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ABSTRACT  

Flow-rate measurement in rivers under different conditions is required for river management 

purposes including water resources planning, pollution prevention, and flood control. This 

study proposed a new discharge estimation method by using a mean velocity derived from a 

2D velocity distribution formula based on Tsallis entropy concept. This procedure is done 

based on several factors which reflect the basic hydraulic characteristics such as river bed 

slope, wetted perimeter, width, and water level that are easily obtained from rivers. This 

method avoids putting the environment at risk and significantly reduces time and costs. 

Validation of the method was carried out by comparing the results with measured values in the 

experimental sites. Predicted results are in good agreement with the measured data in a cross 

section of the Tiber River, Italy. Extended usage of this method will make it possible to 

measure discharge and better estimate the flow rate conveyed from rivers under different 

hydraulic conditions. 
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1. Introduction 

A fast and accurate estimation of the river 

discharge is the most interesting issue for a 

large number of engineering applications such 

as real time flood forecasting and also water 

resources management. The accuracy of the 

discharge estimation at  gauged river site 

depends on the velocity  data accessibility for 

high stages and on the reliability of the model 

to turn recorded stages into discharge  

hydrographs. As far as it’s related to the 

velocity measurement for high stages, it can be 

considered by sampling the maximum  flow 

velocity which is located in the upper portion 

of the flow area, wherein velocity points can be 

easily sampled during high flow conditions 

(Chiu and Said, 1995). Indeed, many  studies 

have been shown that the two-dimensional 

velocity distribution and, hence, the mean flow 

velocity can be obtained  by starting the 

maximum flow velocity, such as proposed  by 

Chiu (1987, 1988) who derived the probability 

distribution function of velocity through the 

entropy theory (Shannon, 1948).  

Discharge estimation by using the 

methods based on hydraulic  routing of the 

recorded flood stage hydrograph can  be 

considered as a stronger and more reliable 

tool than the  other current and common 

methods. However, there is the lack of 
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topographical  data of river cross-sections 

along with the issue  of the Manning’s 

roughness coefficient calibration  and often  

inhibits the use the hydraulic models. The 

easiest way is to relate the Manning’s 

roughness coefficient  to the physical 

characteristics of river channel such as bed 

material,  irregularity, vegetation, etc. and 

the suitable  value is selected from tables 

(Chow et al., 1988), formulae (Cowan,  

1956) or photographs (Barnes, 1967). 

Specifically, the calibration is performed for 

each velocity measurement by assigning the 

observed discharge  and minimizing the 

error in simulating stage and/or  mean flow 

velocity (Moramarco and Singh, 2010). 

Previous studies on discharge estimation are 

as follows. Leon et al. (2006) analyzed the 

relation between stage and  discharge and 

also proposed  a discharge estimation 

method by using the Muskingum. Sahoo et 

al. (2006) analyzed the correlation between 

stage and discharge for the Hawaii Basin by 

applying Artificial Neural Network (ANN) 

and developed a model for estimating the 

discharge of natural rivers. In addition, Je-

seung et al. (2005) estimated the mean 

velocity of entire cross-section and then 

estimated discharge by using linear 

continuity equation in order to improve the 

conventional estimation of flood discharge 

based on the stage- discharge curve for most 

of Korean rivers. Moreover, Lee, Chan-joo 

et al. (2009) analyzed the results of field 

measurements by using an electronic float 

system developed with GPS and RF 

communication, and proposed a discharge 

measuring method. On the other hand, Choo 

(2002) implemented velocity distribution by 

using point velocity in Chiu’s 2-D velocity 

distribution formula, and proposed a river 

discharge estimation method by applying 

the velocity distribution to Chiu’s 2-D mean 

velocity formula. In addition, Kim et al. 

(2008) proposed a flow rate estimation 

method for natural rivers by using Chiu’s 

velocity distribution formula and maximum 

velocity estimation. Choo et al. (2011) 

developed new discharge estimation method 

by using the Manning and Chezy equations 

reflecting hydraulic characteristics.  

