial u_{2}}{\partial x^{2}} \\ &+ F_{12} \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} + H_{12} \frac{C_{1}}{a^{2}} \frac{\partial \phi_{1}}{\partial \theta} - H_{12} C_{1} \frac{\partial^{2}u_{3}}{\partial x^{2}} + E_{12} \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + E_{12} \frac{u_{3}}{a} \\ &+ F_{12} \frac{1}{a^{2}} \frac{\partial \phi_{2}}{\partial \theta} + H_{12} \frac{C_{1}}{a^{2}} \frac{\partial \phi_{1}}{\partial \theta} - H_{12} \frac{C_{1}}{a^{2}} \frac{\partial^{2}}{\partial \theta} + H_{2} \frac{1}{a} \frac{\partial u_{2}}{\partial \theta} + E_{12} \frac{u_{3}}{a} \\ &+ F_{12} \frac{1}{a} \frac{\partial \phi_{2}}{\partial \theta} + H_{12} \frac{C_{1}}{a^{2}} \frac{\partial \phi_{1}}{\partial \theta} - H_{12} \frac{C_{1}}{a^{2}} \frac{\partial^{2}}{\partial \theta} - H_{12} \frac{C_{1}}{a} \frac{\partial^{2}}{\partial \theta} \\ &+ F_{12} \frac{1}{a} \frac{\partial u_{2}}}{\partial \theta} + H_{12} \frac{C_{1}}{a^{2}} \frac{\partial \phi_{1}}{\partial \theta} -$$

$$\begin{split} R_{13} &= D_{55}\phi_1 + D_{55} \frac{\partial u_3}{\partial x} - 3F_{55}C_1\phi_1 - 3F_{55}C_1\frac{\partial u_3}{\partial x} \\ R_{23} &= D_{44}\phi_2 - D_{44}\frac{u_2}{a} + D_{44}\frac{1}{a}\frac{\partial u_3}{\partial \theta} + 3F_{44}\frac{C_1}{a}u_2 - 3F_{44}C_1\phi_2 - 3F_{44}\frac{C_1}{a}\frac{\partial u_3}{\partial \theta} \\ -G_{44}\frac{C_1}{a^2}u_2 + G_{44}\frac{C_1}{a}\phi_2 + G_{44}\frac{C_1}{a^2}\frac{\partial u_3}{\partial \theta} \\ Q_{13} &= A_{55}\phi_1 + A_{55}\frac{\partial u_3}{\partial x} - 3D_{55}C_1\phi_1 - 3D_{55}C_1\frac{\partial u_3}{\partial x} \\ Q_{23} &= A_{44}\phi_2 - A_{44}\frac{u_2}{a} + A_{44}\frac{1}{a}\frac{\partial u_3}{\partial \theta} + 3D_{44}\frac{C_1}{a}u_2 - 3D_{44}C_1\phi_2 - 3D_{44}\frac{C_1}{a}\frac{\partial u_3}{\partial \theta} \\ -E_{44}\frac{C_1}{a^2}u_2 + E_{44}\frac{C_1}{a}\phi_2 + E_{44}\frac{C_1}{a^2}\frac{\partial u_3}{\partial \theta} \end{split}$$

Appendix 3

In Eq. (63) are defined as follows: C_{ij} The coefficients

$$C_{11} = -\frac{m^2 \pi^2 a}{l^2} A_{11} - \frac{n^2}{a} A_{66}$$

$$C_{12} = \frac{mn\pi}{l} A_{12} + \frac{mn\pi C_1}{al} E_{12} + \frac{mn\pi}{l} A_{66} + \frac{mn\pi C_1}{al} E_{66}$$

$$C_{13} = \frac{m^3 \pi^3 a C_1}{l^3} E_{11} + \frac{m\pi}{l} A_{12} + \frac{m^3 \pi^3 C_1}{l^3} E_{12} + 2 \frac{mn^2 \pi C_1}{al} E_{66}$$

$$C_{14} = -\frac{m^2 \pi^2 a}{l^2} B_{11} + \frac{m^2 \pi^2 a C_1}{l^2} E_{11} - \frac{n^2}{a} B_{66} + \frac{n^2 C_1}{a} E_{66}$$

