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Abstract: Torsion of elastic and poroelastic circular shaft of radially 

inhomogeneous, cylindrically orthotropic materials is studied with 

emphasis on the end effects example for extruder. To examine the 

conjecture of Saint-Venant’s torsion, we consider torsion of circular shaft 

with one end fixed and the other end free on which tractions that results in 

a pure torque are prescribed arbitrarily over the free end surface. Exact 

solutions that satisfy the prescribed boundary conditions point by point 

over the entire boundary surfaces are derived in a unified manner for 

cylindrically orthotropic shafts with or without radial inhomogeneity and 

for their coun- terparts of Saint-Venant’s torsion. Stress diffusion due to 

the end effect is examined in the light of the exact solutions.The present 

study enables us to assess Saint-Venant’s principle as applied to 

anisotropic, non-homogeneous poroelastic bodies in general and to 

evaluate the stress diffusion in torsion of radially inhomogeneous, 

cylindrically orthotropic cylinders in particular. The following 

conclusions can be drawn from the analysis. 
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1. Introduction  

Torsion is one of the interesting fields for 

researchers. In 1903, Prandtl [1] introduced 

the stress function of the Saint-Venant torsion 

and the method of membrane analogy [2]. He 

presented a membrane analogy for torsional 

analysis and proved the accuracy and 

efficiency of his approximation. Baron [3] 

studied torsion of hollow tubes by 

multiplying the connected cross sections. He 

used an iterative method to satisfy the 

equilibrium and compatibility equations. A 

computational method for calculating 

torsional stiffness of multi-material bars with 

arbitrary shape was studied by Li et Al. [4]. 

In this work, they considered additional 

compatibility and equilibrium equations in 

common boundaries of different materials in 



2  Torsion of cylindrically poroelasic circular shaft with radial … 

 

their formulation and, good results were 

obtained. Mijak [5] considered a new method 

to design an optimum shape in beams with 

torsional loading. In his work, cost function 

was torsional rigidity of the domain and 

constraint was the constant area of the cross-

section while shape parameters were co-

ordinates of the finite element nodes along 

the variable boundary. The problem was 

directly solved by optimizing the cost 

function with respect to the shape parameters. 

He solved this problem using finite elements 

(FE) method. Kubo and Sezawa [6] presented 

a theory for calculating the torsional buckling 

of tubes and also reported on experimental 

results for rubber models. However, this 

theory did not conform to experimental 

results. Lundquist [7] performed extensive 

experiments on the strength of aluminum 

shafts under torsion reported in 1932. 

Recently, Doostfatemeh et al. [8] obtained a 

closed-form approximate formulation for 

torsional analysis of hollow tubes with 

straight and circular edges. In this work, the 

problem was formulated in terms of Prandtl’s 

stress function. Also, accuracy of the 

formulas was verified by accurate finite 

element method solutions.  

In recent years, the composition of several 

different materials has been often used in 

structural components in order to optimize 

responses of the structures subjected to 

thermal and mechanical loads.   Since these 

pioneering works established the theory of 

torsion and solved many problems in 

engineering application, the torsion of a 

straight bar became a classical problem in the 

theory of elasticity, which was also presented 

as a numerical example in a seminal paper 

about the finite element method by Courant 

[9]. Some analytical solutions of the 

homogeneous section with various shapes are 

available in the literatures [10, 11]. The 

torsion of composite shafts has attracted 

many researchers’ attention in the 

development and application of composite 

materials. Muskhelishvilli [12] presented not 

only the governing equation and boundary 

condition of the torsion of composite bars, 

but also its solution in Fourier series for 

composite section with two sub-rectangles. 

This solution was extended later for multiple 

rectangular composite section by Booker and 

Kitipornchai [13]. Kuo and Conway [14–17] 

analyzed the torsion of the composite 

sections of various shapes. Packham and 

Shail [18] extended their work on two-phase 

fluid to the torsion of composite shafts. 

Ripton [19] investigated the torsional rigidity 

of composite section reinforced by fibers. 

Chen et al. [20] also analyzed exactly the 

torsion of composite bars. Apart from these 

analytical methods, numerical methods have 

also been employed to solve the torsion of the 

straight bars. Ely and Zienkiewicz [21] firstly 

solved the Poisson’s equation of the Prandtl’s 

stress function using finite difference method, 

and then they investigated the rectangular 

section with and without holes. Herrmann 

[22] utilized the finite element method to 

calculate the warping function of the torsion 

of irregular sectional shapes. The boundary 

element method was applied to solve the 

boundary integral equation of the warping 

function of the torsion in Refs. [23–26].  