Previous studies showed limitations in 

reflecting the hydraulic characteristics of 

the rivers. Therefore, the aim of this work is 

to address the discharge estimation at a 

gauged river by using the Tsallis entropy. A 

formula is proposed for estimating river 

mean velocity by using factors which are 

easily obtained from rivers including the 

unique hydraulic characteristics of a river 

such as area, width, wetted perimeter and 

river bed slope. The formula was derived 

using 2-D velocity formula based on tsallis 

entropy concept. Then the measured data 

obtained from published work are used to 

support the validity and applicability of the 

model. Predicted values of cross sectional 

discharges are in good agreement with field 

measured data.  

2. Concept and Theory of Entropy 

Entropy, as the second law of thermo-

dynamics, is a macroscopic property of a 

system which measures the microscopic 

disorder within the system. In informational 

theory, Shannon (1948) formulated the 

concept of entropy as a measurable infor-

mation or uncertainty associated with the 

random variable or its probability distribution. 

About a decade later Jaynes (1957) showed 

that an equilibrium system under steady 

constraints tends to maximize its entropy. 
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This is commonly known as the Principle of 

Maximum Entropy (POME). Entropy can be 

considered as a useful characteristic of any 

probability distribution and is widely used in 

environmental engineering and water in-

cluding geomorphology, hydrology, and 

hydraulics. 

Shannon (1948) defined a quantitative 

measure of uncertainty associated with a 

probability distribution of a random variable in 

terms of entropy, H, called Shannon entropy or 

informational entropy as follows (Chiu, 1978): 

   
maxu

0
duuflogufH                             (1) 

Where f(u) is the continuous probability 

density function of random variable u, and umax 

is the maximum velocity. Shannon entropy 

along with the principle of maximum entropy 

(POME), can be applied to determine the 

probability distribution of a given random 

variable.  

Many studies have shown that the two-

dimensional velocity distribution and, hence, 

the mean flow velocity can be obtained starting 

from the maximum flow velocity, such as 

proposed by Chiu (1987, 1988) who derived 

the probability distribution function of velocity 

through the entropy theory (Shannon,1948). 

Chiu and his associates derived a relationship 

between the mean velocity and the maximum 

velocity at the cross section according to the 

probability and Shannon entropy theories as 

follows: 

)M(
M

1

1e

e

u

u
M

M

max

mean 


                          (2) 

Where )(M  is the entropy function. 

Tsallis entropy is a generalization of the 

standard Boltzmann–Gibbs entropy, which 

was proposed by Tsallis (1988) as a general 

form of the Shannon entropy. The entropy, 

H(u), for a continuous variable, u, is 

expressed quantitatively in terms of the 

probability as (Luo and Singh, 2011): 

 




 


 

maxu

0

m
du)u(f1

1m

1
H                      (3) 

Where m is a real number. For m=1, Eq. 

(3) reduces to the Shannon entropy. Thus the 

Tsallis entropy is defined as a generalization 

of the Shannon entropy. Similar to Shannon 

entropy, Tsallis entropy can be coupled with 

the principle of maximum entropy (POME) to 

achieve the probability distribution of a given 

random variable. 

3. Velocity Distribution based on Tsallis 

Entropy 

The probability density function f(u), must 

satisfy the properties of probability space 

(Chiu, 1987). There are two constraints, 

probability and continuity on f(u). Since 

integration of the probability density function 

of velocity must always be unity, one can 

write: 

1du)u(fC maxu

01                                      (4) 

The second constraint 
2C  can be obtained 

from the mass conservation as: 

udu)u(ufC maxu

01                                    (5) 

Where u  is the cross-sectional mean 

velocity or Q/A, where Q is the discharge 

passing through a cross-sectional area of A. 

In order to obtain the least biased 

probability distribution of u, f(u), the method 

of Lagrange multipliers and constraints given 

by Eq. (4) and (5) for m>0 Tsallis entropy (Eq. 

