
Journal of Mechanical Research and Application (JMRA), Vol. 10, No.1, 1399-(2020), 1-10 

 

. 

 

 

 

 

Journal of Mechanical Research and Application (JMRA), Vol. 10, No.1, 1399-(2020) 

ISSN: 2251-7383, eISSN: 2251-7391 

Vibrational analysis of a rotating nanotube conveying fluid 

based on Eringen’s nonlocal elasticity theory 

Mohammad Armaghani1, Mehdi Salehi2* 

1. Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran 

                   2*. Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran (Email address: 

mehdi.salehi@pmc.iaun.ac.ir) 

Received: 2020-04-04         Accepted:  2020-04-12 

Abstract: In recent years, a wide range of potential applications of nano-tubes have been reported. 

Vibrational behavior of rotating nano-tubes can be a challenging aspect of such structures. Due to their low 

dimension, classical theories fail to predict accurate behavior of nano-structures. In the present paper, 

Eringen’s non-local theory has been employed to study the vibration characteristics of a rotating nanotube 

conveying fluid. The effects of the scale parameter, mass, fluid velocity and angular velocity on the vibration 

characteristics of a rotating nanotube conveying fluid were investigated. The stability of the structure in 

different conditions was also discussed. The results show that dimensionless mass parameter do not affect the 

critical fluid velocity in a non-rotating nanotube conveying fluid. At the same time, critical velocity decreases 

by increasing nonlocal parameter. Also in a rotating nanotube, this point is a function of mass parameter and 

decreases and then increases to somewhere near the moving start point as β increases. A reciprocal relation 

was noticed between critical fluid velocity and critical angular velocity. Moreover, assuming constant mass, 

the area of the stability zone becomes wider as the nonlocal parameter increases. 
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1. Introduction 

Discovered by Ijima [1] in 1991, carbon nanotubes (CNTs) are one of the carbon allotropes along with 

other spatial structures such as graphene sheets (GSs). Ever since this discovery, there has been intensive 

research on the potential applications of these unique nanostructures. Exhibiting unique electric, chemical, 

mechanical, optical, thermal and mechanical properties, these structures hold substantial promise as building 

blocks for nano-electronics, nano-sensing, nano-actuating devices and nano-composites [2-5]. 

Owing to their hollow cylindrical shapes and extremely high elasticity and flexibility, nanotubes have been 

appropriate candidates for nano-electro-mechanical systems such as nano-sensors [6], nano-robots [7], nano-

motors [8], etc. In addition, nanotubes have been widely employed in nano-pipes [9], nano-containers [10], 

and nano-fluid and nano-gas storage devices [11]. Among different applications, the use of nanotubes to 

convey fluid is a special issue which requires further attention. 
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Toward analyzing nanostructures, their mechanical properties need to be determined. To this end, extensive 

research has been carried out to extract these properties accurately and reliably. Since controlled experimental 

investigation at nano scale is still difficult to achieve, various analytical and numerical methods of analysis 

have been presented recently. These methods can be generally classified as atomistic-based methods and 

continuum-based methods. 

Even with today’s computational advances, atomistic-based methods are expensive in computational 

requirements and most of the researchers are limited in the use of these methods. As a result, researchers have 

been constantly searching for convenient computational methods. Recently, scholars have increasingly turned 

their attentions to continuum structural mechanics models. Many continuum-based models have been 

presented during the last decade. These include the beam modeling by Govindjee and Sackman [12] and Yoon 

et al.[13], the cylindrical shell model by Ru et al.[14, 15] and the space truss model by Li and Chou[16, 17]. 

Experimental and atomistic simulation results have proven that there exists a significant effect in 

mechanical properties due to the small size of the structures. However, the classical theory of elasticity ignores 

these effects and as a result, fails to capture the small scale effects when dealing in nano scale [18, 19]. 

The continuum theories reflecting the size-dependency are therefore necessary for reliable prediction of the 

behavior of nanostructures. Various size-dependent continuum theories capturing this small-scale effect are 

reported. Some of these include couple stress elasticity theory [20], strain gradient theory [21] and modified 

couple stress theory [22].  