Recently Poro's properties have been 

developed to overcome the problems 

associated with interfaces in traditional 

composite materials due to the abrupt change 

of the materials properties, as they 
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continuously vary with spatial coordinates 

[27]. Despite of less attention paid to this 

subject, Ely and Zienkiewicz [21] and 

Plunkett [28] presented the governing 

equation of the torsion of inhomogeneous 

material before the introduction of the 

conception of Poros, as there is no 

engineering significance at that time. Once 

the FGMs were fabricated and applied in 

engineering practice, Rooney and Ferrari 

[29,30] and Horgan and Chan [31] resumed 

the research on the torsion of FGM bars. 

More recently, Tarn and Chang [32] obtained 

the exact solution of the torsion of 

orthotropic inhomogeneous cylinders and 

also analyzed the end effect. In particular, the 

torsion problem for inhomogeneous isotropic 

elastic materials has been investigated 

recently in [33]. Poroelasticity is a theory that 

models the interaction of deformation and 

fluid flow in a fluid-saturated porous 

medium. The deformation of the medium 

influences the flow of the fluid and vice 

versa. The theory was proposed by Biot [34-

36]. As a theoretical extension of soil 

consolidation models developed to calculate 

the settlement of structures placed on fluid-

saturated porous soils, The historical 

development of the theory is sketched by de 

Boer (1996). The theory has been widely 

applied to geotechnical problems beyond soil 

consolidation that are the most notably 

problems in rock mechanics. There has been 

recently a growing interest in the context of 

non-homogeneous and/or anisotropic shaft. 

Arghavan and Hematiyan[37] analyzed the 

Torsion of functionally graded hollow tubes. 

Batra [38] ,Horgan and Chan [39] work on 

Torsion of a functionally graded cylinder; 

Rooney and Ferrari [40]; Udea et al [41] and 

Yaususi and Shigeyasu [42] analyzed the  

Torsion and flexure of inhomogeneous 

elements; Khansanami and Jabbari [43] work 

on torsion of proElastic shaft. 

2.  Governing Equations 

Stress-Stress Function Formulation[44] 

The stress formulation leads to the use of a 

stress function similar to the results of the 

plane problem discussed. Using the 

displacement form, the strain-displacement 

relations give the following strain field: 
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Note that the strain and stress fields are 

functions only of x and y. For this case, with 

zero body forces, the equilibrium equations 

are reduced to 
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Rather than using the general Beltrami-

Michell compatibility equations, it is more 

desirable to develop a special compatibility 

relation for this particular problem. This is 

easily done by simply differentiating (5) with 

0==== xyzyx eeee

)α
∂

∂
(

2

1
x

y

w
e yz +=



4  Torsion of cylindrically poroelasic circular shaft with radial … 

 

respect to y and (6) regarding x and 

subtracting the results to get    

μα2
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This represents an independent relation 

among the stresses developed under the 

continuity conditions of w(x,y). 

Relations (7) and (8) constitute the 

governing equations for the stress 

formulation. The coupled system pair can be 

reduced by introducing a stress function 

approach. For this case, the stresses are 

represented in terms of the Prandtl stress 

function ),(φφ yx= by 
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The equilibrium equations are then 

identically satisfied and the compatibility 

relation gives the following relation: 
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Thus, this single relation is the governing 

equation for the problem and (11) is a 

Poisson equation that is amenable to several 

analytical solution techniques. 

To complete the stress formulation we 

now must address the boundary conditions on 

the problem. As previously mentioned, the 

lateral surface of the cylinder S is to be free 

of tractions, and thus 

 

 
FIGURE 1 : Differential surface element. 
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The first two relations are identically 

satisfied because
  

0τσσ ==== zxyyx n   on 

S. To investigate the third relation, consider 

the surface element shown in Figure 1. The 

components of the unit normal vector can be 

expressed as 

dn

dy

ds

dx
n

dn

dx

ds

dy
n yx ==== , (13) 

 

Using this result along with (7,8) in (12)3 
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which can be written as  
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This result indicates that the stress 

function   must be a constant on the cross-

section boundary. Because the value of this 

constant is not specified, we may choose any 

convenient value and this is normally taken to 

be zero. Next consider the boundary 

conditions on the ends of the cylinder. On 

this boundary, components of the unit normal 
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become 1,0 ±=== zyx nnn , and thus the 

tractions simplify to 

 
(16)  

 

 

Recall that we are only interested in 

satisfying the resultant end-loading 

conditions, and thus the resultant force 

should vanish while the moment should 

reduce to a pure torque T about the z-axis. 