(2)) becomes as: 
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Where 
0  and 

1  are Lagrange para-

meters. By differentiating Eq. (6) with 

respect to f(u) and equating the derivative of 

the function to zero, probability density 

function is achieved: 
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In which: 
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Eq. (8) defines the least biased probability 

distribution of the velocity that satisfies Eq. (4) 

and (5) and is based on Tsallis entropy. 

Accordingly, velocity for a specific point 

in the 2-D cross-section coordinate system 

is defined as: 


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Where u=velocity at r; r =independent 

variable with which u develops such that 

each value of r corresponds to a value of u; 

maxr =maximum value of r where the 

maximum velocity 
maxu occurs; and 

0r

=minimum value of r which occurs at the 

channel bed where u is zero. Equation (9) 

means that if r is randomly sampled a large 

number of times within the range of {
0r ,

maxr } 

and the corresponding velocity samples are 

obtained, the probability of velocity falling 

between u and u+du is f (u) du. 

Using Eq. (8), the probability density 

function is defined as Eq. (10): 

1
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         (10) 

If Eq. (7) is solved and rearranged using 

Eq. (9), a 2-D velocity distribution formula 

is obtained as in Eq. (10). 
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If Eq. (8) is substituted into Eq. (4) and 

rearranged, Eq. (12) is obtained: 
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By integration: 
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If Eq. (8) is substituted into Eq. (5) and 

rearranged, Eq. (14) is obtained: 
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By integration: 
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Based on Luo and Sing (2001) proposition 

and using both field and experimental data, 

the feasible range of m is from 0 to 2. For 

fixing m= 2, the two parameters 
1  and 

V  

have simple analytical expressions obtained 

by solving Eq. (13) and (15) as: 

)u2u(
u

12
max3
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1 

   

                            (16) 

max

2

max1

V
u2

u4 



                                          (17) 

With 
maxu  and u known, the two 

parameters can be easily obtained by 

substituting these two terms into Eq. (16) 

and (17). To make the velocity distribution 

equations simpler, a new dimensionless 

parameter M is introduced, which is 

mathematically defined as: 

2

max1uM 
  
                                             (18) 

Based on mathematical definition of the 

parameter M, its mathematical range lies 

between (-12, 12). M is directly linked to 

the ratio between mean and maximum 

velocity, serving as a new key hydraulic 

parameter it can play an important role in 

understanding open channel flow. 

4. Definition of r Coordinate System  

By defining r in terms of physical plane 

coordinates, Eq. (10) can describe two-

dimensional velocity distribution. Eq. (10) 

indicates that 
0 max 0/r r r r   is equal to the 

cumulative distribution function, or the 

probability of velocity being less than or equal 

to u. Therefore, the probability concept is 

needed to identify an expression for r. If a large 

number of r values are randomly generated 

within the range of (
0r ,

maxr ) and substituted 

into Eq. (11) to obtain a set of velocity 

samples, the probability of velocity being 

between u and u+ du is p(u) du. By such a 

concept, 
0 max 0/r r r r   is equal to the area to 

the total cross-sectional area ratio, that in the 

former the velocity is less than or equal to u(r). 

For example, for a wide  0max0 rr/rr

D/y)BD/()BY(  , where B is channel width, 

D is flow depth, and y is vertical distance from 

the channel bed. For an ax symmetric flow in a 

circular pipe in which curves are concentric 

circles, 22

0max0 R/r1rr/rr   where r is 

radial distance from the pipe center; and R is 

pipe radius (Chiu et al. 1993). In such a way,

0 max 0/r r r r   may be defined to suit flows in 

various channels and conduits. In both cases

0 0r  ; 
max 1r  and hence, rrr/rr 0max0  . 

Equations of 
0 max 0/r r r r   for two-

dimensional velocity distributions in open 

channels are shown in Fig. 1. 

The following equations proposed by Chiu 

and Chiou (1986) are found to be suitable for 

the orthogonal curvilinear r-s coordinates. 