$$C_{15} = \frac{mn\pi}{l} B_{12} - \frac{mn\pi C_1}{l} E_{12} + \frac{mn\pi}{l} B_{66} - \frac{mn\pi C_1}{l} E_{66}$$

$$C_{21} = \frac{mn\pi}{l} A_{12} + \frac{mn\pi C_1}{al} E_{66}$$

$$C_{22} = -\frac{n^2}{a} A_{22} - \frac{n^2 C_1}{a^2} E_{22} - \frac{m^2 \pi^2 C_1}{l^2} E_{66} - \frac{m^2 \pi^2 C_1^2}{al^2} H_{66} - \frac{1}{a} A_{44} + 6 \frac{C_1}{a} D_{44} - \frac{C_1}{a^2} E_{44} - 9 \frac{C_1^2}{a^2} E_{44} - \frac{3 n^2 \pi^2 C_1}{al^2} E_{22} - \frac{m^2 n\pi^2 C_1}{al^2} E_{22} - 2 \frac{m^2 n\pi^2 C_1^2}{al^2} H_{66} - \frac{n}{a} A_{44} + 6 \frac{n C_1}{a} D_{44}$$

$$C_{23} = -\frac{m^2 n\pi^2 C_1}{l^2} E_{12} - \frac{n}{a} A_{22} - \frac{m^2 n\pi^2 C_1}{al^2} E_{22} - 2 \frac{m^2 n\pi^2 C_1^2}{al^2} H_{66} - \frac{n}{a} A_{44} + 6 \frac{n C_1}{a} D_{44}$$

$$C_{24} = \frac{mn\pi}{l} B_{12} - \frac{mn\pi C_1}{l} E_{12} + \frac{mn\pi C_1}{a} E_{66} - \frac{mn\pi C_1^2}{al^2} H_{66}$$

$$C_{25} = -\frac{n^2}{a} B_{22} + \frac{n^2 C_1}{a} E_{22} - \frac{m^2 \pi^2 C_1}{l^2} E_{66} + \frac{m^2 \pi^2 C_1^2}{al^2} H_{66} + A_{44} - 6C_1 D_{44} + \frac{C_1}{a} E_{44} + 3 \frac{m^2 C_1}{al^2} H_{66}$$