These conditions are specified by 
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zT , conditions (17-3 to 17-5) are 

automatically satisfied. Considering the first

 

condition in set (17), the x component of the 
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Using Green’s theorem,
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Because  is zero on S, the boundary 

integrals in (20-1 and20-2) will vanish and 

relation (19) simplifies to 

dydxT
R

∫∫φ2= (21) 

3.  Results  and discussion 

As a simple measure to estimate the stress 

disturbance from the end in a long circular 

shaft, which is the distance measured from the 

end beyond which the series terms contribute 

only 1% in magnitude to the deformation and 

stresses. In other words, the deformation and 

stresses in the region beyond L from the end are 

essentially  inde- pendent of the load 

distribution over the end surface so that the 

Saint-Venant solution should be applicable. 

Of course, other percentage could be chosen 

for the estimation and the smallest eigenvalue 

k1 should be used to determine the largest L. 

Knowing λ1b= 5.1355 for a 

homogeneous shaft, so 

L=ln100/kλ1=0.8967b√          (22)  

 

which suggests that the end effect is far-

reaching for strong anisotropy (c44>>c66). 

Since c44 = c66 for isotropic materials, L = 

0.8966b, suggesting that the stress disturbance 

is indeed confined to a local region near the 

end in a long homogeneous isotropic shaft. 

Tables 1 and 2 show the smallest eigenvalue 

λ1 associated with the parameter of the radial 

inhomogeneity µ, and the characteristic 

decay length L of long circular shafts in 

connection with µ and the material parameter  

k=√        to show the effect of 

anisotropy, we take c44/ c66 = 1, 4, 16, 100 for 

computation. All cases are admissible in that 

they satisfy the requirement of positive-

definiteness of the strain energy. Although    

c44/c66 = 100 appears to be uncommon in 

practice, the value is as- 

 

Table 1 

The smallest eigenvalue for various inhomogeneity parameters 

 

Table 2 

Characteristic decay length of long circular shaft 

  

sumed in the interest of demonstrating the 

effect of strong anisotropy. Notably, the 

characteristic decay length could reach as far 

as 9b from the free end of a strongly 

orthotropic (c44 = 100c66) circular shaft, not 

to the expectation based on Saint-Venant’s 

conjuncture.  

µ 0 0.1 0.2 0.5 1.0 2.0 3.0 

λ1b 5.135 5.262 5.388 5.763 6.380 7.588 8.771 

L Isotropic c44 = 4c66 c44 = 16c66 c44 = 100c66 

µ= 0 0.897b 1.794b 3.587b 8.967b 

µ= 0.5 0.799b 1.598b 3.196b 7.991b 

µ= 1.0 0.722b 1.447b 2.887b 7.218b 
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To examine quantitatively the Saint-

Venant conjecture, we consider two types of 

torsional load prescribed over the end 

surface. Load type 1: linearly distributed 

load, p(r)= qr. Load type 2: tangential ring 

load applied at the boundary of the circular 

section, p(r) = 0.25qb2δ(r — b), where δ(r — 

b) is the Dirac-delta function. Both loading 

types give rise to a pure torque of the same 

magnitude. While the linearly distributed 

load is continuous over the end surface, the 

tangential ring load is concentrated at r = b. 

The influence of the radial inhomogeneity 

and material anisotropy are studied by taking 

the material parameters: µ= 0 (homogeneous 

material), µ = 0.5 (linearly distributed radial 

inhomogeneity) and µ= 1.0 (quadratically 

distributed radial inhomogeneity); k= 1  (c44 

= c66,isotropic  material),k= 0.5; 0.25; 0.1  

(orthotropic  materials with c44 = 4c66; c44 

= 16c66; c44 = 100c66, respectively) in the 

computation. In all the figures presented in 

the following the displacement and stresses 

have been made dimensionless. 

Fig. 1 shows the variations of µӨ, σөz and 

σrө at r = 0.5b in the axial direction for 

cylindrically orthotropic, homogeneous shafts 

(µ= 0) subjected to the tangential ring load 

(load type 2). When a homogeneous shaft is 

subjected to linearly distributed load (load 

type 1), the deformation and stress 

distribution are identical to those of Saint-

Venant’s torsion. It can be observed that the 

end effect is far-reaching in circular shafts 

with strong cylindrical orthotropy (c44 = 

16c66; c44 = 100c66), whereas the stress 

disturbance in an isotropic shaft 

 

 

 

 
Fig. 1.  Axial distribution of µӨ, σөz and σrө at r = 0.5b in homogeneous shafts under tangential ring load  

(load type 2). 
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Fig. 2. Axial distribution of uӨ, σөz and σrө at r 

= 0.5b in non-homogeneous shafts (µ = 0.5) under 

linearly distributed load (load type 1) and tangential 

ring load (load type 2). 

 

 

Fig. 3. Axial distribution of uӨ, σөz and σrө 

at r = 0.5b in non-homogeneous shafts (µ= 1.0) 

under linearly distributed load (load type 1) and 

tangential ring load (load type 2.) 