)1YZ(exp)Z1(Yr i    
  
                (19) 

In which 

hD

y
Y

Z
Z

y

y

ii 












                      (20) 

Eq. (19) represents a set of curves. Each 

curve has a value of r. The channel bed is a 

curve itself in which
0r r . In Eq. (19) and 

(20), as shown in Fig. 1, y is the vertical 

coordinate measured from the channel bed 

along the y – axis which is defined as the 
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special vertical coordinate that passes 

through the point where the maximum 

velocity in the channel cross section occurs; D 

 
(a) 

 
(b) 

Fig. 1. Velocity distribution and curvilinear 

coordinate system (a) h>0, and (b) h<0 

is the water depth at the y-axis; z is the 

coordinate in the transverse direction, 
i for i 

equal to either 1 or 2 is the transverse distance 

on water surface; and 
y , 

i , 
i  and h are 

parameters characterizing geometry. 

Among these parameters, 
y and 

i  
approach zero if the channel cross section 

tends towards the rectangular shape. These 

values increase as the cross-section shape 

deviates from the rectangular shape. 

Parameter h controls the shape and slope of 

the curve especially near the water surface 

and in the vicinity of the point of maximum 

velocity. The value of h may vary from –D 

to +∞. If h<0, 
maxu occurs below the water 

surface and h  is the depth of 
maxu  below 
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the water surface; and along the y-axis, 

velocity increases with y only up to y=D-h, 

and decreases with y in the region (D+h) < y 

≤ D. If h ≥ 0, 
maxu

 
occurs at the water 

surface. If h=0, curves are perpendicular to 

the water surface. If h>0, h is a parameter 

that can be used to finely tune the slope of 

the curve. If the magnitude of h is very large, 

curves are parallel horizontal lines such that 

the velocity varies only with y and r 

approaches y/D. Such a situation tends to 

occur in very wide channels. S curves shown 

in Fig. 1 are orthogonal trajectories of r 

curves that can be derived from Eq. (19) as: 
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                  (21) 

In which S is negative only when y>D−h 

and h > 0. In other cases S is positive. 

4. Mean Velocity Estimation 

By substituting the two parameters of 1 , 

v  into Eq. (7), the probability density 

function is obtained as: 

)u
u

M

u2

M4
(

2

1
)u(f

2

maxmax






    

                      (22) 

If Eq. (21) is substituted into Eq. (4) and 

solved, a 2-D mean velocity equation is 

obtained as follows: 

)M(
24

M12

u

u
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




    

                           (23) 

This equation can be simplified to Eq. 

(24) as: 

maxu)M(u 
  
                                          (24) 

Where ( )M  is an indicator showing the 

linear relation between the mean velocity and 

the maximum velocity as in Eq. (23) and is 

called equilibrium state ( )M . If Eq. (5) is 

substituted into Eq. (17) and rearranged, Eq. 

(25) is obtained. 
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24
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                           (25) 

5. Proposed Mean Velocity Equation 

If the bottom shear stress of channel is 

expressed as Eq. (26) and 
du

dr
is estimated 

from Eq. (9) and rearranged, results are as 

follows: 
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rrryy

0
dr

du

h

1

dy

du




























 

  

               (26) 

Where 
0  is bottom shear stress,   is 

viscosity coefficient of the fluid, and 
rh  is 

unit conversion factor indicating length unit 

dy multiplying by 
rh and by the relation of: 

1
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In which y is the vertical distance from 

the channel bed, D is the water depth at y-

axis and h is the depth of 
maxu  below water 

surface. In addition, the mean shear stress 

can be expressed as Eq. (27). 
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               (27) 

Where 
0  is mean shear stress of the 

bottom boundary layer, 
rh is mean value of 

rh  according to the channel boundary layer, 

  is water density, g is gravitational 

acceleration, R is hydraulic radius, and 
fl  is 
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energy gradient. 