$$\begin{split} +9C_{1}^{2}F_{44} &= 3\frac{C_{1}^{2}}{a}G_{44} + C_{1}E_{44} - 3C_{1}^{2}G_{44} + \frac{C_{1}^{2}}{a}H_{44} \\ C_{31} &= -\frac{m^{3}\pi^{3}C_{1}a}{l^{3}}E_{11} - \frac{m\pi}{l}A_{22} - \frac{mn^{2}\pi C_{1}}{al}E_{12} - \frac{2mn^{2}\pi C_{1}}{al}E_{66} \\ C_{32} &= \frac{m^{2}n\pi^{2}C_{1}}{l^{2}}E_{12} + \frac{m^{2}n\pi^{2}C_{1}^{2}}{a^{2}}H_{12} + \frac{n}{a}A_{22} + \frac{nC_{1}}{a^{2}}E_{22} + \frac{n^{3}C_{1}}{a^{2}}E_{22} + \frac{n^{3}C_{1}^{2}}{a^{3}}H_{22} + \\ &+ 2\frac{m^{2}n\pi^{2}C_{1}}{l^{2}}E_{66} + 2\frac{m^{2}n\pi^{2}C_{1}^{2}}{al^{2}}H_{66} + \frac{n}{a}A_{44} - 6\frac{nC_{1}}{a}D_{44} + 2\frac{nC_{1}}{a^{2}}E_{44} + \\ &+ 9\frac{nC_{1}^{2}}{a}E_{44} - 6\frac{nC_{1}^{2}}{a^{2}}G_{44} + \frac{nC_{1}^{2}}{a^{2}}H_{44} \\ C_{33} &= \frac{m^{4}\pi^{4}C_{1}^{2}a}{l^{4}}H_{11} + \frac{m^{2}\pi^{2}C_{1}}{l^{2}}E_{12} + \frac{m^{4}\pi^{4}C_{1}^{2}}{l^{4}}H_{12} + \frac{m^{2}\pi^{2}C_{1}}{a^{2}l^{2}}E_{22} + \frac{1}{a}A_{22} + \\ &+ \frac{m^{2}\pi^{2}C_{1}}{l^{4}}E_{22} + \frac{m^{2}n^{2}\pi^{2}C_{1}^{2}}{l^{2}}H_{12} + \frac{n^{2}C_{1}}{a^{2}}E_{22} + \frac{m^{2}n^{2}\pi^{2}C_{1}}{a^{2}l^{2}}H_{22} + 4\frac{m^{2}\pi^{2}C_{1}^{2}}{al^{2}}H_{66} + \\ &+ \frac{m^{2}\pi^{2}a}{l^{2}}E_{52} + \frac{m^{2}n^{2}\pi^{2}C_{1}^{2}}{l}D_{55} + 9\frac{m^{2}\pi^{2}C_{1}^{2}a}{l^{2}}E_{55} + \frac{n^{2}}{a}A_{44} - 6\frac{n^{2}C_{1}}{a}D_{44} + 2\frac{n^{2}C_{1}}{a^{2}}E_{44} + \\ &+ 9\frac{n^{2}c_{1}^{2}}{a}A_{55} - 6\frac{m^{2}n^{2}C_{1}a}{a}D_{55} + 9\frac{m^{2}\pi^{2}C_{1}^{2}}{a^{2}}G_{44} + \frac{n^{2}C_{1}^{2}}{a^{2}}H_{44} \\ C_{34} &= -\frac{m^{3}\pi^{3}C_{1}a}{l^{3}}F_{11} + \frac{m^{3}\pi^{3}C_{1}^{2}a}{l^{3}}H_{11} - \frac{m\pi}{l}}B_{22} - \frac{mC_{1}}{a}E_{22} - \frac{mn^{2}\pi C_{1}}{a}}H_{42} \\ C_{35} &= \frac{m^{2}n\pi^{2}C_{1}}{l^{2}}F_{12} - \frac{m^{2}n\pi^{2}C_{1}^{2}}{l}H_{12} + \frac{n}{a}B_{22} - \frac{nC_{1}}{a}E_{22} + \frac{n^{3}C_{1}}{a^{2}}}H_{22} \\ + 2\frac{m^{3}n\pi^{2}C_{1}}}{l^{2}}E_{12} - \frac{m^{2}n\pi^{2}C_{1}^{2}}{l}H_{12} + \frac{m\pi}{a}B_{66} + \frac{m\pi}{a}D_{66} - \frac{m\pi^{2}}{a}H_{42} \\ C_{41} &= \frac{m^{2}\pi^{2}C_{1}}{l^{2}}}E_{6} - \frac{m^{2}n\pi^{2}C_{1}^{2}}{l}H_{4} \\ C_{41} &= \frac{m^{2}\pi^{2}C_{1}}{l^{2}}}E_{11} - \frac{m\pi^{2}\pi^{2}C_{1}}{l^{2}}H_{46} \\ C_{41} &= \frac{m^{3}\pi^{3}C_{1}}{l}H_{12} - \frac{m\pi}{a}}E_{12} + \frac{m\pi}{a}B_{66} + \frac{m\pi}{a}D_{66} - \frac{m\pi}{a}E_{6} \\$$