In the present investigation, employing Eringen’s nonlocal elasticity theory, a nonlocal beam model is 

employed to study the vibration characteristics of a rotating nanotube conveying fluid. This theory considers 

long-range interatomic interaction and efficiently avoids the classic continuum theory flaws in nano scale. 

Among previous works in this trend, there are only a few works using nonlocal elasticity theory. For instance, 

Ansari et al. [23] studied size-dependent nonlinear vibration of embedded fluid conveying single-walled boron 

nitride nanotubes. Also Pradhan and Murmu [24] studied flap-wise bending vibration of a rotating nano-

cantilever using nonlocal theory.  

A real-world application case for such an analysis is drug injection nanotubes. Rotational speed helps the 

injection needle when dipped in the tissue. Drug injection rate has a close relation with the speed of conveying 

fluid. In such a problem, some significant parameters like fluid velocity, angular velocity and induced mass 

are critical.  

 In the current investigation, the effects of the small-scale or nonlocal parameter, dimensionless mass 

parameter, fluid velocity and angular velocity on the vibration characteristics of a rotating nanotube conveying 

fluid are examined and discussed. 

2.  Governing equations 

Nonlocal elasticity theory is based on the idea that the stress field at any reference point of a structure is 

dependent not only on strain at that point but also on strains at all other points in the domain. Taking into 

account scale effects, internal size is considered as a material parameter in nonlocal elasticity theory. Murmu 

and Pradhan [25] presented governing equations of the vibration of nano-plates by using nonlocal continuum 

model.  

Figure. 1 depicts front and cross-sectional views of the structure under study. 
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Figurer 1) Front view (left) and cross-section (right) of the rotating nano-tube 

 

Considering Euler-Bernoulli beam theory, nonlocal constitutive relation for a beam can be written as: 

 

ℒ𝜎 = 𝐸𝜀 (1) 

 

Where 𝐸, 𝜎, 𝜀, and ℒ are elasticity modulus, nonlocal stress, nonlocal strain and nonlocal differential 

operator respectively. ℒ is defined as: 

 

ℒ = 1 − (𝑒0𝑎)2
𝑑2

𝑑𝑥2
 

(2) 

Where e0a (denoted by μ hereafter) is the nonlocal parameter. This parameter depends on the material type. 

The partial differential equations of motion in the explicit form are:  

 

𝑚�̈� − 2𝑚𝛺�̇� − 𝑚𝛺2𝜔 + 𝐸𝐼𝜔(4) = 𝐹𝜔  (3) 

𝑚�̈� − 2𝑚𝛺�̇� − 𝑚𝛺2𝜔 + 𝐸𝐼𝜔(4) = 𝐹𝜔 

 

 

Where 𝑢 and 𝑤 are transverse displacements in two directions normal to the nanotube axis and 𝛺 is the 

angular velocity. F̂w ̂ and F̂u ̂ are fluid induced forces along w and u directions, respectively. Considering ∆=

𝑤 + 𝑖𝑢 and using Laplace transformation, Eqs. (3) can be written as: 

 

𝐸𝐼𝛥(4) + 𝑚(𝑠2 + 2𝛺𝑖𝑠 − 𝛺2)𝛥 = �̂��̂� + 𝑖�̂��̂� (4) 

     

Forces inserted by the fluid can be written as [26]: 

 

�̂��̂� = −𝑀(𝑠2�̂� + 2𝑈𝑠�̂�′ + 𝑈2�̂�′′)

 

(5) 

�̂��̂� = −𝑀(𝑠2�̂� + 2𝑈𝑠�̂�′ + 𝑈2�̂�′′)
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Where 𝑈, 𝑀 and 𝑠 are fluid velocity, fluid mass and Laplace variable. Substituting Eqs. (5) in Eq. (4) and 

applying the nonlocal differential operator, the nonlocal equation of motion of a fluid conveying nanotube can 

be written as: 

 

𝐸𝐼�̂�(4) + 𝑚(𝑠2 + 2𝛺𝑖𝑠 − 𝛺2)�̂� − 𝜇2(𝑚(𝑠2 + 2𝛺𝑖𝑠 − 𝛺2)�̂�′′) + 𝑀(𝑠2�̂� + 2𝑈𝑠�̂�′ + 𝑈2�̂�′′)