 

 

is confined to a local region near the free 

end. While the deviations of uӨ and σөz σөz 

from their Saint-Venant coun- terparts are 

remarkable, the end effect on σrө is localized 

to the vicinity of the free end where the 

tangential ring load is acting. 

Figs. 2 and 3 display the effects of radial 

inhomogeneity and prescribed torsion loads 

on the displacement and stress distribution at 

r = 0.5b along the z axis in circular shafts 

with radial inhomogeneity µ = 0.5 and µ = 

1.0, in which the material is assumed to be 

isotropic (c44 = c66) and strongly orthotropic 

(c44 = 100c66), respectively. Both loading 

types exhibit end effects. The effect is far-

reaching in the shaft with strong anisotropy 

subjected to the tangential ring load. The 

radial inhomogeneity plays a less important 

role in the stress distur- bance in view that the 

deviations from the Saint-Venant 

counterparts in the case of isotropy are 

confined to the region of a diameter from the 

free end for both cases of µ= 0.5 and µ = 1.0 

for the reason that the characteristic decay 

length depends upon the smallest eigenvalue 

λ1 which varies slightly for different µ, as 

given in Table 2.  

Figs. 4–7 show the radial variations of the 

displacement and stresses at the sections z = 

0 and z = 4b in the shafts subjected to two 

types of torsion load with material orthotropy 

and radial inhomogeneity. The section z = 0 

is the fixed end; the section z = 4b is chosen 

because it is generally expected that stress 

disturbance occurs within a diameter from the 

end according to the conjecture of Saint-

Venant’s torsion. The results show that at the 

fixed end Saint-Venant’s solutions are in 

good agreement with the exact solution, 
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except for a slight difference in σөz the case 

of strong orthotropy under tangential ring 

load (Fig. 7). Surprisingly, the non-vanishing 

stress σөz at the fixed end does not vary 

significantly compared with that at z = 4b, 

which can be attributed to the fact that the 

fixed end is subjected to the same resultant 

torque as any other section of the circular 

shaft under torsion; the prescribed BC affects 

only the stress distribution across the section. 

As for the displacement and stresses at the 

section z = 4b, Fig. 4 reveals that the stress 

disturbance is confined to the vicinity near 

the end where the torsion load is applied; 

small deviation from the exact solution is 

observed only in σrө. Thus Saint-Venant’s 

conjecture is applicable to torsion of isotropic 

circular shafts even with radial inhomogeneity. 

In the case of anisotropic materials the situation 

is different in view of Figs. 5– 

7. The stresses are greatly disturbed by the 

traction BC at z = 5b. As shown in Figs. 6,7, 

the end effect is sig- 

 
Fig. 4. Radial distribution of µӨ, σөz and σrө 

at z = 0; 4b in  isotropic shafts under linearly 

distributed load (load type 1) and tangential ring 

load (load type 2). 

 
Fig. 5. Radial distribution of µӨ, σөz and σrө 

at z = 0; 4b in orthotropic shafts (c44 = 4c66) 

under linearly distributed load (load type 1) and 

tangential ring load (load type 2.) 

 

 

 

 

Fig. 6. Radial distribution of µӨ, σөz and σrө 

at z = 0; 4b in orthotropic shafts (c44 = 16c66) 

under linearly distributed load (load type 1) and 

tangential ring load (load type 2.) 
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Fig. 7. Radial distribution of µӨ, σөz and σrө at z 

= 0; 4b in orthotropic shafts (c44 = 100c66) under 

linearly distributed load (load type 1) and 

tangential ring load (load type 2.) 

 

orthotropy subjected to tangential ring 

load. Remarkable differences exist between 

the exact solution and the Saint-Venant 

solution in which the exact traction BC are 

relaxed by the statically equivalent ones.

4. Conclusions 

The present study enables us to assess Saint-

Venant’s principle as applied to anisotropic, non-

homogeneous poroelastic bodies in general and to 

evaluate the stress diffusion in torsion of radially 

inhomogeneous, cylindrically orthotropic 

cylinders in particular. The following conclusions 

can be drawn from the analysis. 

 The classical solution based on the 

Saint-Venant conjecture is useful for 

torsion of isotropic circular shafts 

with or without radial inhomogeneity. 

The stress disturbance is confined to 

the local region near the end where 

the torsion load is applied. 

 The stresses at the fixed end of 

circular shafts under torsion can be 

evaluated using the solution based on 

Saint-Venant’s conjecture except in 

the case of strong anisotropy. 

 Radial inhomogeneity of the material 

affects the deformation and stress 

distribution in cylindrically 

orthotropic shafts, but it is not 

significant in evaluating the stress 

disturbance due to the end effect. 

 The end effect is far-reaching and 

cannot be ignored in torsion of 

circular shafts with strong anisotropy. 

The Saint-Venant conjecture should 

be used with caution in such cases. 
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