du

dr  
in Eq. (26) can be expressed as Eq. (28). 
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Because u = 0 in the bottom boundary 

layer of channel, 
0 0r  and 

max 1r 
 
and as a 

result
max 0 1r r  . Accordingly, Eq. (18) is 

rearranged to Eq. (20). 
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If Eq. (29) is substituted into Eq. (27) 

and rearranged, Eq. (30) is obtained: 

VfgRl
h

2
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If Eq. (30) is substituted into Eq. (25) 

and rearranged, new mean velocity is 

derived as in Eq. (31). 
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Where: 
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Accordingly, Eq. (32) means that if there 

are measured values of F (M), 
rh  ،g ،R ،

fl  ، v  

indicating the hydraulic characteristics of the 

river, the mean velocity can be calculated and 

the flow rate can be estimated by multiplying 

the velocity by the cross-sectional area. 

6. Discharge Estimation based on the 

Mean Velocity Formula 

Based on the 2-D velocity formula using 

the Tsallis entropy concept, a mean velocity 

formula was derived as Eq. (31) from the 

relation between the sum of kinematic 

coefficient of viscosity and velocity gra-

dient perpendicular to the channel boundary 

and the mean shear stress formula. The 

hydraulic characteristic factors in this 

equation are easily measured from rivers. 

F(M) is estimated from Eq. (31) by 

substituting the measured values of mean 

velocity, river energy slope, hydraulic 

radius, kinematic coefficient of viscosity, 

etc., and then entropy parameter M is 

calculated. Using the calculated M, )M( is 

calculated from Eq. (23) and 
maxu  is also 

calculated by using Eq. (24). With all the 

data, )M( at the whole river equilibrium 

was calculated. Through this process, the 

mean velocity was estimated using the 

relation between maximum velocity 
maxu  

and overall equilibrium state )M( . There-

fore, the discharge estimation process using 

the proposed method is as follows:  

1. Estimate M by substituting F (M),
0r

h , g ،R, 

fl , v for each cross-section of the channel, 

and then estimate ( )M . 

2. Estimate the maximum velocity of each 

cross-section from Eq. (24). 

3. From Eq. (22) estimate the overall 

equilibrium state )M(  which means the 

gradient of the linear relation. Accurately 

estimate the mean velocity using )M( . 

4. Test the accuracy of the flow rate based on 

estimated and measured flows. 

7. Filed Data  
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To evaluate the accuracy field data was 

used in this study. Velocity data from four 

gauged sections in the upper Tiber River basin 

in Central Italy (shown in Fig. 2) were used for 

evaluating 2D velocity distribution which were 

collected from seven floods occurred from 

1984 to 1997. Mean velocity data collected 

during a period of 20 years at the four gauges 

sections, three of which are located along the 

Tiber river at 68 km (Santa Lucia), 109.2 km 

(Ponte Felcino) and 137.4 km (Ponte Nuovo) 

and one section along the Chiascio River, a 

tributary of the Tiber River, at 85 km 

(Rosciano) were used to evaluate the mean 

velocity computation using entropy. Discharge 

values for different events varied between 
31.5 /m s  and 

3537 /m s  with the mean 

velocity ranging between 0.12 m/s and 2.42 

m/s and the maximum water depth between 

0.8 m and 6.7 m. Number of velocity 

measurements and flow characteristics of each 

station are summarized in table 1. Selected 

sections were equipped with a remote 

ultrasonic water level gauge, while the velocity 

measurements were made by current meter 

from cableways. In particular, depending on 

the cross-sectional flow area, the number of 

verticals carried out changed from 4 up to 10, 

and for each vertical at least 5 velocity points 

were sampled. The main charac-teristics of the 

selected flood events are shown in tables 2 (a) 

and (b). 

8. Analysis of the Results 

Applicability of the liner relationship 

between the mean and the maximum flow 

velocities estimated through Tsallis entropy 

model was investigated by using data collected  
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Fig .2. Upper Tiber River basin with location of river gauging stations (Moramarco et al., 2004) 

during a period of 20 years in four gauged river 

sections in central Italy. The relations 

between the cross sectional mean velocity 

and the maximum velocity estimated in four 

gauged sites of Ponte Nuovo, Ponte Felcino, 

Rosciano, and Santa Lucia along Tiber river 

are shown in Fig. 3(a)-3(d), respectively.  