− 𝜇2 (𝑀(𝑠2�̂�′′ + 2𝑈𝑠�̂�′′′ − 𝑈2�̂�(4))) = 0, 𝜇 =
𝑒0𝑎

𝑙
 

(6) 

 

Equation (6) can be rewritten in dimensionless form as: 

(1 − 𝜇2𝑢2)𝛿(4) − 2𝜇2𝑢𝛽
1
2�̃�𝛿′′′ + (−𝜇2�̃�2 − 2𝜇2(1 − 𝛽)𝑖Θ�̃� + 𝜇2(1 − 𝛽)Θ2 + 𝑢2)𝛿′′

+ (2𝛽
1
2𝑢�̃�) 𝛿′ + (�̃�2 + 2(1 − 𝛽)Θ𝑖�̃� + (𝛽 − 1)Θ2)𝛿 = 0 

(7) 

 

Dimensionless parameters in Eq. (7) are defined as: 

�̃� =
1

𝐿2
(

𝑀 + 𝑚

𝐸𝐼
)

1
2

𝑠, 𝛽 =
𝑀

𝑀 + 𝑚
, 

θ = (
𝑀 + 𝑚

𝐸𝐼
)

1
2𝐿2𝛺, 𝑢 = (

𝑀

𝐸𝐼
)

1
2

𝐿𝑈, 𝛿 =
�̃�

𝐿
, 𝜉 =

𝑧

𝐿
, 𝜇 =

𝑒0𝑎

𝐿
 

(8) 

3.  Results and discussion 

In order to attain the solution of the current problem, a pure harmonic vibration is assumed as: 

 

𝑤(𝑥, 𝑡) = �̅�(𝑥)𝑒𝑖𝜔𝑛𝑡 (9) 

 

Using the Galerkin’s technique, solution of the governing equations can be expressed by the following 

modal expansion series  

�̅�(𝑥) = ∑ 𝑐𝑖𝜙𝑖(𝑥)

𝑁

𝑖=1

 

(10) 

 

Where ic  denote the modal coordinates and ( )i x  shows the trial functions satisfying boundary conditions. 

The dimensionless trial functions are assumed to be the mode shapes of simply supported beam as follows: 

 

𝜙𝑖(𝜉) = sin (𝑖𝜋𝜉) (11) 

 

Substituting  Eq. (10) in Eq. (7) and integrating over the domain, the solution leads to: 

 

(�̅� + 𝑐̅𝑠 + �̅�𝑠2)[𝑐�̅�] = 0 (12) 

 

The frequencies can be obtained by calculation of the determinant of the following matrix: 
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[
0 𝐼 ̅

−�̅�−1(�̅�) −�̅�−1(𝑐̅)
] 

(13) 

 

Present problem has been solved by Paidoussis and Michael [40] using local elasticity theory. In 

Paidoussis’s work, the vibration of a non-rotating slender structure conveying fluid is studied. Neglecting terms 

containing μ and 𝜃 in Eq. (7), the effect of increasing fluid velocity on real and imaginary parts of the frequency 

is exhibited in Figure. 2 a, b. 

 

 
(a) 

 
(b) 

 

Figurer 2) Effect of increasing fluid velocity on   a) imaginary and b) real parts of the first frequency for non-rotating tube conveying 

fluid using local theory 

 

It can be easily noticed that frequency does not depend on β and the critical fluid velocity is π for any value 

of β. This result is compatible with the results presented by Paidoussis and Michael [40]. Considering μ=0.1, 

same diagram as Figure. 2b is plotted in Figure. 3a for a nanotube using nonlocal elasticity theory. Although 

instability start point has changed due to applying nonlocal effect, this point is not a function of β as in local 

elasticity theory. The effect of nonlocal parameter on instability start point is studied in Figure. 3b. In this 

diagram 0.5 is assigned to the dimensionless mass parameter while μ is changing. 
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(a) 

 
(b) 