$$\begin{split} C_{44} &= \frac{m^2 \pi^2 a}{l^2} D_{11} - 2 \frac{m^2 \pi^2 C_{1a}}{l^2} F_{11} + \frac{m^2 \pi^2 C_{1}^2 a}{l^2} H_{11} - 2 \frac{n^2 C_{1}}{a} F_{66} + \frac{n^2 C_{1}^2}{a} H_{66} - \\ &- 6 C_{1a} D_{55} + 9 C_{1}^2 a F_{55} + A_{55} a \\ C_{45} &= -\frac{mn\pi}{l} D_{12} + 2 \frac{mn\pi C_{1}}{l} F_{12} - \frac{mn\pi C_{1}^2}{l} H_{12} - 2 \frac{mn\pi C_{1}}{l} F_{66} - \frac{mn\pi C_{1}^2}{l} H_{66} \\ C_{51} &= -\frac{mn\pi}{l} B_{12} - \frac{mn\pi C_{1}}{l} E_{12} - \frac{mn\pi}{l} B_{66} + \frac{mn\pi C_{1}}{l} E_{66} \\ C_{52} &= \frac{n^2}{a} B_{22} + \frac{n^2 C_{1}}{a^2} F_{22} + \frac{n^2 C_{1}}{a} E_{22} + \frac{n^2 C_{1}^2}{a^2} H_{22} + \frac{m^2 \pi^2 a}{l^2} B_{66} + \frac{m^2 \pi^2 C_{1}}{l^2} F_{66} - \\ &- \frac{m^2 n^2 C_{1a}}{l^2} E_{66} - \frac{m^2 \pi^2 C_{1}^2}{l^2} H_{66} + 6 C_{1} D_{44} - 9 C_{1}^2 F_{44} + 3 \frac{C_{1}^2}{a} G_{44} - A_{44} - \frac{C_{1}}{a} E_{44} - \\ &- \frac{C_{1}}{a} D_{44} + 3 \frac{C_{1}^2}{a} F_{44} - \frac{C_{1}^2}{a^2} G_{44} \\ C_{53} &= \frac{m^2 n\pi^2 C_{1}}{l^2} F_{12} + 2 \frac{m^2 n\pi^2 C_{1}}{l^2} F_{66} - 2 \frac{m^2 n\pi^2 C_{1}^2}{a} F_{66} + 6 n C_{1} D_{44} - 9 n C_{1}^2 F_{44} \\ &+ 3 \frac{n C_{1}^2}{a} G_{44} - n A_{44} - \frac{n C_{1}}{a} E_{44} - \frac{n C_{1}}{a} D_{44} + 3 \frac{n C_{1}^2}{a} F_{44} - \frac{n C_{1}^2}{a^2} G_{44} \\ C_{54} &= -\frac{mn\pi}{l} D_{12} + \frac{mn\pi C_{1}^2}{l} H_{12} - \frac{mn\pi}{l} D_{66} + 2 \frac{mn\pi C_{1}}{l^2} F_{66} - \frac{mn\pi C_{1}^2}{l^2} F_{66} - \\ &- 6 C_{1a} D_{44} + 9 C_{1}^2 a F_{44} - 3 C_{1}^2 G_{44} + a A_{44} + C_{1} E_{44} + C_{1} D_{44} - 3 C_{1}^2 F_{44} + \frac{C_{1}^2}{a^2} G_{44} \\ \end{array}$$

Appendix 4

In Eq. (64) are defined as follows: M_{ij} The coefficients

$$m_{11} = -I_0$$

$$m_{12} = 0$$

$$m_{13} = \frac{m\pi C_1}{l} I_3$$

$$m_{14} = I_1 - C_1 I_3$$

$$m_{15} = 0$$

$$m_{21} = 0$$

$$m_{22} = -I_0 - 2\frac{C_1}{a} I_1 - \frac{C_1^2}{a^2} I_6$$

$$m_{23} = \frac{nC_1}{a} I_3 - \frac{nC_1^2}{a^2} I_6$$

$$m_{24} = 0$$

$$\begin{split} m_{25} &= -I_1 + C_1 I_3 - \frac{C_1}{a} I_4 + \frac{C_1^2}{a} I_6 \\ m_{31} &= \frac{m \pi C_1}{l} I_3 \\ m_{32} &= -\frac{n C_1}{a} I_3 \\ m_{33} &= -I_0 + (-\frac{n^2 C_1^2}{a} - \frac{m^2 \pi^2 C_1^2}{l^2}) I_6 \\ m_{34} &= \frac{m \pi C_1}{l} I_4 - \frac{m \pi C_1}{l} I_6 \\ m_{35} &= \frac{n C_1}{a} I_4 - \frac{n C_1^2}{a^2} I_6 \\ m_{41} &= C_1 I_3 \\ m_{42} &= 0 \\ m_{43} &= -I_1 + \frac{m \pi C_1}{l} I_4 - \frac{m \pi C_1^2}{l} I_6 \\ m_{45} &= 0 \\ m_{51} &= 0 \\ m_{52} &= -I_1 + C_1 I_3 - \frac{C_1}{a} I_4 - \frac{C_1^2}{a} I_6 \\ m_{54} &= 0 \\ m_{55} &= -I_2 + 2C_1 I_4 - C_1^2 I_6 \end{split}$$