The value of the Tsallis entropy parameter 

M for the four gauged sections was found to be 

constant and equal to 3.51. The same value can 

be estimated for other river sections located 

within the investigated river reach. 

It was found essential to compare the pro-

posed model with Chiu model for the accurate 

estimation of the discharge. Mean flow 

velocity to maximum velocity ratio at selected 

gauged river sections was found to be constant 

and showed that the parameter 667.0)M(   

and then, Shannon entropy value based on Eq. 

(2) was obtained as M=2.15. 

Table 1. Flow characteristics: Discharge (Q) and maximum water depth (D) of the available velocity 

measurements (N) for four gauges 

D(m) 3( / )Q m s N Location 

0.9-5.2 1.5-215 42 S.Lucia 

0.8-6.2 2.3-412 34 P.Felcino 

1.1-6.7 5.4-537 51 P.Nuovo 

1.3-3.3 3-160 38 Rosciano 
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Table. 2(a): Main characteristics of selected events: Maximum velocity
maxu , mean velocity

mu  

m ( / )u m s 
max ( / )u m s Data Location 

1.085 2.023 Nov. 15, 1982 P.Nuovo 

1.736 2.597 Nov. 18, 1996 P.Nuovo 

1.820 2.719 Jun. 03, 1997 P.Nuovo 

1.784 2.583 May 28, 1984 Rosciano 

1.525 2.447 Nov. 20, 1996 Rosciano 

2.120 3.365 Apr. 21, 1997 P.Felcino 

1.873 2.437 May 28, 1984 S.Lucia 

 

 
(a) Ponte Nuovo 

 
(b) Ponte Felcino 

 
(c) Rosciano 

 
(d) Santa Lucia 

Fig. 3. Relationship between measured mean velocity and calculated maximum velocity in Tiber River sections. 
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Fig. 4(a)-(d) show clearly the discharge 

estimation, which is the gradient in the linear 

relation between the mean velocity and the 

maximum velocity estimated through the 

process proposed using the data measured in 

gauged sections of Natural River. The mean 

velocity of the river was estimated by using 

Eq. (30) and the discharge was estimated by 

multiplying the estimated mean velocity by 

the cross-section area of each river. 

Table. 2(b): Main characteristics of selected events: discharge (Q), flow area  

(A) and water depth along the vertical where 
maxu occurs (D) 

D(m) 
2( )A m

 
3( / )Q m s

 Location 

2.9 146.74 159.19 P.Nuovo 

6.64 311.91 541.58 P.Nuovo 

6.07 278.16  506.39 P.Nuovo 

3.2   87.60 156.24 Rosciano 

3.11 86.03 131.20 Rosciano 

6.15 188.26 399.16 P.Felcino 

2.93 51.53 69.53 S.Lucia 

 

 
(a) Ponte Nuovo 

 
(b) Ponte Felcino 

 
(c) Rosciano 

 
(d) Santa Lucia 
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Fig. 4. Analysis results by using the proposed mean velocity equation in Tiber River sections. 

 
 
 

 

9. Conclusions 

This study developed a mean velocity 

formula derived from 2-D velocity formula 

using Tsallis entropy concept and river bed 

shear stress of the channel. In particular, the 

developed new velocity formula reflects 

accurately the hydraulic characteristics such 

as water level, width, hydraulic radius and 

river slope that are easily obtained from 

rivers, and can estimate accurately the 

maximum velocity that is difficult to measure 

in natural rivers. 

For this study reliable data measured 

from gauged sections of Natural River were 

used. According to the results, standard 

deviations for gauged sections were 0.009, 

0.003, 0.033 and 0.0241, respectively and 

showed that estimated data are quite close 

to the measured data. 
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