Figurer 3) a) Effect of increasing fluid velocity on real part of the first frequency and   b) Effect of nonlocal parameter on instability 

start point for non-rotating nonlocal nanotube conveying fluid 

 

Stability of rotating nanotube conveying fluid is studied in the following. To this end, considering  

𝜇 = 0.1 and 𝜃 = 10, stability of the nanotube while increasing fluid velocity is studied in Figure. 4 

.  
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Figure 4) Effect of increasing fluid velocity real part of the first frequency for rotating nonlocal nanotube conveying fluid 

 

As shown in Figure. 4, assigning nonzero values to 𝜃, critical instability fluid velocity is a function of 𝛽. 

Also as 𝛽 is increasing from 0.1 to 0.9, critical velocity reduces and then gets back to its previous start point. 

As a result, instability fluid velocity for 𝛽 = 0.1and 𝛽 = 0.9 are very close. 

Considering μ=0.1 and u=2.8, Figure. 5 exhibits the effect of increasing rotational dimensionless parameter 

on real part of the first frequency for 𝛽 = 0.1. 

 

Figure 5) Effect of increasing angular velocity on real part of the first frequency for rotating nonlocal nanotube conveying fluid 

 

Comparing Figure. 4 and Figure. 5, a reciprocal relation can be noticed between critical fluid velocity and 

critical angular velocity . While 𝜇 = 0.1 , 𝜃 = 10 corresponds to the critical fluid velocity of 2.8 and 

considering 𝑢 = 2.8 leads to critical angular velocity of 10. This type of instability is called flutter. 

Critical fluid velocity is plotted against critical angular velocity in Figure. 6 a. It can be noticed that 

increasing 𝛽 leads to higher critical angular velocities. Since the area under the curves is where the system is 

stable and the exterior area is instability region, increasing 𝛽 leads to larger stability region. The effect of 

increasing nonlocal parameter is shown in Figure. 6 b. As μ is increased, both critical fluid velocity and angular 

velocity decrease drastically. 
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(a) 

 
(b) 

Figure  6)  a) Critical fluid velocity versus critical angular velocity and b) the effect of nonlocal parameter on critical fluid velocity 

and critical angular velocity 

4. Conclusion 

The free vibration of a simply supported rotating nanotube conveying fluid was investigated. A 

mathematical model based on Eringen’s nonlocal elasticity theory was utilized to formulate the transverse 

vibrations of the nanotube. The results show that dimensionless mass parameter do not affect the critical fluid 

velocity in a non-rotating nanotube conveying fluid. On the other hand, critical velocity decreases by increasing 

nonlocal parameter. In the case where the axial speed is zero, an increase in angular velocity, elevates the 

stiffness, resulting in higher critical speeds. Similar situation occurs when mass parameter is increased.   

In a rotating nanotube, instability start point is a function of mass parameter. While increasing mass 

parameter, critical speed decreases firstly and then increases to somewhere near the moving start point. A 

reciprocal relation was noticed between critical fluid velocity and critical angular velocity. Moreover assuming 

a constant value for 𝛽, stability area increases as nonlocal parameter increases. 

The physical highlights of the present study can be summarized as follows: 

- In the special case of non-rotating nanotube, the first instability mode is static while the second mode 

is a dynamic instability. This pattern maintained for all values of non-local coefficient and 

dimensionless mass. 
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- Increased size effect makes the tube more flexible which results in an expansion in stability region. 

Hence, applying non-classical methods can improve the predicted stability 

- There exists a direct relationship with rotating speed of the nanotube and it’s stability 

- Increased speed of flow in the tube, restricts the stability region of the system 

Nomenclature 

elasticity modulus 𝐸 

nonlocal stress 𝜎 

nonlocal strain 𝜀 

the nonlocal parameter  𝜇 

  

displacements in two perpendicular directions normal to the nanotube axis  𝑢, 𝑤 

  

the angular velocity Ω 

the forces inserted by the moving fluid in u and w directions 
�̂��̂� , �̂��̂� 

fluid axial velocity 𝑈
 

fluid mass 𝑀
 

Laplace variable 𝑠 
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